三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
青藏高原地面PM2.5浓度数据以日期命名(YYYYMMDD)。其中每个nc文件包含一天的数据,里面包含该区域的PM2.5浓度,经纬度以及时间信息(对应数据中的变量名为PM2.5,lon,lat,time)。数据反演依赖美国国家航空航天局NASA发布的再分析资料MERRA-2和多角度成像光谱仪MISR的AOD产品。MERRA-2主要基于NASA的地球系统模型版本5(GEOS 5)。该算法能够同化所有原位和遥感大气数据。本数据主要用到MERRA-2的气溶胶场。这是首次将气象和气溶胶观测联合同化为全球同化系统的年代际再分析资料。MISR是通过指向9个不同方向的摄像机观察地球,可以知道在自然条件下散射到不同方向的辐射。本数据算法主要用到的数据产品有MERRA-2 气溶胶分析产品(M2T1NXAER)和MISR level 3版本四全球气溶胶产品(MIL3DAEN_4)。首先用MERRA-2提供的气溶胶信息计算得到每个格点中的PM2.5与AOD的比值,然后用MISR的AOD乘以该比值即为该格点的PM2.5浓度。利用该方法得到的PM2.5浓度平均预测误差在20微克/立方米以内。相应的PM2.5产品也可以为评估青藏高原地区颗粒物污染状况提供参考。
傅迪松
大气水汽是研究水循环的重要参数,在全球气候变暖的背景下,为了更好地研究大气水汽对水循环的影响,构建了空间分辨率为0.25°的全球日尺度AMSR-E/AMSR2全天候大气可降水(Total Precipitable Water,TPW)数据集。数据集中,陆地上空的TPW主要有我们新开发的基于AMSR-E、AMSR2的18.7和23.8GHz亮温数据反演算法获取;海洋上空TPW数据融合了AMSR-E/AMSR2官方TPW产品。作为后处理,为了消除AMSR-E TPW和AMSR2 TPW之间的系统性偏差,以AIRSX2RET TPW为基准,使用直方图匹配方法分别对AMSR-E和AMSR2的TPW数据在全球尺度上进行了系统偏差校正,保证数据的连续性,最终得到全球日尺度AMSR-E和AMSR2 TPW全天候数据集。其中,AMSR-E数据时间范围为2002年7月8日至2011年9月27日,AMSR2数据时间范围为2013年1月1日至2017年8月31。每个日期下均包含升轨和降轨两个文件,数据格式为Geotiff。数据层数为2,第一个层为TPW数据,单位为mm,第二层为时间信息,表示以UTC为时间基准的像元观测时间距离当天0时0分0秒所经过的秒数。数据集具有可靠的质量,通过与全球SuomiNET GPS TPW验证分析,数据集的均方根误差为3.5-5.2mm。由于大气可降水是影响地表遥感重要的地球物理参数,对地球的气候变化也有重要影响,故此数据可用于气候变暖的背景下大气水汽对水循环的影响、大气水资源的评估以及大气校正等方面的研究。
姬大彬, 施建成, 胡斯勒图, 李薇, 张红星, 尚华哲
云覆盖着70%的地球表面,是影响大气辐射收支平衡以及气候变化的重要因素之一,同时也是全球水循环的重要组成部分。考虑到东亚-太平洋(EAP)地区缺乏具有高时空分辨率的可靠云参数数据,利用下一代地球静止卫星Himawari-8开发了2016年、时间辨率为1h、空间分辨率为0.1°、0.25°、1°的云参数数据集。本数据集所提供的云产品包括宏观参数和微观参数,其中宏观参数包括:云量(CF)、云检测(CM)、云相态检测(CP)、云顶压强(CTP)、云顶高度(CTH)、云顶温度(CTT)、云类型(CT)、过冷水检测(SWC);微观参数包括:云光学厚度(COT)、云粒子有效半径(CER)。所生产的这些云参数在精度方面均达到了国际先进水平。
胡斯勒图
太阳总辐射和散射采用辐射表(CM22, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度数据来源于IPEV/PNRA 项目 “Routine Meteorological Observation at Station Concordia” ,http://www.climantartide.it,地面水汽压单位为hPa。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(S/G)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2006-2016年(Bai, J.; Zong, X.; Lanconelli, C.; Lupi, A.; Driemel, A.; Vitale, V.; Li, K.; Song, T. 2022. Long-Term Variations of Global Solar Radiation and Its Potential Effects at Dome C (Antarctica). Int. J. Environ. Res. Public Health, 19, 3084. https://doi.org/10.3390/ijerph19053084)。该数据集可以用于南极Dome C地区太阳辐射及其衰减等相关研究。地面太阳辐射和其他气象数据可以参考:https://doi.org/10.1594/PANGAEA.935421
白建辉
太阳总辐射采用辐射表(CM21, Kipp & Zonen, 荷兰)测量,波长范围200-3600 nm。温湿度分别采用温湿度传感器HMP45C-GM (Vaisala Inc., Vantaa, Finland)测量。本数据集包括:利用经验模型计算的地面太阳总辐射、损失于大气中的吸收和散射辐射(小时累计值,单位MJ/m2)、大气顶和地表反照率;还包括散射因子(AF)地面水汽压(E,单位hPa)。太阳辐射数据来源于数据提供者的计算、实验站测量,数据覆盖时间为2007-2020年。关于数据处理和太阳总辐射计算等可参考文献:Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906。该数据集可以用于珠峰地区太阳辐射及其衰减等相关研究。珠峰站太阳辐射和其他气象数据可以参考:https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/。
白建辉
气溶胶光学厚度(Aerosol Optical Depth,AOD)反映到达地表的太阳辐射受气溶胶的衰减程度,气溶胶类型根据气溶胶光学厚度AOD计算得到。本数据集来源于最新MODIS气溶胶二级产品MOD04_L2和MYD04_L2,其中 MOD 和 MYD 分别代表 Terra 和 Aqua 卫星。目前,MODIS反演气溶胶算法分别为暗目标算法(Dark Target,DT)和深蓝算法(Deep Blue,DB)。根据元数据字段表Quality Assuracne Confidence(QAC)反演精度,融合DT和DB算法产品,分别处理陆地、海洋和海岸等,索引质量最优(QAF=3)或次优(QAF=2)或满足基本需求(QAF=1),得到全覆盖、长时间序列的高分辨率AOD产品(0.1度,日尺度)。按照AOD经验阈值(AOD:0~0.2,清洁型;0.2~0.6,城市或工业型;大于0.6,沙尘型。)分类将气溶胶类型标记为三种:清洁型(1)、城市或工业型(2)和沙尘型(3)。本数据集提供MOD,MYD以及根据过境时间得到的融合产品。
叶爱中
该数据集利用机器学习算法,生成了一套全球陆地高分辨率边界层高度数据集,时间范围为2017至2021年,其时间、空间分辨率分别为3小时和0.25º。机器学习以ERA5再分析资料和GLDAS地表参数为输入,高分辨率探空资料与ERA5获得的边界层高度之差作为输出,以此来建立训练模型。输入参量包括地形标准差、感热通量、潜热通量、向下长波辐射、向下短波辐射、总降水率、地表压强、地表温度等18个参数。无线电探空数据集包含全球370个站的约180万个剖面。总体而言,与从无线电探空仪反演得到的边界层高度相比,该数据集在时空覆盖和精度方面表现突出。该数据集对大量的科学研究和应用都有重要意义,包括空气质量、对流触发、气候和气候变化等。
郭建平, 张健, 邵佳
本数据集包含了2004-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.0.1数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
本数据集包含了2012-2020年东亚地区高分辨率对流层二氧化氮垂直柱浓度POMINO v2.1数据,是v2.0.1错误修复后的新版本数据,为研究中国地区对流层二氧化氮的空间分布特征和时间变化趋势提供了重要的数据基础。该数据基于KNMI提供的对流层二氧化氮斜柱浓度,通过自行开发的对流层AMF反演算法,计算得到POMINO对流层二氧化氮垂直柱浓度。与地基观测资料的对比表明,POMINO的对流层二氧化氮柱浓度能够更好地抓住日际间的变化趋势,同时与地基观测数据的相关性也更好。目前该数据已被国内外多家高校以及科研机构用于科研使用,在未来,该数据集将对青藏高原科考项目提供更加全面的数据支持。
林金泰
Accurate estimation of the gross primary production (GPP) of terrestrial vegetation is vital for understanding the global carbon cycle and predicting future climate change. Multiple GPP products are currently available based on different methods, but their performances vary substantially when validated against GPP estimates from eddy covariance data. This paper provides a new GPP dataset at moderate spatial (500 m) and temporal (8-day) resolutions over the entire globe for 2000–2016. This GPP dataset is based on an improved light use efficiency theory and is driven by satellite data from MODIS and climate data from NCEP Reanalysis II. It also employs a state-of-the-art vegetation index (VI) gap-filling and smoothing algorithm and a separate treatment for C3/C4 photosynthesis pathways. All these improvements aim to solve several critical problems existing in current GPP products. With a satisfactory performance when validated against in situ GPP estimates, this dataset offers an alternative GPP estimate for regional to global carbon cycle studies.
张尧
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
公里级、空间完整(无缝)的地表温度产品在全球变化等领域具有广泛的应用需求。基于遥感观测反演的地表温度具有较高的可信度,融合从热红外和微波观测反演的地表温度,是获取具有一定精度、空间完整地表温度的有效途径。基于这一指导思想,作者发展了反演中国区域1km、无缝地表温度的方法框架,并生成了相应的数据集(2002-2020). 首先采用基于查找表的AMSR-E/AMSR2 地表温度反演算法反演得到AMSR-E/AMSR2 地表温度,之后采用地理加权回归对AMSR-E/AMSR2 地表温度进行降尺度,得到1km 地表温度,最后使用多尺度卡尔曼滤波融合AMSR-E/AMSR2 1km地表温度和MODIS地表温度,生成1km无缝地表温度数据集。 地面验证评价结果表明,该LST的均方根误差(RMSE)约为3K,空间分布于MODIS LST、CLDAS LST的一致性较好。
程洁, 董胜越, 施建成
地表温度(Land Surface Temperature,LST)是地表能量平衡研究的关键参数,被广泛用于气象、气候、水文、农业和生态等领域研究。卫星(热红外)遥感作为获取全球和区域尺度LST信息的重要手段,容易受到云层覆盖和其他大气条件的影响,导致LST遥感产品时空不连续,极大限制了LST遥感产品在相关研究领域的应用。 本数据集的制备首先基于经验正交函数插值方法,利用Terra/Aqua MODIS 地表温度产品重建理想晴空条件下的LST,然后使用累积分布函数匹配方法融合 ERA5-Land再分析数据获取全天候条件下的LST。该方法充分利用了原始MODIS遥感产品的时空信息以及再分析数据中的云影响信息,缓解了云层覆盖对LST估算的影响,最终重建得到较高质量的全球0.05°时空连续的理想晴空和全天候LST数据集。 本数据集不仅实现了时空无缝覆盖,并且具有良好的验证精度。重建的理想晴空LST数据在全球17种土地覆盖类型实验区内,平均相关系数(R)为0.971,偏差(Bias)为-0.001 K至0.049 K,均方根误差(RMSE)为1.436 K至2.688 K。重建的全天候 LST 数据与地面站点实测数据的验证结果:平均 R 为 0.895,Bias为0.025 K 至 2.599 K, RMSE为4.503 K至7.299 K。 本数据集的时间分辨率为逐日4次,空间分辨率为0.05°,时间跨度为2002年-2020年,空间范围覆盖全球。
赵天杰, 余沛
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
数据内容:咸海流域2015年-2018年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
本数据集是一个包含34年(1983.7-2017.6)的全国高分辨率地表太阳辐射数据集,其分辨率为10公里,数据单位为W/㎡。该数据集是基于以ISCCP-HXG云产品为主要输入的全球高分辨率(3小时,10公里)地表太阳辐射数据集(1983-2017)上,通过地理加权回归方式,融合全国2261个气象台站日照时数反演的地表太阳辐射站点数据而生成的全国地表太阳辐射分布数据。验证并和其他全球卫星辐射产品比较表明,该数据集在长期趋势模拟上比GEWEX-SRB、CMSAF-CLARA-A2、ISCCP-HXG卫星辐射产品的精度要高。本数据可为陆地表面过程模拟的水文生态学的长期变化应用和研究中提供有利的数据支持。
冯飞, 王开存
中国地表温度数据集包含2003-2017年期间中国(约960万平方公里土地)的地表温度数据,时间分辨率为月尺度,空间分辨率为5600 m。 数据集主要是通过集成MODIS每日数据(MOD11C1和MYD11C1),月数据(MOD11C3和MYD11C3)和气象站数据,以重建月尺度LST图像云覆盖下的真实LST来生成的,然后构建回归分析模型以进一步提高精度。 六个具有不同气候条件的自然分区。 精度分析表明,重建结果与现场测量结果密切相关,平均RMSE为1.39°C,MAE为1.30°C,R2为0.97。 详情请参考引用文献Zhao et al (2020)。
毛克彪
34个关键节点百米级脆弱性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。此数据集以“一带一路”34个关键节点的GDP、人口、土地利用、路网、河网数据为基础,结合ArcGIS中的空间分析方法,赋予各指标相应的权重,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的脆弱性,并用自然断点法将脆弱性分为5个等级,分别代表无脆弱性,低脆弱性,中脆弱性,高脆弱性,极高脆弱性。
葛咏, 李强子, 李毅
泛第三极历史极端降水数据集包括了2000-2018年极端降水识别数据。该数据集以GPM IMERG Final Run(GPM)日值降雨数据为基础,评估了一带一路重要节点区域的降雨量,用百分位法评估了34个重要节点的极端降水阈值,并运用计算出的阈值识别出了发生极端降水的日期,以此为基础制作了极端降水发生时地表的淹没范围。 数据范围主要是泛第三极34个关键节点(万象、亚历山大、仰光、加尔各答、华沙、卡拉奇、叶卡婕琳堡、吉大港、吉布提等国家) 该数据集可以为当地政府部门决策提供依据,以便正确识别极端降水,降低极端降水所带来的生命财产损失。
何雨枫
地表温度是地表能量平衡的重要参量之一。本数据集为2019年7-9月逐月的黑河流域典型站点无人机遥感地表温度数据;飞行使用大疆M600 pro无人机搭载FLIR VUE pro热像仪,分别以湿地内的SD站、绿洲内的DM站和荒漠内的HZ站为中心,观测了地表温度获取了地表亮温图像,无人机的飞行高度约300m,热像仪的像素为336x256,图像的空间分辨率为0.4m。地表温度反演算法为改进的单通道算法,将该算法应用于无人机热红外遥感传感器获取的地表亮温数据,最终得到0.4m空间分辨率的地表温度数据。
