2012年8月3日在黑河中游的5*5公里加密区,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48°)和热像仪一台(最大视场角46°)。获取的数据信息为,高分辨率CCD:0.08米;多光谱分辨率:0.4米;热像仪分辨率:2米。
肖青, 闻建光
2012年7月19日,在黑河中游核心观测区域,利用运12飞机,搭载Leica公司生产的ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064nm,记录多次回波(1,2,3和末次)。中游地区飞行绝对航高2700米(地面最低点1412米,地面最高点1655米),平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DSM和DEM数据产品。
肖青, 闻建光
2012年7月4日,在黑河中游的临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
2012年6月30日,在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
本数据集为用卷尺在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的植被株高数据。 1) 测量目的 株高数据测量的目的在于:获取黑河流域下垫面上植被的株高,作为先验知识用于植被反演和生态水文模型。 2) 测量仪器 测量仪器:卷尺。 3) 测量地点与内容 a、 大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦株高。 b、 EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点(下垫面均为制种玉米)的株高。 c、 超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地(下垫面为制种玉米)的株高。 d、 石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地(下垫面为制种玉米)的株高。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
王静, 徐凤英, 庄金鑫, 黄永生, 李新, 马明国
在2012年中游航空遥感试验开展期间,对黑河中游CASI+SASI飞行航带范围内土地覆盖开展调查,目的在于获取主要的植被类型和种植结构数据,用于实现植被遥感产品的真实性检验。 观测仪器: 高精度手持GPS(定位精度2-3米)和数码相机。 测量方式: 借助Goole Earth,可以大致看出中游有植被的范围, 设计具体路线,然后选择小满镇五星村的5*5公里为主要详细调查范围,实验调查可行的基础上,对中游其他做大面积调查,在尽可能到达的路线内具体调查种植结构类型。调查的方式是尽量选择大面积均质的植被类型或者农田进行调查,记录坐标位置、拍摄下垫面照片。 数据内容: 数据内容包含经纬度,植被类型,大概的种植面积,作物的物侯期等信息。 观测地点: 重点为中游人工绿洲试验区CASI飞行区域,还包括CASI在中游样带飞行区域和黑河中游2区(甘州、肃州)5县(山丹、民乐、临泽、高台、金塔)。 观测时间: 本次调查时间从2012年6月25日开始,8月6日结束。
张苗
本数据集为在张掖市大满水分控制实验场、EC站点、超级站和石桥一社样地测量的作物生物量数据。 1) 测量目的 生物量数据测量的目的在于:获取黑河流域下垫面上作物的生物量,作为先验知识用于植被生物物理参数反演和生态水文模型校正和验证。 2) 测量仪器与原理 测量仪器:天平(精度0.1g)、烘箱。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦生物量。 b. EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,测定制种玉米的生物量。 c.超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,测定制种玉米的生物量。 d.石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,测定制种玉米的生物量。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
徐凤英, 王静, 马春峰, 黄永生, 李新, 马明国
在EC17号点果园设置的红外温度系统,可以为航空飞行数据反演地表温度产品提供果园地表温度的连续地面观测数据。 观测地点: 选择甘肃省农科院张掖试验场的大面积、均质的果园作为观测点,位于EC17号点旁,主要观测植被为苹果树冠层。该观测点坐标为:38°50'41.70"N,100°22'11.40"E。 测量仪器: 观测探头为一个垂直对地的S1-111红外温度探头(2012年新购置仪器,其出厂时默认设置的地表发射率为1,试验期间未进行黑体定标)。Campell CR850数采自动记录,果树高度4米,冠幅4×4米,探头架高4.55米。位于EC17西南方向4米处。 测量时间: 仪器从2012年8月3日起开始正常观测,截至2012年9月27日,进行不间断地24小时观测,1分钟记录一次数据,1分钟输出一组数据。 数据内容: 地表温度观测数据(Target_C_Avg,未进行地表比辐射率、背景温度的校正),SI-111仪器自身的表体温度(SBT_C_Avg)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
本数据集包括甘肃省张掖市甘州区沙漠公园荒漠2013年11月22日-24日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月22日-24日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:7.4M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
植被叶绿素含量的测量是为了获取不同EC站点以及不同类型植被叶绿素的含量,并实现遥感反演的叶绿素产品的真实性检验。 观测仪器: 野外采样,室内丙酮萃取法测量。 测量方式: 为了分析株高对叶绿素含量的影响,根据玉米株高记录选择不同的样方进行采样,总共选择了11个玉米样方。为了比较不同植被类型的叶绿素含量,又选取了通量矩阵内EC1下的三种蔬菜类型以及湿地的芦苇样方。总共选取了19个不同的样方进行分析,所采样方交于河西学院生命科学学院实验室,进行叶绿素萃取,分别提取出所选样方的叶绿素a、叶绿素b以及总叶绿素的含量。 数据内容: 叶绿素a、叶绿素b以及总叶绿素的含量 观测时间: 2012年7月8号
家淑珍
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2014年5月10日开始,9月11日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.1.2其它四个站:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 其它四个站:2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.1.2芦苇:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
于文凭, 耿丽英, 李艺梦, 谭俊磊, 马明国
在2012年中游航空遥感试验开展期间,对黑河中游核心观测区利用航飞CASI数据结合地面调查获得了高分辨率的土地覆盖数据。 分类方法: 基于CASI航空遥感数据,采用分层分类方法对该区域进行分类。树木、草地、裸地+建筑用地类别:综合运用基于像素与基于对象的分类方法。各种农作物类别:对于难以区分的类别,通过结合地面调查点,目视解译得到。 数据内容: 土地覆盖类型,包括玉米、韭菜、白杨、菜花、菜椒,土豆,青笋,果园,西瓜,四季豆,梨园,阴影,非植被和未分类14种地表类型。 观测地点: 黑河中游核心观测区,5*5矩阵。 观测时间: 本次调查时间从2012年6月25日。
张苗
2012年7月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。中游地区飞行相对高度1500米(海拔高度2700米),平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
在2012年中游航空遥感试验开展期间,在EC矩阵核心观测区开展移动式土壤呼吸5天1次的连续观测。 观测仪器: 中科院地球环境所LI8100移动式土壤呼吸测定仪。 测量方式: 使用已购置好的PVC管制作成土壤呼吸环,所制作土壤呼吸环总长10cm,于正式测定前嵌插入土壤,之后至少静置24小时;嵌入土壤4cm,地面保留高度6cm。基准面样点测定时间集中在上午9-12点,每样地设置三个重复样,根据涡动编号进行标记。 数据内容: 数据内容包含头文件信息和每5天1次的3次重复观测结果及平均数。 观测地点: EC矩阵核心试验区内EC01-EC17号站点地块内,每样地设置3个重复样,其中EC15大满超级站在3个重复基础上加密了9个重复样。 观测时间: EC01、EC03、EC05、EC10、EC11、EC12、EC13、EC14、EC17观测时间为2012年6月6日至8月20日每5天1次。 EC02、EC04、EC06、EC07、EC08、EC09、EC16为2012年7月1日至8月20日每5天1次。 观测期间部分观测点刚好灌水,该点当次则不观测。
李元, 时伟宇, 宋怡
2012年6月26日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了21条样线(东西分布),每条线5 m间隔共21个点(南北方向),使用3台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约440个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。因该区域植被开展了例行的5天一次采样观测,因此当日未开展专门的植被同步采样。 数据: 本数据集保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
本数据包含HiWATER中游试验前本底参考影像和试验中期参考影像。 试验前本底参考影像由天下图利用无人机携带的CCD相机拍摄,成像时间为2011年11月8日,并完成了镶嵌生成数字镶嵌图。主要用于中游通量观测矩阵核心试验区观测系统布设方案设计。 数据原始分辨率为0.3m,镶嵌后的影像为0.5m。 试验中期参考影像由航空飞行提供CASI数据制作,成像时间为2012年6月29日。该数据主要支持中游通量观测矩阵核心试验区其他数据分析和中游种植结构分类。 数据原始分辨率为0.3m,镶嵌后的影像为0.5m。 数据格式: GeoTIFF 地图投影: 2000国家大地坐标系
马明国
2012年7月10日,在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5um,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
2012年8月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司生产的ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。小沙漠地区飞行绝对航高2900米,平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DSM和DEM数据产品。
肖青, 闻建光
2012年8月2日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积1.6 km×1.6 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了11条样线(东西分布),每条线80 m间隔共21个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约230个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。当日未开展植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
太阳光度计的架设目的在于获取大气气溶胶、水汽、臭氧等成分的特性,支持卫星和航空遥感数据的大气校正。本数据集由两部分组成:常规观测数据和飞行同步观测数据。常规观测仪器的架设位置包括五星村五星嘉苑7#楼顶(6月1日至6月24日)、五星村超级站向南70m左右的沟渠(6月25日以后)。测量采用CE318-NE型太阳分光光度计,可提 供1640nm、1020nm、936nm、870nm、670nm、500nm、440nm、380nm和340nm共9个波段观测的大气光学厚度,以及 936nm测量数据反演大气柱水汽含量。本数据集提供的常规观测数据包括2012年6月1日至9月20日的太阳分光光度计原始数据和预处理后的数据,数据采样的时间间隔为1分钟。飞行同步观测架设的位置包括高崖水文站(7月3日和7月4日)、阿柔超级站(8月1日)站和葫芦沟小流域(8月25日和8月28日),所使用仪器主要是CE318-N型太阳光度计,观测波段包括340nm、380nm、440nm、500nm、670nm、870nm、936nm、1020nm共8个波段。本数据集提供同步观测时间8个波段的大气光学厚度和936nm波段反演的大气柱水汽含量,以及原始观测数据,数据采样时间为1分钟。
于文凭, 王增艳, 马明国
在2012年中游试验期间,利用Vaisala和长丰两种GPS探空仪开展CASI/SASI、TASI、WIDAS等航空飞行前后的探空观测,获取风温湿压等特征大气廓线数据。该数据用于支持航空遥感影像和卫星影像的大气校正工作,同时也可以支持气象分析。 观测地点: 黑河中游五星村、高崖水文站,上游阿柔超级站。 五星村释放点坐标为:38°51′11.9″N,100°21′48.8″E,海拔,1563米。 高崖水文站释放点坐标为:39°8′7.2″N,100°23′59.0″E,海拔,1418米 阿柔超级站释放点坐标为:38°03′17.9″N,100°27′28.1″E,海拔,2991米。 测量仪器: Vaisala无线探空仪RS92-SGP和北京长峰声表面波公司GPS探空仪。 测量时间: 2012年6月29日至8月2日航空飞行同步时观测。详见数据集中的表1. 数据内容: 风、温、湿、压等要素的大气廓线数据,观测频率为2秒钟1次,观测高度10000-30000米。详见数据集中的表1。
谭俊磊, 马明国, 韩辉邦, 于文凭, 胡荣海, 赵静, 汪艳
黑河流域积雪面积比例数据集提供了2010到2012年无云日积雪面积比例时间序列产品,该数据利用卫星MODIS数据,具有较高时间分辨率(1天)和空间分辨率(500m)。首先利用自动算法N-FINDR选择端元,在自动提取的基础上,利用人工方法选择了积雪、植被、云、土壤、岩石和水6种类型端元,并根据2009年影像建立了光谱数据库;在光谱数据库的基础上利用全约束线性解混方法(FCLS)进行亚像元分解获取初级积雪面积比例产品;最后利用差值去云的算法获取了MODIS逐日积雪面积比例无云产品。经利用高分辨率影像Landsat TM验证,相比已有MODIS积雪面积比例产品 (MOD10A1),具有更高的精度。能够为流域水文,气象提供更准确的积雪参数输入。 数据说明:0-100积雪面积比例,0非雪; 投影类型:经纬度投影,WGS-84基准面; 空间分辨率:0.005度; 时间分辨率:1天。
黄晓东, 张颖, 唐志光, 李新
本数据集为采用叶绿素仪(SPAD)在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的玉米叶片叶绿素数据。 1) 测量目的 叶绿素数据测量的目的在于:获取黑河流域下垫面上作物叶片的叶绿素含量,作为参数应用于植被辐射传输模型,以及其他生物物理参数的反演。 2) 测量仪器与原理 测量仪器:叶绿素仪(SPAD)。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量12个水分处理的小麦叶片叶绿素含量。 b.EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,制种玉米叶片叶绿素含量。 c.超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,制种玉米叶片叶绿素含量。 d.石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,制种玉米叶片叶绿素含量。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
徐凤英, 王静, 庄金鑫, 刘素华, 黄永生, 李新, 马明国
2012年7月3日在临泽站附近PLMR样带进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 此次航空飞行航线设计依据临泽站附近的3个点位代表的典型地表类型,兼顾部分中子管观测,设计西北-东南方向三条航线,航线互相之间间隔200 m,设计航高300 m左右,PLMR地面分辨率100 m。根据航线及PLMR观测特点,在航线两侧设计地面3条观测样带,每条样带约长6 km。从西往东分别为L1、L2和L3。其中L1和L2以中间一条航线为中心,相隔80 m;L2和L3之间相隔200 m。每条样带上观测点南北间隔40 m,使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样带上约4500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被参数观测选择在一些具有代表性的土壤水分采样点开展,完成了株高和生物量(植被含水量)的测量。 注:观测日期正值该区域内农田大面积灌溉,导致观测人员前行困难,田块难以进入,观测点位与预设点位有偏差。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 马明国, 李新
2012年6月4日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了23条样线(东西分布),每条线5 m间隔共24个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约550个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被小组完成了生物量、LAI、植被含水量、株高、行垄距、叶绿素等的测量。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 李新
本数据为大满超级站玉米地(测点经纬度:100.372°E,38.855°N;时间:2012-06-29)及机场附近荒漠(测点经纬度:100.700°E,38.762°N;时间:2012-07-08)的BRDF数据集。 测量仪器:中科院遥感所SVC-HR1024光谱仪和参考板、北师大研制多角度自动观测架 测量方式:测量多角度数据以观测平面为单位,即确定观测平面的方位角后,在该平面下以不同的观测天顶角测量地物的光谱。观测平面以平行太阳主平面和垂直太阳主平面观测为主,大满站行播玉米观测了垂直垄和平行垄,荒漠还有正南、正北等平面。每个观测平面,观测天顶角以10°为间隔测量-60°~60°之间的方向反射率。多角度观测架最大测量高度可达5m,利用视场为25°的SVC-HR1024光谱仪观测,光谱范围400nm-2500nm。每个观测平面,先测量参考板的辐射亮度,再将光谱仪探头对准地物,对地物观测按照设定的观测平面每间隔10°天顶角进行观测,观测平面完成后,再对参考板进行测量。由此,完成一次观测平面的测量。 BRDF数据集包括原始数据与记录数据、处理后的BRDF数据。处理后的数据以txt保存,文件中包括角度信息和反射率信息(相对于参考板的反射率),以及每个平面的三个波长上的BRF随观测角度分布图。
游冬琴, 王合顺, 杨建, 胡容海, 肖青, 闻建光, 马明国
2012年7月19日,在黑河中游的核心试验区获取了机载激光LIDAR数据,可以提供高空间分辨率(米级)和高精度(20cm)的地表高程信息。 通过对机载激光雷达数据处理分别生成了DEM,DSM和点云密度图,在此基础上将DSM与DEM直接相减,得到黑河流域中游核心试验区植被高度产品,产品总体精度为88%。
肖青, 闻建光
2012年7月7日,在黑河中游的30*30公里核心观测区域、中游样带区,利用运12飞机,搭载CASI/SASI传感器,开展了可见光/近红外短波红外高光谱航空遥感数据获取飞行试验。飞行相对高度2000米(海拔高3500米),CASI和SASI传感器波长范围分别为380-1050纳米和950-2450纳米,空间分辨率分别为1米和2.4米。利用同步测量的地面数据和大气数据,经过几何和6S大气校正,得到地表反射率产品。
肖青, 闻建光
本数据集为L波段机载微波辐射计于2012年7月3日获取,地点在黑河河道地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机11:40(北京时间,下同)从张掖机场起飞,14:10降落。飞行历时2.5小时。在观测期间,飞行高度350m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率100 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
本数据集为L波段机载微波辐射计于2012年8月2日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机9:00(北京时间,下同)从张掖机场起飞,14:00降落。飞行历时5小时。在观测期间,飞行高度2300m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率700 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
在EC矩阵4号村庄点边上的屋顶上架设一套地表温度和上行/下行短波观测系统,目的在于为航空TASI、WiDAS和L波段飞行提供地面定标观测数据。 观测地点: 选择甘肃省张掖市甘州区小满镇石桥村一社大面积、均质的土房屋顶作为观测点。观测点位于房顶上,相对平坦、且比较均一,周边没有高大树木的遮挡,距EC4号点西南约20米,该观测点坐标:38°52′38.50″N,100°21′27.00″E。 测量仪器: 观测探头为一个垂直对地的S1-111红外温度探头(2012年新购置仪器,其出厂时默认的地表发射率为1,试验期间未进行黑体定标)。2个CMP3型反照率表(一个朝上、一个朝下)组成,探头架高1.0米,Campell CR850数采自动记录。 探头朝向: 仪器支臂长度3m,与房子边缘平行,方位角156°,东偏南66° 测量时间: 仪器从2012年6月23日起开始正常观测,到9月20日拆除,期间进行不间断地24小时观测,5秒钟记录一次数据,输出5秒钟和1分钟2组值。 数据内容: 地表温度观测数据、上行/下行短波辐射数据,可以计算出最终的反照率。其中温度观测数据主要包括:SI-111红外温度探头的传感器自身表体温度(SBT_C)、传感器观测到的地表温度(Target_C,未进行地表比辐射率、背景温度的校正)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
2012年8月1日在黑河上游,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48°)和热像仪一台(最大视场角46°)。获取的数据信息为,高分辨率CCD:0.08米;多光谱分辨率:0.4米;热像仪分辨率:2米。
肖青, 闻建光
本数据集为L波段机载微波辐射计于2012年6月30日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机13:10(北京时间,下同)从张掖机场起飞,18:40降落。飞行历时5.5小时。在观测期间,飞行高度2500m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞行区域1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
本数据集为L波段机载微波辐射计于2012年7月4日获取,地点在黑河河道地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机10:50(北京时间,下同)从张掖机场起飞,14:50降落。飞行历时4小时。在观测期间,飞行高度1000m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率300 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
小满镇五星村风廓线雷达架设的目的是获取低层大气进行风向、风速和扰动特征,支持大气边界层和局地环流研究。仪器架设在超级站西北侧60米处。观测点坐标为:38°51'16.78"N,100°22'18.53"E。 测量仪器: 使用了德国Scintec公司的MFAS风廓线声雷达,可以提供30至1000米高度的三维风速,高度间隔为10米。时间间隔为30分钟。 测量时间: 仪器从2012年6月21日起开始正常观测,至9月15日进行不间断地24小时观测,每半小时进行一次记录。 数据内容: 从2012年6月21日至9月15日每天一个数据文件,内容包括观测高度、风速、风向、东西向风速、南北向风速、垂直风速、垂直风速标准偏差和后向散射强度。 备注: (1)由于仪器的实际观测高度的上限随空气中水汽含量的变化而变化,而本次观测地点是干旱地区,空气中水汽含量较小,测量高度的上限在300米左右; (2)在下雨或风沙较大的情况下,后向散射的强度会特别大,此时数据会缺测或只有垂直风速和后向散射强度有数据。
万秉成
本数据集为L波段机载微波辐射计于2012年7月5日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机10:50(北京时间,下同)从张掖机场起飞,12:20降落。飞行历时1.5小时。在观测期间,飞行高度2000m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率600 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月17日-18日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月17日-18日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:3.6M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市康宁九社农田2013年11月15日-16日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温度包括温度传感器在土壤深度0cm,1cm、3cm,5cm,10cm五层观测的土壤温度数据。土壤温度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月15日-16日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz波段仪器损坏) 土壤温度:使用安装在dt85上的传感器测量0cm,1cm,3cm,5cm,10cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:4.8M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
2012年7月26日在大满加密观测区PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于大满加密观测区矩阵内,选择了面积3.0 km×2.4 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以450 m为间隔,采集了5条样线(东西分布),每条线100 m间隔共31个点(南北方向),使用5台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约150个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。因该区域植被开展了例行的5天一次采样观测,因此当日未开展专门的植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
二坝水库红外温度和水面温度观测系统架设目的在于为航空TASI、WiDAS和L波段飞行提供水体表面温度的数据。 观测地点: 选择张掖城东14km,甘州区碱滩镇二坝村旁的二坝水库作为观测点。该观测点坐标:38°54'57.14"N,100°36'57.39"。 测量仪器: 观测内容包括一个垂直对水面的SI-111红外温度探头,一个正南天顶角35度对天观测的SI-111红外温度探头(2012年新购置仪器,其出厂时默认设置的地表发射率为1,试验期间未进行黑体定标)。2个漂浮在水面以下0cm109SS-L温度传感器,数采为Campell CR-1000,自动采集,GPRS无线传输至综汇系统。探头架高3米,离岸距离3.4m。 测量时间: 仪器从2012年5月27日起开始正常观测,至9月27日进行不间断地24小时观测,5秒钟记录一次数据,输出5秒钟和1分钟2组值。 数据内容: 垂直水体表面温度(TarT_Sur,未进行地表比辐射率、背景温度的校正)、对天空温度(TarT_Atm,未进行天空背景比辐射率的校正),水面0cm直接测量温度(WaterT_1,WaterT_2)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
2012年7月10日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积1.6 km×1.6 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了11条样线(东西分布),每条线80 m间隔共21个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约230个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。当日未开展专门的植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 李新
2012年6月30日,在黑河中游的30*30公里核心观测区域、临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5微米,空间分辨率为3米。飞行高度为2500米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
2012年8月2日在黑河中游的30*30公里核心观测区域,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48°)和热像仪一台(最大视场角46°)。获取的数据信息为,高分辨率CCD:0.26米;多光谱分辨率:1.3米;热像仪分辨率:6.3米。
肖青, 闻建光
本数据集为L波段机载微波辐射计于2012年7月10日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机10:30(北京时间,下同)从张掖机场起飞,15:30降落。飞行历时5小时。在观测期间,飞行高度2500m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率750 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
2012年6月29日,在黑河中游的30*30公里核心观测区域、中游样带区,利用运12飞机,搭载CASI/SASI传感器,开展了可见光/近红外短波红外高光谱航空遥感数据获取飞行试验。飞行相对高度2000米(海拔高3500米),CASI和SASI传感器波长范围分别为380-1050纳米和950-2450纳米,空间分辨率分别为1米和2.4米。利用同步测量的地面数据和大气数据,经过几何和6S大气校正,得到地表反射率产品。
肖青, 闻建光
本数据集为L波段机载微波辐射计于2012年7月26日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机9:10(北京时间,下同)从张掖机场起飞,13:10降落。飞行历时4.5小时。在观测期间,飞行高度2300m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率700 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
中游人工绿洲生态水文实验区地表温度同步观测的目的在于获取不同地表特征的日变化温度数据和热红外传感器飞行期间大棚薄膜、屋顶、道路、沟渠、水泥地等下垫面的同步地表温度,用于支持航空飞行TASI资料反演地表温度的验证和尺度效应分析。 1、观测时间、内容以及观测方式 2012年6月25日:沟渠和沥青公路使用手持式红外温度计进行观测,观测频率为5min一次。 2012年6月26日:沟渠和沥青公路使用手持式红外温度计进行观测,观测频率为5min一次;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年6月29日:水泥地使用手持式红外温度计进行观测,在TASI传感器进入观测上空时进行连续观测;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年6月30日:沥青公路、沟渠、裸土、西瓜地和田埂使用手持式红外温度计进行观测,TASI传感器进入观测上空时进行连续观测,其他时间每5min观测一次;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年7月10日:沥青公路、沟渠、裸土、西瓜地和田埂使用手持式红外温度计进行观测,TASI传感器进入观测上空每1min观测一次,其他时间每5min观测一次;水泥地使用固定自记点温计进行观测,观测频率为6s一次。 2012年7月26日:沥青公路、水泥地、裸土和西瓜地使用手持式红外温度计进行观测,WiDAS传感器进入观测上空进行连续观测,其他时间每5min观测一次;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2012年8月2日:玉米地和水泥地使用手持式红外温度计进行观测,其中玉米地观测根据WiDAS飞行的航带选择观测点,共选取了12个航带,每个航带下选择一个观测点在WiDAS传感器进入观测上空进行连续观测;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2012年8月3日:玉米地和水泥地使用手持式红外温度计进行观测,其中玉米地观测根据WiDAS飞行的航带选择观测点,共选取了14个航带,每个航带下选择3个观测点在WiDAS传感器进入观测上空进行连续观测;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2、观测仪器参数及标定 固定自记点温计的视场角约10°, 塑料薄膜架设高度约0.5m,水泥地面的架设高度约1m,均采用垂直观测;手持式红外温度计视场角为1°,观测比辐射率设为0.95。所有观测仪器在使用过程中分别于2012年7月6、2012年8月5和2012年9月20进行了3次标定。 3、数据的存储 所有观测数据均用Excel格式存储。
耿丽英, 家淑珍, 王宏伟, 王海波, 吴桂平, 陈书林, 彭莉, 董存辉
2012年7月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。中游地区飞行相对高度1500米(海拔高度2700米),平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
2012年7月4日,在黑河中游的30*30公里核心观测区域、临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5微米,空间分辨率为3米。飞行高度为1000米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
本数据集为L波段机载微波辐射计于2012年7月7日获取,地点在黑河中游地区。 其中L波段频率为1.4GHz,天顶角观测,V极化与H极化信息;飞机13:40(北京时间,下同)从张掖机场起飞,15:10降落。飞行历时4小时。在观测期间,飞行高度2000 m左右,飞行速度220-250km/hr左右。 原始数据分为两部分,分别为微波辐射计数据和地理位置KMZ数据。微波辐射计数据包括V极化与H极化两个数据文件,分辨率600 m,每个数据文件包含所观测TB值和对应扫描波束ID、入射角、位置、时间标记(UTC)和其他飞行姿态信息。KMZ文件给出38.5入射角下飞区域行1公里网格TB值分布数据。飞机前和结束时微波辐射计分别进行了“热”和“冷”辐射校正。微波辐射计数据应考虑电磁波干扰影响,V极化TB值受电磁波干扰较强,H极化受影响较小。
车涛, 高莹, 李新
2012年7月26日在黑河中游的5*5公里加密区,利用运12飞机,搭载WIDAS传感器,开展了可见光/近红外、热红外的多角度航空遥感试验。WIDAS系统集成了:高分辨率相机一台、可见光/近红外5波段多光谱相机两台(最大视场角48°)和热像仪一台(最大视场角46°)。获取的数据信息为,高分辨率CCD:0.2米;多光谱分辨率:1米;热像仪分辨率:4.8米。
肖青, 闻建光
通过e-SENSE/Diver水文监测设备及动态远程监测系统,获取黑河流域关键站点2013至2015年3年非冰冻期的水文监测数据,主要包括3个地下水(祁连站、临泽站、额济纳站)及6个河道地表水(莺落峡站、高崖站、正义峡站、哨马营站、狼心山站、居延海)的温度及水位数据,时间分辨率为1h。
郑春苗
本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF;
张甘霖, 宋效东
该数据集包含了2012年6月25日至9月26日的通量观测矩阵中湿地站涡动相关通量观测数据。站点位于甘肃省张掖市,下垫面是湿地。观测点的经纬度是100.44640E, 38.97514N,海拔1460.00m。涡动相关仪架高5.2m,采样频率是10Hz,超声朝向是正北向,超声风速仪与CO2/H2O分析仪之间的距离是25cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Edire软件后处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,角度订正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Edire软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据每30min内缺失率大于3%的数据;(4)剔除夜间弱湍流的观测数据(u*小于0.1m/s)。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。因仪器漂移等原因引起的可疑数据用红色字体标识。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),稳定度Z/L(无量纲),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为三级(质量标识0:(Δst <30, ITC<30); 1: (Δst <100, ITC<100); 其余为2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Xu et al.(2013)。
刘绍民, 李新, 徐自为
通过数据编程,2012年5月中旬获取了大野口流域WorldView-2立体像对数据。同年7-8月,在流域GPS差分大地控制网基础上,测得27个GPS像控点及检查点数据。在全野外GPS地面控制点基础上,利用数字摄影测量软件系统,对WorldView-2影像自带RPC文件进行校正。在立体模型上通过影像自动匹配技术,匹配60个均匀分布的高精度影像连接点快速提取黑河流域上游大野口子流域1米、2米数字高程模型(DEM)。同时,在阴坡森林覆盖区、大野口水库等重点区域进行DEM进行编辑,在地形特征变化大的地方测量一定数量的特征点、线数据,极大地提高了成果精度。通过外业控制点、模型保密点组成的检查点进行定量DEM验证,其高程中误差分别为1.9米和1.2米,达到1:2000比例尺2级高山地2米精度要求。
张彦丽, 马明国
通过数据编程,2012年5月中旬获取了大野口流域WorldView-2立体像对数据。同年7-8月,在流域GPS差分大地控制网基础上,测得27个GPS像控点及检查点数据。在全野外GPS地面控制点基础上,利用数字摄影测量软件系统,对WorldView-2影像自带RPC文件进行校正。在立体模型上通过影像自动匹配技术,匹配60个均匀分布的高精度影像连接点快速提取黑河流域上游大野口子流域1米、2米数字高程模型(DEM)。基于共线条件方程,利用数字微分纠正原理,选取立体像对中的正视影像生成大野口流域数字正射影像DOM。
张彦丽, 马明国
采用黑河计划数据管理中心提供的黑河流域及周边地区21个气象常规观测站及黑河周边13个全国基准站的站点数据信息,对逐日日照时数进行统计整理,计算逐个站点的1961-2010年多年逐月日照时数数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐月日照时数分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点日照时数值与地理地形因素(经纬度、高程、坡度、坡向等)的关系,得逐月日照时数分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年月平均日照时数分布。时间分辨率:1961-2010年多年月平均日照时数。空间分辨率:500m。
岳天祥, 赵娜
我们生产了2012年黑河流域1KM分辨率的地表光合有效辐射(PAR),太阳辐射(SSR)和净辐射(NR)产品。时间分辨率从瞬时,到逐时和逐日累计。同时也生产了逐日的辅助数据,包括气溶胶光学厚度、水汽含量、NDVI、雪盖和地表反照率。其中,PAR和SSR通过结合静止气象卫星和极轨卫星MODIS产品,用查找表的方法来直接反演。NR通过分析地表净短波辐射和净辐射之间的关系来计算。半小时一次的瞬时产品被加权平均和积分得到逐时和日累计产品。 最终的数据产品以HDF格式打包。HDF文件里有数据以及数据集的详细说明。放了方便使用,简介文档里给出了一段读取HDF格式的IDL代码和一个HDF专业软件! 如果在您的论文中用到了此数据,请引用以下三篇参考文献!
黄广辉
数据来源:中国国家气象站网; 数据内容:黑河流域各区域1990-2004年日降雨数据系列;黑河流域各区域2000年-2012年月蒸发数据。 数据空间范围:降雨数据(莺落峡、山丹、高崖、平川、甘州平山湖、正义峡、梨园河);蒸发数据(张掖、高台、鼎新、酒泉、金塔、山丹、额济纳、河曲)
王忠静, 郑航
影像:MODIS影像 制备方法:清华ReDRAW遥感蒸散发模型计算 空间范围:黑河全流域 时间范围:2001-2014年月数据
王忠静, 郑航
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤有机碳含量空间分布数据产品。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据集内容: hh_soc_layer1.tif:0-5cm 土壤有机碳含量; hh_soc_layer2.tif:5-15cm 土壤有机碳含量; hh_soc_layer3.tif:15-30cm 土壤有机碳含量; hh_soc_layer4.tif:30-60cm 土壤有机碳含量; hh_soc_layer5.tif:60-100cm 土壤有机碳含量;
宋效东, 张甘霖
根据土壤-景观模型原理,使用数字土壤制图方法制作关键水文参数空间分布图数据产品。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers / Albers_Conic_Equal_Area; 空间分辨率:90米; 数据格式:TIFF; 数据内容:饱和含水量、田间持水量、萎蔫含水量、饱和导水率空间分布 预测方法:增强回归树 环境变量:主要的成土因素 数据集内容: pr_0kp sm.tif:饱和含水量(单位:%) pr_33kp sm.tif: 田间持水量(单位:%) x1500kp sm.tif:萎蔫含水量(单位:%) shc sm.tif:饱和导水率 (单位:Ks/(mm•min-1))
张甘霖, 宋效东
土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。预测方法主要是基于土壤-景观模型,该模型基本理论基础是经典的土壤发生理论,模型将土壤视为气候、地形、母质、生物和时间综合作用的产物。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据内容:土壤粘粒、粉粒、砂粒含量空间分布 预测方法:增强回归树 环境变量:主要的成土因素
张甘霖, 宋效东
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤有机碳含量空间分布数据产品。预测方法主要是基于土壤-景观模型,该模型基本理论基础是经典的土壤发生理论,模型将土壤视为气候、地形、母质、生物和时间综合作用的产物。本数据集来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据内容:土壤有机碳含量空间分布 预测方法:增强回归树 环境变量:主要的成土因素
张甘霖, 宋效东
本数据集的数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。预测方法主要是基于土壤-景观模型,该模型基本理论基础是经典的土壤发生理论,模型将土壤视为气候、地形、母质、生物和时间综合作用的产物。 范围:黑河流域; 投影:Albers_Conic_Equal_Area; 空间分辨率:90米; 数据格式:ArcGIS Grid; 数据内容:土壤厚度空间分布 预测方法:增强回归树 环境变量:主要的成土因素
张甘霖, 宋效东
本项目利用分布式生态水文模型HEIFLOW(Hydrological-Ecological Integrated watershed-scale FLOW model)对黑河中下游开展了生态水文过程模拟。模型使用了动态土地利用功能,采用了由胡晓利等提供的2000、2007、2011三期土地利用数据。 模拟的时空范围及精度如下: 模拟期:2000-2012年,其中2000年为模型预热期 模拟步长:逐日 模拟的空间范围:黑河中下游,模型面积90589平方公里 模拟的空间精度:地表和地下均采用1km×1km网格,地表共90589个水文响应单元;地下分5层,每层90589个活动网格 HEIFLOW模型模拟结果数据集包含以下变量: (1)降水量(单位:毫米/月) (2)黑河上游主要出山径流量观测值(单位:立方米/秒) (3)蒸散发量(单位:毫米/月) (4)土壤入渗量(单位:毫米/月) (5)地表产流量(单位:毫米/月) (6)浅层地下水水头(单位:米) (7)地下水潜水蒸发量(单位:立方米/月) (8)浅层地下水面上补给量(单位:立方米/月) (9)地下水出露量(单位:立方米/月) (10)河流-地下水交换量(单位:立方米/月) (11)黑河干流四个水文站(高崖、正义峡、哨马营、狼心山)河道流量模拟值(单位:立方米/秒) 上述前两个变量为模型驱动数据,其余均为模型模拟量。所有变量时间范围为2001-2012,时间尺度为月。空间分布式数据精度为1km×1km,数据格式为tif。 上述变量中,如遇负值,表示地下水排泄量(如地下水潜水蒸发量、地下水出露量、地下水补给河道量等)。如需地下水埋深,使用模型地面高程数据减去地下水水头数据即可,部分区域地下水水头可能高于地表,表明该处存在地下水出露。 此外,数据集还提供: 中下游模型建模范围(格式为.shp) 中下游模型地表高程(格式为.tif) 上述数据全部使用WGS_1984_UTM_Zone_47N坐标系。 以HEIFLOW_V1_ ET_2001M01.tif为例,说明数据文件命名规则: HEIFLOW: 模型名称 V1: 数据集版本号1.0 ET: 变量名 2001M01:2000年1月,其中M表示月份
郑春苗
利用ETWatch模型与系统完成黑河流域2014年1公里分辨率月尺度地表蒸散发数据与中游绿洲30米分辨率月尺度地表蒸散发数据集,该数据集为栅格影像数据,它的时间分辨率是逐月尺度,空间分辨率为1公里尺度(覆盖整个流域)与30米尺度(覆盖中游绿洲区),单位为毫米。数据类型包括月、季、年数据。 数据的投影信息如下: Albers 等积园锥投影, 中央经线:110度, 第一割线:25度, 第二割线:47度, 坐标西偏:4000000 meter。 文件命名规则如下: 1)1公里分辨率遥感数据集 每月累计ET值文件命名:heihe-1km_2014m01_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,m01表示1月份,eta表示实际蒸散数据,tif表示数据为tif格式; 每季累计ET值文件命名:heihe-1km_2014s01_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,s01表示1-3月,为第一季度,eta表示实际蒸散数据,tif表示数据为tif格式; 每年累计值文件命名: heihe-1km_2014y_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,y表示年,eta表示实际蒸散数据,tif表示数据为tif格式。 2)30米分辨率遥感数据集 每月累计ET值文件命名:heihe-midoasis-30m_2014m01_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,m01表示1月份,eta表示实际蒸散数据,tif表示数据为tif格式; 每季累计ET值文件命名:heihe-midoasis-30m_2014s01_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,s01表示1-3月,为第一季度,eta表示实际蒸散数据,tif表示数据为tif格式; 每年累计值文件命名: heihe-midoasis-30m_2014y_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,y表示年,eta表示实际蒸散数据,tif表示数据为tif格式。
吴炳方
黑河上游分布式生态水文模型(GBEHM)输出数据包括1-km网格的空间分布数据系列数据。 区域:黑河干游(莺落峡) 北大河(冰沟新地),时间分辨率:月尺度,空间分辨率:1km,时段:1960年-2014年。 数据包括降水量、蒸散发、径流深、土壤体积含水量(0-100cm)。 所有数据均为ASCII格式,流域空间范围参见reference目录下的basin.asc文件。 模型结果的投影参数: Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area
杨大文
该数据集包含了2015年1月1日至2015年4月17日黑河水文气象观测网上游黄草沟站气象要素观测数据。站点位于青海省祁连县峨堡镇黄草沟村,下垫面是高寒草地。观测点的经纬度是100.7312E, 38.0033N,海拔3137m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据,该站风向测量值疑问较多;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。4月17日后该站拆除。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
一、数据描述: 数据包含2015年7~9月葫芦沟小流域流域河水和地下水DOC、DIC值。采样频率两周一次。 二、采样地点: (1)河水采样点有两个。 河水取样点一位置为黑河上游葫芦沟小流域出口水文断面处,经纬度为99°52′47.7″E,38°16′11″N。 河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (2)地下水分泉水和井水取样点。 泉水取样点位置为流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N。 井水取样点位置东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法: 样品DOC、DIC值是利用OIAurora 1030W TOC 仪器测试,检测范围:2ppb C-30,000ppm C。
马瑞, 胡雅璐
该数据集包含了2015年1月1日至2015年12月31日黑河水文气象观测网下游胡杨林站气象要素观测数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是胡杨林和柽柳。观测点的经纬度是101.1239E, 41.9932N,海拔876m。空气温度、相对湿度传感器架设在28m处,朝向正北;风速传感器架设在28m,朝向正北;四分量辐射仪安装在24m处,朝向正南;两个红外温度计安装在24m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在24m处,朝向正南,探头垂直向上和向下方向各一个;土壤温度探头埋设在地表0cm和地下2cm、4cm处,在距离气象塔2m的正南方;土壤水分传感器埋设在地下2cm、4cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_28m、RH_28m)(单位:摄氏度、百分比)、风速(WS_28m)(单位:米/秒)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于仪器调整,在2015.4.22-4.27之间数据缺失;土壤热通量3由于传感器的问题,在6.19-9.05之间数据缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2015-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
一、数据描述 葫芦沟土壤温度监测深度分布为20cm、50cm、100cm、200cm、300cm。地下水温度监测深度为10m。观测频率为1小时/次。观测数据时间范围为2016年5月17日~2016年9月18日。 二、采样地点 葫芦沟小流域土壤温度监测点设置在流域三角洲中部,其地理坐标为99°52′45.38″E, 38°15′21.27″N。
马瑞, 胡雅璐
黑河上游分布式生态水文模型(GBEHM)输出数据包括1-km网格的空间分布数据系列数据。 区域:黑河上游(莺落峡),时间分辨率:月尺度,空间分辨率:1km,时段:2015年-2070年(未来情景)。 数据包括降水量、蒸散发、径流深、平均气温。 所有数据均为ASCII格式,流域空间范围参见reference目录下的basin.asc文件。 模型结果的投影参数: Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area
杨大文
一、数据描述 数据包含2015年7~9月葫芦沟小流域降水、河水和地下水δ2H、δ18O,采样频率2周/次。 二、采样地点 (1)降水采样点位于中科院寒区与旱区研究所生态水文站内,经纬度为99°53′06.66″E, 38°16′18.35″N; (2)河水取样点一位置为黑河上游葫芦沟小流域出口流量堰处,经纬度为99°52′47.7″E,38°16′11″N。河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (3)地下水分泉水和井水取样点。泉水取样点位置位于流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N; 井水取样点位于东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法 样品δ2H、δ18O值是利用PICARRO L2130-i超高精度液体水和水汽同位素分析仪测定,其结果用相对于国际标准物质V-SMOW的测试精度分别δ值表示,测定精度分别0.038‰、0.011‰。
马瑞, 邢文乐
选取土壤表层深度0-20cm土壤机械组成数据,选择最优的土壤成分数据空间预测制图方法,制作土壤质地(粒径组成)空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于寒区旱区数据中心,以及黑河流域重大研究计划集成项目(黑河流域上游植被及其环境要素空间插值与动态模拟分析/批准号91325204)集成的土壤采样数据。
张甘霖, 宋效东
一、数据描述: 数据包含2015年7~9月葫芦沟小流域流域河水和地下水阴阳离子样品,进行测试分析。采样频率两周一次。 二、采样地点: (1)河水采样点有两个,河水取样点一位置为黑河上游葫芦沟小流域出口流量堰处,经纬度为99°52′47.7″E,38°16′11″N。河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (2)地下水分泉水和井水取样点,泉水取样点位置为流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N。井水取样点位置东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法: 样品阳离子是采用电感耦合等离子体发射光谱仪(ICP-AES)进行测试,测试精度为0.05mg/L ,阴离子是采用离子色谱仪(ICS1100)进行测试,测试精度为0.002mg/L 。
马瑞, 胡雅璐
从沙冬青叶片中中克隆了一个典型Shaker型钾离子吸收通道基因AmKAT1。 对AmKAT1的电生理研究表明AmKAT1是一个受钾离子浓度调控K+吸收通道,该系统在细胞外钾离子浓度较高(10 mmol/L以上)时,方能行使向保卫细胞中输入K+的功能。这一与众不同的特征对沙冬青这样的旱生植物具有重要的生理意义:在细胞外低浓度钾离子条件下(无论钠离子浓度多高),AmKAT1难于开放,钾离子不能进入保卫细胞,保卫细胞就不会吸水膨胀,气孔也就难于打开,这样减少了沙冬青体内水分的蒸腾散失,增强了沙冬青在干旱环境中的生存能力。我们进一步深入研究了细胞外钾离子调控AmKAT1活性的机制,发现AmKAT1中至少两个位点参与钾离子的感应,现在已经确定一个位点位于通道孔区域。 此外,我们还克隆得到一个保卫细胞外向型K+通道AmGORK和慢阴离子通道AmSLAC1。荧光定量PCR结果显示,AmGORK主要在地上部表达,其转录水平不同程度地受到PEG模拟水分胁迫、ABA、NaCl及渗透胁迫处理等的影响。在非洲爪蟾卵母细胞异源系统中的电生理研究表明,蒙古沙冬青保卫细胞的AmGORK通道在膜电位去极化时能够介导K+的高效外排;该通道的激活具备典型电压依赖性和钾离子浓度依赖性,且受到钾离子通道抑制剂TEA和Ba2+的抑制;此外,AmGORK的活性受细胞外pH,而不受细胞外钙浓度的调控。这些结果表明,虽然蒙古沙冬青是一起源于数百万年前的耐干旱古老豆科灌木,其在K+主导的气孔关闭机制方面,与现有普通模式植物拟南芥高度相似。这些结果为初步揭示GORK类气孔调控通道在不同物种间及长期进化过程中的功能保守性,提供了证据。
苏彦华
该数据集包含了2013年8月8日至2013年12月31日黑河水文气象观测网上游阿柔阴坡站气象要素观测数据。站点位于青海省祁连县阿柔乡南侧阴坡,下垫面是高寒草地。观测点的经纬度是100.4108E, 37.9841N,海拔3536m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在6m处,朝向正南,探头垂直向上向下方向各一个;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2013-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al.(2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
采用黑河计划数据管理中心提供的黑河流域及周边地区21个气象常规观测站及黑河周边13个全国基准站的站点数据信息,对逐日湿度进行统计整理,计算逐个站点的1961-2010年多年逐月湿度数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐月湿度分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点湿度值与地理地形因素(经纬度、高程、坡度、坡向等)的关系,得逐月湿度分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年月平均湿度分布。时间分辨率:1961-2010年多年月平均湿度。空间分辨率:500m。
岳天祥, 赵娜
一、数据描述: 数据包含了2016年5月4日~2016年9月3日葫芦沟小流域二号集水区出口河水流量数据。 二、采样地点: 河水流量监测断面坐标位于二号集水区出口,红墙附近,坐标为99°52′58.40″E,38°14′36.85″N。
马瑞, 胡雅璐
使用数字土壤制图方法制作土壤表层pH空间分布数据产品。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。
张甘霖, 宋效东
该数据集包含了2012年6月12日至11月22日的黑河中游径流加密观测中的降水比对观测数据。降水比对场位于甘肃省张掖市甘州区长安乡上头闸村即通量观测矩阵的1号点。观测点的经纬度是N38°53'36.06",E100°21'28.92",海拔1559米。数据说明包括以下部分: 降水量分别采用5种不同高度、不同类型雨量计观测,观测频率1d。数据涵盖时间段6月12日至11月24日,单位(cm); 雨量计分别为:1、地面防溅雨量计(0.0米,称重式自计雨量计);2、人工标准雨量计(0.7米,人工观测);3、虹吸式自己雨量计(1.0米,纸质自动记录);4、称重式雨量计(1.5米,带防风隔栅自动记录);5、翻斗式雨量计(1.5米,自动记录)。 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2013年8月8日至2013年12月31日黑河水文气象观测网上游阿柔阳坡站气象要素观测数据。站点位于青海省祁连县阿柔乡北侧阳坡,下垫面是高寒草地。观测点的经纬度是100.5204E, 38.0898N,海拔3529m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在6m处,朝向正南,探头垂直向上向下方向各一个;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在并距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2013-9-10 10:30;(6)命名规则为:AWS+站点名称。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al.(2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含了2013年1月1日至2013年12月31日的蒸渗仪观测数据。站点位于河北省怀来县东花园镇,下垫面为玉米。观测点的经纬度是115.7880E,40.3491N,海拔480m。 蒸渗仪采集频率为1次/分钟,发布数据为10分钟平均值。蒸渗仪为圆柱形结构,表面积为1m2,土柱埋深1.5m,蒸散量观测精度为0.01mm。蒸渗仪安装有两台,一台保持裸土(lysimeter_1),另一台在生长季(5月10日-9月15日)为玉米下垫面(lysimeter_2)。蒸渗仪内还安装有土壤温湿度探头、土壤水势探头和土壤热流板。土壤温度传感器埋设深度为5cm、30cm、50cm、100cm、140cm;土壤水分传感器埋设深度为2cm、10cm、20cm、40cm;土壤热流板埋设在地下10cm处;土壤水势传感器埋设深度为30cm和140cm处。观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)删除了维护期间造成的观测异常的数据;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2013-6-10 10:30。 蒸渗仪发布的观测数据包括:日期/时间Date/Time,称重质量(I.L_1_WAG_L_000(Kg)、I.L_2_WAG_L_000(Kg)),渗漏质量(I.L_1_WAG_D_000(Kg)、I.L_2_WAG_D_000(Kg)),土壤热通量(Gs_1_10cm、Gs_2_10cm)(W/m2),多层土壤水分(Ms_1_2cm、Ms_1_10cm、Ms_1_20cm、Ms_1_40cm、Ms_2_2cm、Ms_2_10cm、Ms_2_20cm、Ms_2_40cm)(%),多层土壤温度(Ts_1_5cm、Ts_1_30cm、Ts_1_50cm、Ts_1_100cm、Ts_1_140cm、Ts_2_5cm、Ts_2_30cm、Ts_2_50cm、Ts_2_100cm、Ts_2_140cm)(℃),土壤水势(TS_1_30(hPa)、TS_1_140(hPa)、TS_2_30(hPa)、TS_2_140(hPa));数据以*.xls格式存储。 站点介绍用guo et al, 2020; 数据处理用liu et al, 2013.
