湖冰物候是描述湖冰覆盖的季节性循环特征,湖冰物候的变化是碳、水和能量过程研究中的重要内容,也是气候变化的敏感因子之一。本数据集是基于被动微波反演的湖冰物候,包含青藏高原与北半球高纬度地区200个湖泊2002-2018年的湖冰物候(含湖泊开始冻结日期、完全冻结日期、开始融化日期、完全融化日期),部分湖泊可以延伸至1978年。该数据与同时期MODIS监测结果验证表明二者的判读误差为2-4天。用户可利用此数据开展北半球气候变化研究。
邱玉宝
该数据集为全球植被生产力数据,包含总初级生产力(GPP)和净初级生产力(NPP)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
美国气候模式诊断和对比计划委员会
基于西藏地区的钩虾物种名录及其分布基础数据库,采用分子生物学方法构建西藏地区钩虾谱系关系图。提取钩虾新鲜标本的基因组DNA,通过PCR扩增获取分子序列,应用最大似然法和贝叶斯法构建系统发育树。每个种群选取10个个体进行简化基因组测序,构建基因组,分析种群动态。综合分析西藏地区钩虾谱系关系图,从进化、遗传的视角探讨气候环境变化对钩虾多样性的影响以及钩虾对环境变化的响应,为西藏地区生物多样性评估和生态保护提供科学依据。
侯仲娥
(1)数据提供了申扎站高寒草原观测场的空气温度(地面2米)、湿度、降水、气压、风速、辐射等关键气象要素的监测(2015年--至今)。中国科学院申扎高寒草原与湿地观测试验站是海拔4730米,是青藏高原第一个针对高寒草原建立的综合生态监测站。申扎生态监测站地处藏北腹地,位于冈底斯山和色林错之间,属南羌塘高原大湖盆地带,地势较缓,丘陵、高山与盆地相间。气候属于高原亚寒带半干旱季风气候区,紫花针茅群落是该区的优势群落。 (2)数据由自动气象站采集,并进行了日均值处理; (3)已对数据质量进行检查,所有数据均为原始数据; (4)数据集可作为相关研究的基础数据使用。
魏达, 王小丹
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
本技术框架旨在评估不同类型环境因素对物种分布的影响,进而改善模型预测能力,更准确地评估未来物种分布区域的变化。通过设定不同类型环境因子的组合,预测末次冰期物种分布范围。再与现在分布范围进行比较,得到不同的假定物种群体动态模型。通过遗传数据,重建物种群体进化历史,并与基于物种分布模型获得的假定群体进化历史进行比较,确定预测能力最好的环境因子组合。再利用该环境因子组合,预测未来气候变化背景下物种分布区域的可能变化。本技术框架利用物种群体历史,对气候模型进行检验,可以有效改进物种分布模型的预测能力。
车静
雪冰中可溶有机碳(DOC)能够有效的吸收紫外和近紫外波段的太阳辐射,也是导致雪冰消融增强的重要因素之一。通过连续阿勒泰地区2016年11月至2017年4月的积雪样品,利用仪器进行实验分析测试获得阿勒泰地区库威站积雪DOC、总氮TN以及黑碳BC的数据,时间分辨率为周,消融期为每日。 1. 单位: DOC和TN的单位μg g-1 (ppm), BC的单位ng g-1(ppb),MAC的单位是 m2 g-1
上官冬辉
在过去的几十年中,关于EC能量闭合问题的大量野外观测和数值模拟试验极大地加深了人们对于EC能量闭合问题的理解和认识。本数据是基于WRF LES模拟分析不同地表异质性类型及特征长度情形下EC能量闭合的变化,定量EC能量闭合与地表异质性尺度之间的关系,探讨地表异质性引起的大尺度涡旋造成EC能量不闭合的机制。 该数据使用WRF 3.9.1的LES模块来进行LES试验。为了更真实地表征实际地表异质性,本章采用二维地表异质性设计。研究区域x方向为5 km,y方向为 5 km,高2 km。水平分辨率为50 m,垂直方向采用拉伸网格,其分辨率在6 m~20 m之间。x,y,z方向上的网格数量分别为100,100和100。时间分辨率为0.25 s。 更多详细信息请参考Zhou et al., (2019).
周彦昭
青藏高原重大生态工程布局图集 主要包括林地保护与建设工程、草地保护与建设工程、沙化土地治理工程、水土流失综合治理工程等主要生态保护工程;数据来源:西藏、三江源、横断山区和祁连山的重大生态工程规划及厅级单位资料调研,包括西藏生态安全屏障保护与建设工程(一期,三类10项)、三江源自然保护区生态保护与建设工程(三类13项),横断山区各类生态保护建设工程(长江中上游防护林体系建设、天然林保护、退耕还林工程、长江中上游水土保持重点防治工程、川西北藏区退牧还草、川西北沙化土地治理工程)、祁连山生态保护与建设综合治理工程一期(4类16项);加工方法:分类汇总,按照类型区域矢量化,形成以县级为单位的区域分布图。
魏达
中国西部地貌信息集成是由中国科学院地理科学与资源环境研究所谢传节博士领导的小组完成的。其中包括1:400万全国地貌数据库和1:100万西部地貌数据库,1:400万地貌数据是追踪收集和整理李炳元主编的“中国地貌图(1:400万)”和陈志明主编的“中国及其毗邻地区地貌图(1:400万)”。对资料进行扫描配准,利用ArcMap软件将所有配准得图件进行矢量化,并建立各自得分类和代码体系,按照图斑(普染色)和符号将地貌类型分为基本地貌类型和形态结构类型(点、线、面表示) 1:100万西部地貌数据是基于遥感影像等多源数据进行数字地貌集成、更新采用分层分级的解译方法。即平原与山地;基本地貌类型(25种),10种成因类型:次级成因类型:形态差异划分类型:次级形态差异划分类型:坡度、坡向及其组合划分地貌的倾斜程度或坡度;物质组成或岩性确定的地貌物质类型。 共对16幅地貌分幅进行解译工作,其编号分别为:G-45(加德满都)、G-46(错那)、H-44(普兰)、H-45(日喀则)、H-46(拉萨)、H-47(昌都)、I-43(伊斯兰堡)、I-44(狮泉河)、I-45(改则)、I-46(安多)、I-47(玉树)、J-43(喀什)、J-44(和田)、J-45(且末)、J-46(格尔木)、J-47(西宁幅)
周成虎, 程维明
冻土是指温度低于或等于0℃且含有冰的土体或岩体,它对温度特别敏感,其物理力学性质会随温度的变化而产生显著变化。冻土的冻胀变形和融化沉降变形是最为常见的冻土灾害,它们的发生主要是因冻土工程活动使冻土固有的温度发生变化而引起的,所以保护冻土主要也是保护冻土温度,让其维持在工程活动之前最为接近的状态。获取冻土地温的主要方法是埋设测温电缆,通过CR3000的数据采集功能获得测温电缆不同时间的阻值变化,利用标定系数和电阻值的对应关系计算出温度值。依据冻土对温度的敏感特征,地温的变化情况,能够反应气候的变化情况,也能够结合其他要素分析出人类活动对冻土的稳定性的影响机理及程度,从而来指导后期工程活动中的冻土保护措施的升级改造等。
陈继
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
汤国安
本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
徐希燕
本数据集包括祁连山区域1985年至2017年每5年一期的30m耕地和建筑用地分布产品。该产品基于Landsat系列数据生产。生产耕地产品时,利用夏季合成的Landsat系列数据,使用归一化植被指数NDVI,并辅助以作物的物候期、作物种植类别等先验知识设定产品生产规则;生产建筑用地产品时,利用夏季合成的Landsat系列数据,使用归一化植被指数NDVI、NDBI、MNDWI等指数,辅助以DEM、灯光数据等设定产品生产规则。以2015年的产品为例,由Google Earth高清影像和实地调研数据进行精度评价,得出2015年耕地和建筑用地产品的精度分别为89.43%和91.89%。
仲波, 角坤升
本数据集包括祁连山区域2018年的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出2018年的土地覆盖分类产品。对分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波
该数据集包含了2018年8月31日至2018年12月24日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度) 、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2018年1月1日至2018年12月31日的黑河流域地表过程综合观测网下游混合林站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E, 41.9903N,海拔874 m。涡动相关仪的架高22m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。2月7日-11日由于供电问题,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集包括祁连山区域1990年至2017年每5年一期的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出1985-2017年每5年一期的土地覆盖分类产品。对2套2015年的分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,每5年一期的频次能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波, 角坤升
植被调查数据是研究生态系统结构与功能必不可少的数据。藏北地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本课题组基于前期工作的积累,在2017年生长季对整个藏北高原15个县域开展了较为全面的植被调查。本数据集包括藏北样带上从那曲到日土县23个采样点的围栏内外的生物量数据。本数据集可用于生产力的空间分析与模型的校准工作。
张宪洲, 牛犇
本数据集根据NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2014)。NDVI的时间分辨率是16天,空间分辨率0.05度,我们先将NDVI数据产品从0.05度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。
美国国家航空航天局, 徐希燕
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
该数据集为全球生态系统呼吸数据,包含生态系统自养呼吸(Ra)和异养呼吸(Rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。
美国气候模式诊断和对比计划委员会
本数据集来源于论文:Zhang, J. F., Xu, B., Turner, F., Zhou, L., Gao, P., Lü, X., & Nesje, A. (2017). Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4), 359-362. 在本文中,中国科学院青藏高原研究所、地球科学卓越创新中心徐柏青研究员及其博士后张继峰与来自北京大学等单位的合作者,对高原南部枪勇冰川冰前湖沉积物进行了多方法(植物残体、孢粉浓缩物、全有机质)放射性碳测年,提出了一个重建古冰川融化强度的新指标(“老孢粉效应”,即沉积物孢粉年龄与沉积物真实年龄的差值)。该研究发现北半球温度及西风环流活动可能是高原季风区冰川百年尺度波动的主控因素,高原近代的冰川融化强度达到过去2500年以来最强,超过了历史上的中世纪暖期和罗马暖期。 数据由论文作者提供,数据包含了基于老孢粉效应(ΔAgepollen)重建的过去2500年枪勇冰川融化强度变化数据。 研究人员从枪勇错冰前湖获得了一根3.06米长的湖芯(QYL09-4)和一根1.06m长的平行重力钻湖芯(QY-3),使用新的复合提取及纯化程序,从沉积物中获得了相对纯的孢粉浓缩物和植物残体浓缩物(PRC;> 125μm)。对全有机质,PRC和孢粉浓缩物分别进行了14C年代测定。所有14C年龄都使用IntCal13(Reimer et al., 2013)进行了校准。年龄深度模型基于210Pb、137Cs年龄及五个PRC的14C年龄。使用Oxcal 4.2(Bronk Ramsey,2008)中的P_Sequence算法构建岩芯的年龄深度模型。将校准的孢粉年龄中减去根据沉积模型得出的真实沉积物年龄,从而得出老孢粉效应值(ΔAgepollen)。 数据为湖芯(QYL09-4)的放射性碳测年与老孢粉效应数据。 数据包含字段如下: Lab No.:样本编号 Dating Material:测年材料 Depth (cm):深度(厘米) 14C age (yr BP):碳14年龄(年 距今) ΔAgepollen (≥95.4 % yrs):孢粉年龄与估算的沉积物年龄间的差值(≥95.4 % 年) Sediment Age (CE):沉积物年龄(公元) 数据详细信息参见附件:ZhangJF et al. 2017 GEOLOGY_Long-term glacier melt fluctuations over the past 2500 yr on the Tibetan Plateau.pdf。
张继峰
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网上游大沙龙站气象要素观测数据。站点位于青海省祁连县西侧沙龙滩地区,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,并距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 谭俊磊, 任志国, 张阳, 徐自为
该数据集包含了2018年1月1日至2018年10月12日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖表辐射温度(IRT_1)(单位:摄氏度)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2018年的30m耕地和建筑用地分布产品。该产品基于Landsat-8/OLI数据生产。生产耕地产品时,利用夏季合成的OLI数据,使用归一化植被指数NDVI,并辅助以作物的物候期、作物种植类别等先验知识设定产品生产规则;生产建筑用地产品时,利用夏季合成的Landsat系列数据,使用归一化植被指数NDVI、NDBI、MNDWI等指数,辅助以DEM、灯光数据等设定产品生产规则。由Google Earth高清影像和实地调研数据进行精度评价,得出2018年耕地和建筑用地产品的精度分别为90.05%和90.97%。
仲波, 角坤升
数据集包括:北极地区人口及GDP数据(1990-2015)、第三极(甘肃、青海、西藏)地区县级人口及GDP数据(1970-2016)。 社会经济统计属性包括:人口(万人)、GDP(万元)、工农业生产总值(万元)、农业总产值(万元)、工业生产总值(万元) 北极人口数据主要来自经济社会局《世界人口展望:2017年修订版》按照 区域和国家划分的人口总数。 第三极数据主要参考甘肃省统计年鉴、青海省统计年鉴、西藏自治区统计年鉴;甘肃省、青海省、西藏自治区各县县志。
经济和社会事务部, 国家统计局, 青海省统计局
该数据集是三极地区9个通量站点的30分钟涡度相关通量观测数据,包括生态系统净碳交换量(NEE)、总初级生产力(GPP)和生态系统呼吸(ER)数据,时间范围覆盖2000-2016年。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。
张扬建, 牛犇
