This data comes from "China's 1:100000 land use data". China's 1:100000 land use data is constructed in three years based on LANDSAT MSS, TM and ETM Remote sensing data by means of satellite remote sensing, organized by 19 research institutes affiliated to the Chinese Academy of Sciences under the national macro survey and dynamic research on remote sensing of resources and environment, a major application project of the eighth five year plan of the Chinese Academy of Sciences. Using a hierarchical land cover classification system, this data divides the whole country into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural areas, industrial and mining land, residential land and unused land), and 31 second-class categories. This is the most accurate land use data product in China, which has played an important role in the national land resource survey, hydrological and ecological research.
2020-03-26
China 1:100000 data of land use is a major application in the Chinese Academy of Sciences "five-year" project "the national resources and environment remote sensing macroscopic investigation and study of dynamic organized 19 Chinese Academy of Sciences institute of remote sensing science and technology team, by means of satellite remote sensing, in three years based on Landsat MSS, TM and ETM remote sensing data established China 1:100000 images and vector of land use database.The main contents include: China 1:100,000 land use data;China 1:100,000 land use graph data and attribute data. The data was directly clipped from China's 1:100,000 land-use data.A hierarchical land cover classification system was adopted for the land use data of heihe basin of 1:100,000, and the whole basin was divided into 6 primary categories (arable land, forest land, grassland, water area, urban and rural areas, industrial and mining areas, residential land and unused land) and 26 secondary categories.The data type is vector polygon, which is stored in Shape format.There are two types of data projection: WGS84/ALBERS;Data coverage covers the new heihe watershed boundary (lack of outer Mongolia data). Land use classification attributes: The first class type and the second class type attributes encode the spatial distribution position Cultivated paddy field 113 is mainly distributed in alluvial plain, basin and valley Cultivated paddy field 112 distributed in hilly valley narrow valley platform or beach (with irrigation conditions) Cultivated paddy field 111 is mainly distributed in mountain valley narrow valley platform or beach (with better irrigation conditions) Arable land 124 is mainly distributed in mountainous areas, the slope is generally more than 25 degrees (belongs to the steep slope hanging land), should be returned to forest. Cultivated dry land 123 is mainly distributed in basins, piedmont belts, river alluvial, diluvial or lacustrine plains (water shortage and poor irrigation conditions). Cultivated dry land 122 is mainly distributed in hilly areas (shaanxi, gan, ning, qing).In general, the plot is distributed on gentle slopes and x and sockets of hills. Arable land 121 is mainly distributed in the mountainous area, with an elevation of 4000 meters below the slope (gentle slope, mountainside, steep slope platform, etc.) and mountain front belt. Woodlands have woodlands (trees) 21 mainly distributed in the mountains (below 4000 meters above sea level) or in the slope, valley two slopes, mountain tops, plains.In qinghai nanshan, qilian mountains are. Woodland shrub 22 is mainly distributed in the higher mountain areas (below 4500 m), most of the distribution of hillside and valley and sand. Forest dredging 23 mainly distributed in the mountains, hills, plains and sandy land, gobi (soil, gravel) edge. Other woodlands 24 are mainly distributed in the oasis ridge, river, roadside and rural residential areas around. Grassland 31 is generally distributed in mountainous areas (gentle slopes), hills (steep slopes) and interriver beaches, gobi desert, sandy hills, etc. The covered grassland 32 is mainly distributed in dry places (next door low-lying land and sandy hills, etc.). Grassland low cover grassland 33 mainly grows in drier places (loess hills and sandy edges). The river channel 41 is mainly distributed in the plain, the cultivated land between the rivers and the valleys in the mountains. Water lakes are mainly distributed in low-lying areas. The reservoirs are mainly distributed in the intermountain lowlands and intersandy hills in qinghai province. Water area glaciers and permanent snow 44 mainly distributed in the plain, the valley between the river, there are surrounding residents and arable land. Waters and beaches are mainly distributed on the top of (over 4000) mountains.