周纪, 刘绍民, 王子卫
脆弱性是指由于系统对系统内外扰动的敏感性以及缺乏应对能力从而使系统的结构和功能容易发生改变的一种属性,即高温热浪发生时区域应对灾害以减少损失的能力。本数据集以2015年为基准年,泛第三极区域路网数据、GDP数据、医疗设施空间分布数据、植被覆盖度数据、水体分布数据为基础数据。采取欧式距离计算法明确区域内路网、水体及医疗设施的空间分布情况,并以距道路距离、距水体距离、距医疗设施距离、GDP及植被覆盖度为评价指标,采取等权重叠加法评估各节点高温热浪脆弱性。为消除单位差异性带来的影响,评估前对各指标层数据进行归一化处理,最后利用自然间断点法划分各节点脆弱性等级。
葛咏, 杨飞, 刘庆生
数据来源于美国国家环境信息中心(National Centers for Environmental Information, NCEI),该中心提供了全球范围内各站点自建站以来的气象记录,包括气温、风速、露点和降水等信息。达卡市附近有4个有记录的站点。先从NCEI下载了全球范围内站点监测数据,再根据经纬度筛选达卡市范围内的4个站点。该数据级记录了2016年1月1日-2019年12月31日的日气象站点监测数据。
葛咏, 杨飞
此数据集以2015年为基准年,分别选取人口密度、高危人口分布、GDP为评价指标,完成34个关键节点高温热浪暴露度评估。暴露度是指灾害发生时某地区可能受到灾害影响的程度,在极端高温发生时,人类与经济是受高温热浪影响最为明显的两类因素。其中将高危人口分别定义为年龄小于五岁的儿童及大于65岁的老人,评估采取等权重叠加方法,为消除单位差异影响,在评估前对各指标层数据进行归一化处理,此次评估结果空间分辨率为100m,范围覆盖泛第三极34个关键节点区域。
葛咏, 杨飞, 刘庆生
此数据集以1984-2018年全球地表水数据(WOD)为基础,选取了降水、地形、土地利用类型几个指标,结合ArcGIS中的空间分析方法,构建评估了34个关键节点在极端降水条件下发生洪涝灾害的危险性等级。34个关键节点百里级危险性评估数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害危险性,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。
葛咏, 李强子, 李毅
历史极端降水导致地表淹没范围数据集评估了一带一路重点区域在极端降水下地表被淹没的范围,为当地政府部门决策提供依据和参考,以便在极端降水发生前进行预警,降低极端降水所带来的生命财产损失。 此数据集以极端降水阈值集和极端降水识别数据为基础,确认发生极端降水的时间节点和区域,再到NASA网站上下载对应时间和地区的淹没范围产品,利用ArcGIS空间分析结合连接以上数据,构建了34个关键节点历史极端降水导致地表淹没范围数据集。 数据主要包括34个关键节点(万象、中缅石油天然气管道、中老泰柬铁路、亚历山大港、仰光、关丹、加尔各答、华沙、卡拉奇、叶卡捷琳堡、叶卡捷琳堡等区域)
吴骅
体感温度是指人体感受到的冷热程度,受温度、风速和湿度的影响。该数据的空间范围覆盖泛第三极区域34个关键节点(万象、仰光、加尔各答、华沙、卡拉奇、叶卡捷琳堡、吉大港、塔什干等地区);空间分辨率为100m。 数据处理过程:以气象站点监测数据为基础数据源,基于Humidex指数计算体感温度,再使用基于高程校正的温度插值方法获得整个区域1km格网化数据,并将其降尺度为100m。高温热浪危险性数据集主要以强度为评价指标。空间范围、空间分辨率与体感温度数据集一致,时间分辨率为年。 判断高温热浪的标准为:体感温度连续3天超过29℃的天气过程判断为一次高温热浪。
杨飞, 武夕琳, 殷聪
本数据集的数据源为Landsat-5卫星的大气顶层反射率数据第1、2、3波段。Landsat卫星为太阳同步卫星,卫星由北向南运行,地球自西向东旋转,卫星每天绕地球14.5圈,每圈在赤道西移159km,每16天重复覆盖一次。本数据集主要覆盖孟加拉国达卡市,基于2010年的Landsat-5大气顶层反射率数据,本数据从地理空间数据云平台下载,利用ArcGIS对数据进行波段合成,最终得到了TIFF格式的达卡区域2010的30米分辨率多光谱遥感影像数据。
葛咏, 杨飞
此数据集以百米级危险性评估数据集和百米级脆弱性评估数据集为基础,分别赋予危险性和脆弱性不同的权重(其中危险性权重为0.8,脆弱性权重为0.2),相加计算获得了34个关键节点百米级的风险评估数据集。该数据集评估了“一带一路”重点区域在极端降水事件下的洪涝灾害风险,为当地政府部门决策提供依据,同时以便在洪涝灾害发生前进行预警,从而可以争取到宝贵的时间采取防灾减灾措施,降低洪涝灾害所带来的人民群众生命财产损失。
葛咏, 李强子, 李毅
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
本数据集的数据源为Landsat-5、Landsat-8卫星的大气顶层反射率数据第1至7波段。Landsat卫星为太阳同步卫星,重复周期为16天。本数据集以主要覆盖东南亚和中东的泛第三极关键节点区域为研究区域,基于2000至2016年的Landsat-5及Landsat-8大气顶层反射率数据,利用Google Earth Engine云计算平台对数据进行研究区的掩模裁剪,最终得到了TIFF格式的泛第三极区域2000-2016的30米分辨率多光谱遥感影像数据。
葛咏, 凌峰, 张一行
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
本数据集主要包含2018年12个月全球SPEI空间分布、2018年全球干旱强度,以及降水、陆表温度、0-10cm土壤湿度与过去10年(2009-2018)的距平;数据使用了距平指数法,最大值合成法以及趋势分析法计算得到了2018年全球干旱强度以及主要气象因子距平数据,数据时间尺度为2018-01-01到2018-12-31,空间分辨率为0.5度,数据可为分析2018年全球干旱分布、干旱评价提供科学参考。
田丰, 武建军, 周红敏
该数据集分析了2018-2019年全球典型洪水灾害事件的时空分布规律、影响及损失情况。2018年,全球洪水灾害发生次数共109起,死亡人口1995人,受灾人口总数达1262万人次,直接经济损失约为45亿美元,在全球近30年中处于较低水平。2018年全球洪灾事件发生次数上半年较下半年多,5月至7月发生频次较高。因此,以2018年美国弗罗伦斯飓风洪水、2018年尼日利亚尼日尔河洪水及2018年中国山东寿光洪水等三个典型灾害事件为案例,从灾害背景、致灾因子、受灾情况等方面进行了分析。
蒋梓杰, 蒋卫国, 武建军, 周红敏
本数据集包括祁连山地区2018年每日0.01°×0.01°地表温度产品。采用MYD21A1的温度数据(分辨率:0.01°)以及相关辅助数据,实现祁连山地区地表温度月/日合成产品的生产。参与反演的辅助数据包括经/纬度和儒略日信息。MYD21A1的温度数据(分辨率:0.01°)为MODIS官方产品,数据分为白天和夜晚,采用TES算法。下载地址:https://urs.earthdata.nasa.gov。
历华
本数据集包括祁连山地区1982年、1985年、1990年、1995年和2000年每月0.05°×0.05°地表温度产品,2005年、2010年、2015年、2017年和2018年每月0.01°×0.01°地表温度产品,2018年每日0.01°×0.01°地表温度产品。采用劈窗(split-window,SW)算法,利用AVHRR热红外通道(通道4:10.5µm至11.3µm;通道5:11.5µm至12.5µm)的亮温数据(分辨率:0.05°),MYD21A1的温度数据(分辨率:0.01°)以及相关辅助数据,实现祁连山地区地表温度月/日合成产品的生产。参与反演的辅助数据包括IGBP地表分类数据,AVHRR NDVI产品,MERRA再分析数据,ASTER GED数据,以及经/纬度和儒略日信息。
历华
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
青藏高原地区属于高原山地气候,降水量及其季节分配与降水形式变化一直是全球气候变化研究的热点之一。数据包含青藏高原地区的降水数据,空间分辨率为1km*1km,时间分辨率为月、年,时间覆盖范围为2000年、2005年、2010年、2015年。数据通过对国家气象科学信息中心气象数据进行Kring插值得到。数据可用于分析青藏高原的降水的时空分布情况,此外数据还可用于分析青藏高原的降水随时间变化的规律,对青藏高原的生态环境研究有重要意义。
方华军
光合有效辐射吸收系数光合有效辐射分量是重要的生物物理参数,是生态系统功能模型、作物生长模型、净初级生产力模型、大气模型、生物地球化学模型、生态模型等的重要陆地特征参量,是估算植被生物量的理想参数。 数据集包含青藏高原地区的光合有效辐射吸收系数数据,空间分辨率为500m,时间分辨率为8d,时间覆盖范围为2000年、2005年、2010年、2015年。数据来源为NASA网站MODIS LAI/FPAR产品数据MOD15A2H(C6)。 数据对于分析青藏高原的植被生态环境有重要意义。
方华军, Ranga Myneni
全球ERA-Interim 地面气温再分析数据集(1979-2016)是欧洲中长期天气预报中心(ECMWF)采用ECMWF IFS预报系统(T255,60层),经过窗口为12小时的四维变分同化系统(4DVAR)同化全球不同地区和来源的地表和上层大气的常规观测和卫星遥感资料(TOVS,GOES,Meteosat等)获得。该地面气温(2米气温)数据覆盖时间从1979年1月到2016年12月,时间分辨率为6小时,水平分辨率0.75°,覆盖全球,投影方式为等经纬度投影。数据每个月存放一个NetCDF格式文件,包含经度(longitude)、纬度(latitude)、时间(time)、气温(t2m,单位:K)四个变量,纬向241个格点,经向480个格点。
李斐
北极阿拉斯加站点云特征集合数据是基于国际上5种著名云反演产品的融合集成数据,数据覆盖时间从1999年到2009年,时间分辨率为逐小时,垂直层数为512层,垂直分辨率45米,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。所包含云遥感反演数据产品包括:美国能源部大气辐射观测计划采用参数化方法遥感反演获得的所有相态云特征官方产品,美国NOAA Matt Shupe和DaveTurner合作遥感反演(最优化方法+参数化方法)获得的冰云和混合云特征产品,美国University of Wyoming大学Zhien Wang获得的混合云(最优化方法)特征产品,美国University of Wyoming大学Min Deng获得的冰云(参数化方法)特征产品,以及美国State University of New York at Albany大学Qilong Min遥感反演(最优化方法)获得的云光学厚度产品。遥感产品变量包含云水有效半径、云水含量、云冰有效半径、云冰含量、云光学厚度、云水柱含量;相应的观测反演误差范围约为10-30%,30-60%,10-30%,30-60%,10-30%和10-20%。数据格式为nc格式,每月一个nc文件。
赵传峰
该数据集包含2007-2014年地表太阳辐射数据,时间分辨率为逐小时,空间分辨率为5km。每个小时对应一个文件,文件命名方式为: RAD_yyyymmddhh.dat,其中yyyy表示年,mm表示月,dd表示日,hh表示小时(世界时)。经度(X轴)格点:70.025:0.05:140.025,纬度(Y轴)格点:59.975:-0.05:14.975。文件为二进制文件,格式为float格式(real*4),没有头文件。 该数据集的获取分为三步:(1)融合极轨卫星MODIS 和日本静止气象卫星MTSAT 资料,发展适合MTSAT的云检测算法及MTSAT云属性信息(有效粒子半径和路径含水量)的估算方法;(2)发展以云属性、气溶胶、水汽和臭氧等信息为输入的宽波段辐射模型,形成高效快速的地表太阳辐射反演技术;(3)将获取的高分辨率云参数信息和其他要素(气溶胶、水汽、臭氧等)输入宽波段辐射传输模型,最终得到中国高时空地表太阳辐射数据集。 经验证,瞬时辐射均方根误差(RMSE)一般小于 100 W/㎡,日平均辐射均方根误差(RMSE)一般小于 35 W/㎡。
唐文君
本数据集来源于MODIS 005版本和IMS数据集,进行了去云处理后融合的逐日无云积雪面积产品。取值范围:0%-100%。200:积雪;100: 湖冰;25:陆地;37:海洋。空间分辨率为0.005 度(约500m),时间范围是2002年7月5日至2014年12月31日。
郝晓华
本数据集是通过卫星数据和地表能量平衡法得到的全球陆地地表每天和每月的蒸散发量。该数据集的空间分辨率是5公里。ET数据生产的算法主要采用Chen et al. 2019 JGR 和Chen et al. 2013 (JAMC)最新修订的SEBS 算法。如何采用热红外得到无缝的每日蒸发资料请参考 Chen et al. 2021 JGR, 该文还对不同蒸发产品做了对比,结果发现该产品在灌溉区显著优于Landflux, GLEAM, MOD16, GLDAS, 和ERA-Interim 产品,再分析驱动数据的降尺度详见该文。MODIS LST,NDVI,全球森林高度,GlobAlbedo都已经用于此ET数据集的计算中。模型产生的全球地表感热通量、净辐射通量和潜热通量可以联系作者获得。 日蒸散发文件命名规则: 20001201-ET-V1.mat, 2000-year, 12-month,01-day, ET-Evapotranspiration, V1-version 1;蒸发单位: 毫米每天 (数据存储采用unit8格式,需转成单精度或双精度,转换后需要除10再使用);数据类型: 为了减小数据保存空间,采用unit8的数据保存格式,海洋和陆地水体象元为固定值255. 月蒸散发文件命名规则: ETm200012-ET-V1.mat, 2000-year, 12-month, ET-Evapotranspiration, V1-version 1; 蒸发单位:毫米每月 (数据存储采用int16格式,转成单精度或双精度使用,另外转换后需要除10); 数据类型:为减少存储空间采用int16的数据格式,海洋和陆地水体象元为固定值0.
陈学龙
基于青藏高原国家气象站站点数据通过PRISM模型插值生成的高原气象要素分布图,主要包括气温和降水。 青藏高原1961-1990月均温分布图(30年平均值): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 青藏高原1991-2020月均温分布图(30年平均值): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, 青藏高原1961-1990月降水分布图(30年平均值): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 青藏高原1991-2020月降水分布图(30年平均值): p1991-2020_1.e00,p1991-2020_2.e00,p1991-2020_3.e00,p1991-2020_4.e00,p1991-2020_5.e00, p1991-2020_6.e00,p1991-2020_7.e00,p1991-2020_8.e00,p1991-2020_9.e00,p1991-2020_10.e00, p1991-2020_11.e00,p1991-2020_12.e00, 数据时间范围分为1961-1990年、1991-2020年。 数据覆盖的空间范围为东经73°~104.95°,北纬26.5°~44.95°,空间分辨率0.05度×0.05度(经度×纬度),大地坐标投影。 名称解释: 月均温:一个月中每天的日平均气温的平均数; 月降水:一个月降水量的总和。 量纲:数据的文件格式为E00文件,DN值为1~12月的月均温平均值(×0.01℃)、月降水平均值(×0.01mm)。 数据类型:整型。 数据精度:0.05度×0.05度(经度×纬度)。 本数据原始来源为两组数据集:1)青藏高原及周边地区128个气象站自建站至2000年的月均温、月降水观测资料;2)青藏高原50×50km网格的HadRM3区域气候情景模拟数据,即1991-2020年下月平均温度、月降水模拟值。 1961-1990年,对源数据集采用PRISM(Parameter elevation Regressions on Independent Slopes Model)插值方法生成网格数据,基于站点数据对插值模型进行调参和验证。1991-2020年,对区域气候情景模拟数据以地形趋势面插值方法降尺度生成网格数据。部分源数据来自GCM模型模拟的结果:GCM模型采用Hadley Centre climate model HadCM2-SUL。 a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. 对气象数据进行空间插值采用PRISM (Parameter-elevation Regressions on Independent Slopes Model)方法: Daly,C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. 因高原地区观测条件艰苦,基础研究数据缺乏,部分地区气象数据有缺失的现象。本数据集经调参和验证,精度尚可,但仅可做为宏观尺度气候研究的参考之用。青藏高原1961-1990月均温分布数据平均相对误差率为8.9%,青藏高原1991-2020月均温分布数据平均相对误差率为9.7%,青藏高原1961-1990月降水分布数据平均相对误差率为20.9%,青藏高原1991-2020月降水分布数据平均相对误差率为22.7%。对部分缺失数据的区域进行了插补,对明显错误的个别数值进行了修改。
周才平
NCEP/NCAR再分析数据工程(1.0)是美国国家环境预报中心-国家大气研究中心(National Centers for Environmental Prediction–National Center for Atmospheric Research: NCEP–NCAR)利用美国国家先进的分析/预测系统去对过去的资料(1948-最近)进行数据同化处理。 这些数据大部分都是来自PSD(物理科学部:Physical Sciences Division)原始日平均的数据。然而,自1948到1957阶段数据有一点不同,属于常规(非高斯)栅格数据。目前官方网站公布的资料一般是从1948至今,最新一天的资料一般会更新到当天的前两日。对于等压面上的资料,一般垂直分辨率会有17层,从1000hPa到10hPa。水平分辨率一般为2.5°×2.5°。NCEP再分析资料是国际上比较系统的大气科学再分析数据集,与欧洲中心的再分析资料相比,其覆盖的起始年份要早一些,最新的资料更新也更快一些。两套再分析数据集是目前国际上使用最为广泛的数据集。 数据的详细情况见https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
罗德海, 姚遥
北极阿拉斯加站点薄云反演特征数据是基于地面红外辐射波谱观测利用最优化方法获得的薄云遥感反演产品,数据覆盖时间从2000年到2014年,时间分辨率为逐小时,为层云整层平均特征,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。所包含特征变量包含云水有效半径、云水含量、云冰有效半径、云冰含量、云光学厚度;相应的观测反演误差范围约为10%,20%,10%,20%和15%。数据格式为dat格式。
赵传峰
本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。
邱玉宝
北极阿拉斯加站点气溶胶光学厚度数据是基于美国能源部大气辐射观测计划在北极阿拉斯加站点的观测数据产品而形成,数据覆盖时间从1998年到2016年,时间分辨率为逐小时,覆盖站点为北极阿拉斯加站点,经纬度坐标为(71°19′22.8″N, 156°36′32.4″ W)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含光学特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为nc格式。
赵传峰
本数据集包含了2012年黑河流域中游12景ASTER数据反演得到的地表温度和地表发射率产品。12景ASTER数据均覆盖了中游人工绿洲生态水文试验区,获取时间(北京时间)分别为:2012-05-30,2012-06-15,2012-06-24,2012-07-10,2012-08-02,2012-08-11,2012-08-18,2012-08-27,2012-09-03,2012-09-12,2012-09-19,2012-09-28。以上数据的过境时间都在12:15左右(北京时间)。 首先利用ASTER L3数据对L1B数据进行了几何精校正,然后再利用过境时间一致的MODIS MOD07大气廓线产品结合大气辐射传输模型MODTRAN对L1B数据进行了大气校正。为提高大气校正精度,采用了Water Vapor Scaling(WVS)大气校正方法,最后采用ASTER温度发射率分离(TES)算法反演得到地表温度和5个波段的地表发射率。利用黑河中游地面实测数据对地表温度产品进行了验证,结果表明地表温度产品的平均偏差小于0.5K,RMSE小于2K,本数据集可为异质性地表关键水热变量的遥感估算等研究提供可靠的输入数据。
历华, 王合顺
2012年7月4日,在黑河中游的临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
2012年6月30日,在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
2012年7月10日,在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
黑河流域光合有效辐射吸收比例数据集提供了2013-2014年的光合有效辐射吸收比例数据产品。光合有效辐射吸收比例(FPAR)是光合有效辐射穿过冠层到达地表又被反射从冠层穿出过程中被冠层吸收的光合有效辐射占全部光合有效辐射的比例,它是由植被冠层生理生态特性以及结构特性所决定。本数据集算法在基于能量守恒的FPAR反演方法的基础上发展而来,为体现直散射辐射在冠层中路径和被吸收概率的不同,发展了一种区分直射与散射的FPAR反演模型。算法能够反演植被冠层直射部分FPAR、散射FPAR及总FPAR,反演得到的瞬时FPAR与观测FPAR间RMSE为0.0289,R2为0.8419。
李丽, 仲波, 吴俊君, 吴善龙, 辛晓洲
“水权框架下黑河流域治理的水文-生态-经济过程耦合与演化”(91125018)项目数据汇交-MODIS产品-中国西北地区土利用数据(2000-2010) 1.数据概述:中国西北地区土利用数据(2000-2010) 2.数据内容:用MODIS得到的2000-2010年中国西北地区黑河流域、疏勒河流域石羊河流域土利用数据
王忠静
蒸散发监测对农业水资源管理、区域水资源利用规划和社会经济可持续发展至关重要。传统监测ET 方法的局限性主要在于无法做到大面积同时观测,只能局限于观测点上,因此人员设备成本相对较高,既不能提供面上的ET 数据,也不能提供不同土地利用类型和作物类型的ET 数据。利用遥感可以做到ET的定量监测,遥感信息的特点是既能反映地球表面的宏观结构特性,又能反映微观局部的差异。 本数据使用2012年6-9月份MODIS数据和M-SEBAL 模型以及基于参考蒸发比的时间尺度扩展方案估算了黑河中游整个生长季的蒸散发的时空分布,并使用地面观测数据对M-SEBAL 模型和时间尺度扩展方案进行了详细的评估。 其时间分辨率为逐日尺度,空间分辨率为250米,数据覆盖范围为黑河中游,单位为毫米。 数据的投影信息如下:UTM投影,47N