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游花寨子荒漠站气象要素观测数据。站点位于甘肃省张掖市花寨子,下垫面是盐爪爪山前荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装防水箱内;翻斗式雨量计安装在10m处;风速风向传感器架设在5m、10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_5m、WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;1.1-1.7及8.22-8.31,9.4-9.12间由于传感器的问题,4cm土壤水分出错;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。 数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好。
吴金华, 仲波
该数据集包含了黑河流域地表过程综合观测网下游四道桥站的大孔径闪烁仪通量观测数据。下游四道桥站架设了一台BLS900型号的大孔径闪烁仪,北塔为接收端,南塔为发射端。观测时间为2018年1月1日至2018年12月31日。站点位于内蒙古额济纳旗,下垫面是柽柳、胡杨、裸地和耕地。北塔的经纬度是101.137E,42.008N,南塔的经纬度是101.131E,41.987N,海拔高度约873m。大孔径闪烁仪的有效高度25.5m,光径长度是2350m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(Cn2>7.58E-14);(2)剔除解调信号强度较弱的数据(Average X Intensity<1000);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,选取Thiermann and Grassl(1992)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。 关于发布数据的几点说明:(1)下游LAS数据缺失时刻以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集包括祁连山区域2018年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集来源于论文:Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. 在本文中,为了了解过去几百年冬季温度变化历史及其驱动因素,中国科学院青藏高原研究所高寒生态重点实验室、青藏高原地球科学卓越创新中心梁尔源研究员课题组,利用2007-2016年期间采集的树木年轮样本重建了青藏高原东南部地区公元1340年以来的冬季(11-2月)最低温度变化历史。 数据由论文作者提供,数据包含了1340-2007年青藏高原东南部昌都地区冬季的最低温度重建数据。 数据包含以下字段: year:年 Tmin.recon( ℃):重建的最低温度( ℃) 数据详细信息参见附件:A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf
黄茹, 朱海峰, 梁尔源
青藏高原作为地球的第三极,春夏季作为热源对区域和全球的天气和气候有着重要的影响。为了探究高原多时间尺度热力强迫作用的时空变化特征,建立一套持续、可靠的长时间观测的观测数据为基础的高原热源(汇)数据是十分有必要的。利用中国气象局在青藏高原上80(32)个观测台站1979—2016(1960—2016)年的气象要素(地表温度、地表气温、10m 风速、 日累计降水量等)为基础计算得到感热(SH)和潜热(LH),同时利用卫星资料处理得到高原上1984—2015年的净辐射通量(RC),得到了一套通过质量控制的长期高原热源数据集。本数据集在计算地表感热通量时,考虑了总体热传输系数 的日变化特征。
胡文婷
该数据集包含2018年6月5日至12月15日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)、物候期及覆盖度(FC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
该数据集包含了2018年9月24日至2018年12月31日的兰州大学寒旱区科学观测网络瓜州站涡动相关仪观测数据。站点位于甘肃酒泉瓜州县柳园镇,下垫面是荒漠。观测点的经纬度是95.673E,41.405N,海拔2014m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。4月3日-4日涡动系统的Li7500A进行标定,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测数据处理请参考Liu et al. (2011)。
张仁懿
该数据集包含了2018年1月1日至2018年10月12日的青海湖流域水文气象观测网青海湖鱼雷发射基地站涡动相关仪观测数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。涡动相关仪的架高16.1m,采样频率是10Hz,超声朝向北向偏移40°,超声风速温度仪(Gill-windmaster pro)与CO2/H2O分析仪(Li7500A)之间的距离约是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。2018年10月12日至2018年12月31日的数据因湖面冻结,无法上湖,因此还未采集。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。
李小雁
本数据集包括祁连山区域2018年月度合成30m×30m地表叶面积指数(Leaf Area Index, LAI)产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
该数据集包含了2018年1月1日至2018年12月31日的黑河流域地表过程综合观测网上游大沙龙站涡动相关仪观测数据。站点位于青海省祁连县,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739 m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500RS)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。9月27日-11月14日涡动系统的三维超声风速仪出现问题,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
本数据集来源于论文: Pei, S.P., Niu, F.L., Ben-Zion, Y., Sun, Q., Liu, Y.B., Xue, X.T., Su,J.R., & Shao, Z.G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience. 12. 387-392. doi:10.1038/s41561-019-0347-1. 数据整理自论文内Supplementary information中的表格数据。 该论文研究位于青藏高原东缘与四川盆地西部的龙门山断裂带在大地震中的结构演化过程,通过对地震波速度同震降低和震后恢复现象的观测,发现芦山地震的发生显著加速了汶川地震破裂区的愈合。 数据集包含3个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Data of the four periods(汶川地震前、汶川地震后、芦山地震前、芦山地震后四个时期的数据); t2:The average velocities with error in Figure 2 in the paper for Wenchuan earthquake (WCEQ) and Lushan earthquake (LSEQ) area(文章中图二汶川地震和芦山地震区域含误差的平均速度)。 数据详细信息参见附件:Supplementary information.pdf,Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault.pdf。
裴顺平
该数据集包含了黑河流域地表过程综合观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了BLS450和zzlas型号的大孔径闪烁仪,北塔为zzlas的接收端和BLS450的发射端,南塔为zzlas的发射端和BLS450的接收端。观测时间为2018年1月1日至2018年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度9.5m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS450:Cn2>7.25E-14,zzlas:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS450:Mininum X Intensity <50;zzlas:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS450,选取Thiermann and Grassl(1992)的稳定度普适函数;对于zzlas,选取Andreas, 1988的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器故障,2018年7月5日-8月24日大孔径闪烁仪数据缺失。 关于发布数据的几点说明:(1)上游LAS数据以BLS450为主,缺失时刻由zzlas观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H_LAS :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国, 张阳
该数据集包含2018年6月13日至11月16日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
本数据集包括祁连山区域2018年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
该数据集包含了2018年1月1日至2018年12月31日的黑河流域地表过程综合观测网下游四道桥超级站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873 m。涡动相关仪的架高8m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。11月9日-11月21日涡动系统的Li7500出错,导致潜热数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网上游垭口站气象要素观测数据。站点位于青海省祁连县大冬树垭口,下垫面是高寒草甸。观测点的经纬度是100.2421E, 38.0142N,海拔4148m。发布的数据包括空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在2m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪在气象塔6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤热流板埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;红外温度2在10月10日-11月17日由于传感器问题,数据错误;风向在8月份以后由于传感器损坏,数据错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件