2020-03-15
Image format: tif Image size: about 925M per scene Time range: may-october 2012 Time resolution: month Spatial resolution: 30m The algorithm firstly adopts the canopy BRDF model and presents the canopy reflectivity as a function of a series of parameters such as FAPAR, wavelength, reflectance of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI/FAPAR products by look-up table (LUT) method. See references for detailed algorithm.
2020-03-15
At the end of September and the beginning of October, 2011, a year-end ecological survey was carried out in heihe river basin for plants of different desert types to stop growing. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
2020-03-15
At the end of September and the beginning of October, 2013, desert plants in typical areas of heihe basin stopped their growth period to conduct year-end ecological survey. There are altogether 8 survey and observation fields, which are: piedmont desert, piedmont gobi, middle reaches desert, middle reaches gobi, middle reaches desert, lower reaches desert, lower reaches gobi and lower reaches desert, with a size of 40m×40m. Three 20m×20m large quadrats were fixed in each observation field, named S1, S2 and S3, and regular shrub surveys were conducted.Each large quadrat was fixed with 4 5m x 5m small quadrats, named A, B, C, D, for the herbal survey.
2020-03-15
Correlation data of vegetation functional traits with topographic factors and pastoral animal husbandry activity factors, including: 1) observation data of main functional traits of 2-3 kinds of grassland plants in elevation, slope and slope upward; 2) correlation analysis data of vegetation functional traits and topographic factors; 3) correlation analysis data between vegetation functional traits and livestock activity intensity factors.
2020-03-15
The dataset includes the saturated hydraulic conductivity data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The collection method of typical soil sample points in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the sample points with higher representativeness can be collected as much as possible, and the saturated hydraulic conductivity of each type of soil can be measured three times for the average value.
2020-03-15
This dataset contains soil organic matter content data of typical soil samples in heihe river basin from July 2012 to August 2013.The collection method of typical soil sample points in heihe river basin is representative sampling, which refers to the collection of typical soil types in the landscape area and the collection of highly representative sample points as far as possible.Soil samples from each profile were taken on the basis of diagnostic layers and diagnostic characteristics, classified according to the Chinese soil system.
2020-03-15
A total of 137 soil samples of different vegetation types, different altitudes and different terrains were collected from June 2012 to August 2012. The soil layer of each sample point was divided into three layers of 0-10cm, 10-20cm and 20-30cm, with an altitude of 2700-3500m m. The vegetation types were divided into five types: Picea crassifolia forest, Sabina przewalskii, subalpine scrub meadow, grassland and dry grassland. At the same time of sampling, hand-held GPS is used to record the location information and environmental information of each sampling point, including longitude, latitude, altitude, slope, aspect, terrain curvature, vegetation type, soil thickness, maximum root depth, etc. Soil bulk density: The measurement method of soil bulk density is to put the sample into an envelope and dry it in an oven at 105℃ for 24 hours, then take it out and place it for 30 minutes to weigh. The ratio of the weighing result to the volume of the ring cutter is the soil bulk density, and the unit is g/cm3. Soil mechanical composition: hydrometer method is used to measure the soil mechanical composition, which includes the content of soil sand, silt and clay.
2020-03-15
The data set includes the observation data of river water level and velocity at No. 4 point in the dense observation of runoff in the middle reaches of Heihe River from January 1 to June 25, 2014. The observation point is located in Heihe bridge, Shangbao village, Jing'an Township, Zhangye City, Gansu Province. The riverbed is sandy gravel with unstable section. The longitude and latitude of the observation point are n39 ° 03'53.23 ", E100 ° 25'59.31", with an altitude of 1431m and a width of 58m. In 2012, hobo pressure type water level gauge was used for water level observation with acquisition frequency of 30 minutes; since 2013, sr50 ultrasonic distance meter was used with acquisition frequency of 30 minutes. The data description includes the following parts: For water level observation, the observation frequency is 30 minutes, unit (CM); the data covers the period from January 1, 2014 to June 25, 2014; for flow observation, unit (M3); for flow monitoring according to different water levels, the water level flow curve is obtained, and the runoff change process is obtained based on the observation of water level process. The missing data is uniformly represented by string-6999. Refer to Li et al. (2013) for hydrometeorological network or station information and he et al. (2016) for observation data processing.
2020-03-14
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn