本数据为中亚大湖区2017年逐6小时分辨率常规和卫星资料。其中常规资料包含中亚大湖区及其周边地区(中国、哈萨克斯坦、吉尔吉斯斯坦、土库曼斯坦、塔吉克斯坦、乌兹别克斯坦、阿富汗、俄罗斯、伊朗、巴基斯坦、印度等)的地面台站和探空站点观测,观测要素包含气温、气压、风速和湿度,每个时次的站点数平在600个左右,站点间距离在10-100km之间;卫星资料来源于极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到30km水平分辨率。云导风通过追踪示踪云的移动来估计风速,由示踪云的高度确定风场高度。本数据全部来源于全球电信系统Geostationary Tether Satellite(GTS),经过质量控制剔除了质量较差的观测资料。该数据可应用于中亚大湖区的资料同化,也可用于检验和评估模式对中亚大湖区的数值模拟。
姚遥
本数据总结了2016年中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦)农业以及社会经济现状。本数据来源于中亚五国统计年鉴,包括总人口、耕地面积、粮食生产面积、GDP、农业GDP占总GDP比重、工业GDP占总GDP比重、森林面积等六个要素。详细的统计了中亚五国六个社会经济要素的情况。通过统计可以看出中亚五国六个要素之间各有侧重。本数据为项目提供了基础数据,便于后续分析中亚生态与社会的情况,为项目数据分析提供了数据支持。
刘铁
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某段时间的降水量与同时段内潜在蒸散量之差再除以同时段内潜在蒸散量得到。降水量数据来自TRMM/GPM卫星降水数据降尺度,潜在蒸散量的估算采用Thornthwaite方法。详细算法请参考《气象干旱国家标准》(GB/T 20481-2017)。数据仅覆盖一带一路沿线34个关键节点区域。
吴骅
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤容重数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤有机碳数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。 PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。
张永强
过去五十年,阿拉斯加地区冰川对海平面贡献占全球山地冰川总贡献的三分之一。 在RGI6.0的基础上,我们利用遥感和地理信息系统技术对阿拉斯加地区冰川编目数据进行了更新。更新的冰川编目采用的数据源为2018年Landsat OLI空间分辨率15m遥感影像,使用的方法为人工解译。结果显示,阿拉斯加地区冰川编目包括了现有冰川27043条,总面积81285km2。数据误差4.3%。该数据将为研究全球变化大背景下阿拉斯加地区冰川变化评估、冰川变化的区域和全球影响提供重要的数据支撑。
上官冬辉, 李耀军
The dataset integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively. The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology studies in the mountain cryosphere region.
WANG Xin, GUO Xiaoyu, YANG Chengde, LIU Qionghuan, WEI Junfeng, ZHANG Yong, LIU Shiyin, ZHANG Yanlin, JIANG Zongli, TANG Zhiguang
土地覆盖数据是了解人类活动与全球变化之间复杂相互作用的关键信息来源。基于清华大学制作的30 m分辨率的FROM-GLC全球土地覆盖产品,利用34个泛第三极关键节点区域矢量对其进行裁剪等处理,获得本数据集。本数据集的一级分类体系为:10.农田;20.森林;30.草地;40.灌木丛;50.湿地;60.水体;70.苔原;80.不透水面;90.裸地;100.冰雪;120.云。其数据质量取决于FROM-GLC产品质量,本数据集作为所有遥感数据的研究基础,为项目提供了基底数据。
葛咏, 凌峰, 张一行
1) 数据内容:为了描述青藏高原上的大气水资源,我们提供了两个变量。 一种叫做大气柱水汽收入(CWI),定义为单位面积大气柱水汽通量散度和地表面蒸发之和。 CWI变量为0.25×0.25度网格资料,单位为kg/m2或毫米。 另一个是大气水塔指数(AWTI),是整个TP区域大气水资源净收入的总和,AWTI即cwi乘以高原(75-105E, 25-40N, altitude> 2.5km)格点面积之和,单位为Gt. 2) 数据来源:基于ERA5再分析数据产品计算得到 3) 数据质量描述:ERA5是目前精度较高的再分析数据 4) 数据应用成果及前景: 上述两个变量提供了高原大气中水汽净收入量,
阎虹如
为了了解北半球气温变化的时空变化特征,该研究用 CRU(Climatic Research Unit)网格数据计算了 30 年(1971-2000)年平均气温的空间分布。年平均气温随着纬度的升高而降低,变化范围从大于 30 °C 到小于-25 °C。在相同纬度地区,高海拔地区(比如青藏高原、蒙古高原和西西伯利亚山区)的年平均气温凸显低温的趋势。同时我们完成了分辨率为0.5 °× 0.5 °北半球1901-2016年间的年平均气温变化趋势分布图。
尹国安, 石亚亚
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(气温(℃)、气温最高(℃)、气温最高出现时间、气温最低(℃)、气温最低出现时间、0.1mm小时雨量(mm)、0.5mm小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、相对湿度(%)、最小相对湿度(%)、最小相对湿度出现时间、水气压(hPa)、露点温度(℃)、气压(hPa)、海平面气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
霍文
时空连续的积雪覆盖面积对陆表能量水分交换、山区水文、陆面模式、数值天气预报以及气候变化研究具有重要意义,而云的大量存在,造成光学遥感积雪覆盖面积中严重的数据空缺。本数据集采用Terra和Aqua双星MODIS观测,以及FY-2E和FY-2F VISSR双星观测,获取受云影响较小的积雪覆盖 度(亚像元积雪覆盖),并根据时序信息补充剩余云像元的积雪覆盖度,最终得到无云积雪覆盖度。本数据集包括青藏高原0.005度(约500 m)和中国地区的0.05度(约5 km)空间分辨率逐日积雪覆盖度。
蒋玲梅
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件