大气水汽是研究水循环的重要参数,在全球气候变暖的背景下,为了更好地研究大气水汽对水循环的影响,构建了空间分辨率为0.25°的全球日尺度AMSR-E/AMSR2全天候大气可降水(Total Precipitable Water,TPW)数据集。数据集中,陆地上空的TPW主要有我们新开发的基于AMSR-E、AMSR2的18.7和23.8GHz亮温数据反演算法获取;海洋上空TPW数据融合了AMSR-E/AMSR2官方TPW产品。作为后处理,为了消除AMSR-E TPW和AMSR2 TPW之间的系统性偏差,以AIRSX2RET TPW为基准,使用直方图匹配方法分别对AMSR-E和AMSR2的TPW数据在全球尺度上进行了系统偏差校正,保证数据的连续性,最终得到全球日尺度AMSR-E和AMSR2 TPW全天候数据集。其中,AMSR-E数据时间范围为2002年7月8日至2011年9月27日,AMSR2数据时间范围为2013年1月1日至2017年8月31。每个日期下均包含升轨和降轨两个文件,数据格式为Geotiff。数据层数为2,第一个层为TPW数据,单位为mm,第二层为时间信息,表示以UTC为时间基准的像元观测时间距离当天0时0分0秒所经过的秒数。数据集具有可靠的质量,通过与全球SuomiNET GPS TPW验证分析,数据集的均方根误差为3.5-5.2mm。由于大气可降水是影响地表遥感重要的地球物理参数,对地球的气候变化也有重要影响,故此数据可用于气候变暖的背景下大气水汽对水循环的影响、大气水资源的评估以及大气校正等方面的研究。
姬大彬, 施建成, 胡斯勒图, 李薇, 张红星, 尚华哲
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
积雪面积比例(fractional snow cover, FSC)是单位像元内积雪覆盖面积(Snow Cover Area SCA)与单位像元面积的比值。本数据集的制作方法为BV-BLRM积雪面积比例线性回归经验模型;采用的源数据为MOD09GA 500米全球逐日地表反射率产品,以及MOD09A1 500m的8天合成全球地表反射率产品;制作平台使用的是Google Earth Engine;数据范围为全球范围,数据制备时间为2000至2021年,空间分辨率为500米,时间分辨率为逐年。该套数据可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛
本数据集为TCA(Triple Collocation Analysis)算法代码集,用于生成2011-2018年全球日尺度土壤水分融合数据。
谢秋霞, 贾立, 胡光成
本数据集是一个包含10年(2010-2019)的全球日尺度地表土壤水分数据集,分辨率为36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3. 数据集采用Yao et al.(2017,2021)发展的土壤水分神经网络反演算法,将SMAP的优势传递到FY-3B/MWRI,利用人工神经网络方法,以SMAP标准土壤水分产品为训练目标,以FY-3B/MWRI的亮温为输入,最终输出长时序土壤水分数据。土壤水分精度和SMAP接近,达到5%左右。( 全球14个密集观测站网的验证精度 )。
姚盼盼, 卢麾, 赵天杰, 武胜利, 施建成
本土壤水分数据集是一个包含8年(2011-2018)的全球时空连续一致的日尺度地表土壤水分数据集,空间格网分辨率为25km,时间分辨率为每天,数据单位为cm3/cm3。数据集采用基于三重配置分析 (TCA: Triple Collocation Analysis)的土壤水分线性融合算法,对SMOS,ASCAT,FY3B,CCI,SMAP五种土壤水分产品分两步进行了融合:第一步,融合2011~2018年SMOS,FY3B和ASCAT土壤水分数据产品;第二步,对第一步融合的2015~2018年间的结果与相应年份的CCI以及SMAP数据产品进行再融合,最终获得2011~2018年间融合的土壤水分产品。最终融合的土壤水分数据在全球空间覆盖比达80%以上。此外,利用全球7个地面观测网络的站点实测土壤水分数据对上述融合的土壤水分产品进行了评价分析,最小RMSE (Root Mean Square Error) 为0.036 cm3/cm3。
贾立, 谢秋霞, 胡光成
该NDVI数据集是由NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2016)。该产品的时间分辨率是16天,空间分辨率0.05度。该版本是在原有1公里分辨率的NDVI产品(MYD13A2)基础上生成的气候模拟格点(CMG)数据产品。 请在致谢中以下方式说明该数据的来源: The MOD13C NDVI product was retrieved from the online in courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota, The [PRODUCT] was (were) retrieved from the online [TOOL], courtesy of the NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota.
NASA
该NDVI数据集是最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2015)均一化植被指数产品,版本号3g.v1。 该产品的时间分辨率是每月两次,空间分辨率1/12度。时间跨度1981年7月至2015年12月。该产品为共享数据产品,可直接从ecocast.arc.nasa.gov下载。 详情请参考https://nex.nasa.gov/nex/projects/1349/
NCAR
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件