周彦昭, 周剑
中国西部地区陆面数据同化系统研究项目属于国家自然科学基金“中国西部环境与生态科学”重大研究计划,负责人为中国科学院寒区旱区环境与工程研究所李新研究员,项目运行时间为2003.1-2005.12。 中国西部陆面同化系统输出数据集是该项目汇交的数据成果之一.是由中国科学院寒区旱区环境与工程研究所黄春林博士和李新研究员构建的中国陆面数据同化系统,以CoLM模型作为模型算子,耦合针对土壤(包括融化和冻结)、积雪等不同地表状态的微波辐射传输模型,同化被动微波观测(SSM/I和AMSR-E),使系统最终能够输出较高精度的土壤水分、土壤温度、积雪、冻土、感热、潜热、蒸散发等同化资料。 数据格式及命名: 以月为文件夹存储,每月包含每天的24小时的数据。命名规则如下:YYYMMDDHH.grid,其中YY为年(2002),MM为月份,DD为天,HH为小时,.grid和.flux是文件扩展名,前者是状态变量输出结果,后者是通量输出结果。文件格式是二进制的FLOAT数值,即每4个字节表示一个值。
李新, 黄春林
本数据为2002.07.04-2010.12.31青藏高原地区MODIS逐日无云积雪产品。由于积雪和云的反射特性,使用光学遥感监测积雪受到天气的严重干扰。本产品是在综合了目前最常用的去云算法的基础上,利用MODIS逐日积雪产品和被动微波数据AMSR-E雪水当量产品,开发的青藏高原地区逐日无云积雪产品,准确度较高,该产品对实时监测青藏高原雪盖动态变化具有重要的使用价值。 投影方式:Albers Conical Equal Area(阿尔伯斯等积投影) 基准面:D_Krasovsky_1940 空间分辨率:500 m 数据格式:tif 命名规则:maYYMMDD.tif,其中ma代表数据名称;YY代表年(01表示2001,02表示2002……);MM代表月(01表示1月,02表示2月……);DD表示日(01表示1日,02表示2日……)。
黄晓东
本数据集包括中国地区2002-2008年,经纬度投影,0.25度分辨率的被动微波遥感亮度温度数据。 1、数据处理过程: NSIDC produces AMSR-E gridded brightness temperature data by interpolating AMSR-E data (6.9 GHz, 10.7 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz, and 89.0 GHz) to the output grids from swath space using an Inverse Distance Squared (ID2) method。 2、数据格式: Brightness temperature files: two-byte unsigned integers, little-endian byte order Time files: two-byte signed integers, little-endian byte order 3、数据命名: ID2rx-AMSRE-aayyyydddp.vnn.ccc(China-ID2r1-AMSRE-D.252002170A.v03.06V) ID2 Inverse Distance Squared r1 Resolution 1 swath input data AMSRE Identifies this an AMSR-E file D.25 Identifies this as a quarter degree file yyyy Four-digit year ddd Three-digit day of year p Pass direction (A = ascending, D = descending) vnn Gridded data version number (for example, v01, v02, v03) ccc AMSR-E channel indicator: numeric frequency (06, 10, 18, 23, 36, or 89) followed by polarization (H or V) 4、切割范围: Corner Coordinates: Upper Left ( 60.0000000, 55.0000000) ( 60d 0'0.00"E, 55d 0'0.00"N) Lower Left ( 60.0000000, 15.0000000) ( 60d 0'0.00"E, 15d 0'0.00"N) Upper Right ( 140.0000000, 55.0000000) (140d 0'0.00"E, 55d 0'0.00"N) Lower Right ( 140.0000000, 15.0000000) (140d 0'0.00"E, 15d 0'0.00"N) Center ( 100.0000000, 35.0000000) (100d 0'0.00"E, 35d 0'0.00"N) Origin = (60.000000000000000,55.000000000000000) 5、数据投影: GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], TOWGS84[0,0,0,0,0,0,0], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.0174532925199433, AUTHORITY["EPSG","9108"]], AUTHORITY["EPSG","4326"]]
Mary Jo Brodzik, Matthew Savoie, Richard Armstrong, Ken Knowles
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件