刘绍民, 徐自为, 朱忠礼, 肖青
该数据集包含了2012年5月10日至9月26日的通量观测矩阵中超级站气象观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.37223E, 38.85551N,海拔1556.06m。风速与风向传感器分别架设在3米、5米、10米、15米、20米、30米、40米处,共7层,朝向正北;空气温度、相对湿度传感器分别架设在3米、5米、10米、15米、20米、30米、40米处,共7层,朝向正北;CO2廓线传感器分别架设在3米、5米、10米、15米、20米、30米、40米处,共7层,朝向正北;大气压力传感器安装在2米处,自计式雨量计安装在塔西侧约8米处,架高2.5m;四分量辐射仪安装在12米处,朝向正南;两个红外表面温度传感器安装在12米处,朝向正南,红外表面温度传感器支臂朝向正南,探头朝向是垂直向下;光合有效辐射传感器安装在12米处,朝向正南;土壤热流板(自校正式)(3块)依次埋设在地下6 cm处,朝向正南距离塔体2米处;其中两块埋设在棵间,一块埋设在植株下面。平均土壤温度传感器TCAV埋设在地下2 cm处,朝向正南距离塔体2米处; 土壤温度传感器探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120 cm和160 cm处,并距离气象塔2米的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120 cm和160 cm处,并距离气象塔2米的正南方; 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m 、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿观测(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、大气压观测(Press)(单位:百帕)、降水观测(Rain)(单位:毫米)、CO2浓度和水汽密度观测(CO2_3m、CO2_5m、CO2_10m、CO2_15m、CO2_20m、CO2_30m、CO2_40m和H2O_3m、H2O_5m、H2O_10m、H2O_15m、H2O_20m、H2O_30m、H2O_40m)(单位:微摩尔/摩尔、毫摩尔/摩尔)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表红外辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:瓦/平方米)、平均土壤温度(TCAV_2cm)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)和多层土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm 、Ts_160cm)(单位:摄氏度) 。观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2012-6-10 10:30;(5)命名规则为:AMS+站点编号 。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Xu et al.(2013)。
刘绍民, 李新, 徐自为
该数据集包含了2012年5月10日至9月21日的通量观测矩阵中12号点的自动气象站观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米。观测点的经纬度是100.36631E, 38.86515N,海拔1559.25m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压与翻斗式雨量计安装在2米、10米处;风速与风向传感器架设在10米,朝向正北;四分量辐射仪安装在6米处,朝向正南;两个红外表面温度传感器安装在4米处,朝向正南支臂朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100 cm处,并距离气象塔2米的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,并距离气象塔2米的正南方;土壤热流板(3块)依次埋设在地下6 cm处,其中两块埋设在棵间,一块埋设在植株下面。观测项目有:空气温湿观测(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、辐射四分量(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、 多层土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:百分比)和多层土壤温度(Ts_0cm、Ts_2cm 、Ts_4cm 、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm )(单位:摄氏度) 。观测数据的处理与质量控制:(1)确保每天1440个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2012-6-10 10:30;(5)命名规则为:AMS+站点编号 。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Xu et al.(2013)。
刘绍民, 李新, 徐自为
中国高寒山区月降水数据集包括祁连山(1960-2013)、天山(1954-2013)、长江源(1957-2014)地区月降水数据集。 分布式水文模型需要高精度的降水空间分布信息作为输入。由于站点稀少,站点插值降水无法体现高寒山区的降水空间分布。本数据集生成方式: (1) 收集整理各个地区国家气象台站降水数据、水文站点降水数据,新增中国科学院野外台站海拔4000m以上降水观测站点数据; (2)利用各个台站的气温资料对收集的降水数据进行不同降水类型的降水数据校正; (3)建立降水数据与海拔、经度、纬度之间的关系,逐月拟合生成1km尺度的月降水数据集。 本数据插值年份为1954-2014年,数据投影方式:Albers投影,空间插值精度为1-km,时间精度为逐月数据。数据经过交叉验证,站点观测数据验证,结果表明插值降水具有可靠性。 数据采用ASCII文件存储,天山和长江源月降水数据文件的文件名均为YYYYMM.txt形式,YYYY为年份,MM为月。祁连山逐月降水数据名称为:month_10001.txt,该文件为1960年1月降水数据,依次month_10002.txt为1960年2月降水,month_10013.txt为1961年1月降水数据,...... month_10648.txt为2013年12月降水数据。每个ASCII文件代表当日的网格降水数据,单位为mm。
陈仁升, 刘俊峰
该数据集包含了2012年6月17日至11月24日的黑河中游径流加密观测中8号点的河流水位和流速观测数据。观测点位于甘肃省张掖市高台县黑河桥,河道宽度210米。河床为泥沙,断面稳定。观测点的经纬度是N39°23'22.93",N 99°49'37.29",海拔1347米。数据说明包括以下两部分: 水位观测:采用SR50超声测距仪,数据涵盖时间段6月17日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
何晓波, 张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
选取土壤表层深度0-20cm土壤机械组成数据,选择最优的土壤成分数据空间预测制图方法,制作土壤质地(粒径组成)空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源寒旱区数据中心,祁连山天老池流域土壤物理性质—土壤容重、机械组成数据集土壤采样剖面数据。
岳天祥, 赵娜
本数据集包括黑河上游八宝河流域25个WATERNET传感器网络节点自2015年1月至2015年12月的观测数据。4cm和20cm土壤水分/温度是每个节点的基本观测;部分节点还包括10cm土壤水分/温度、地表红外辐射温度观测、雪深和降水观测等观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“2015年黑河上游八宝河WATERNET数据文档20160501.docx”
晋锐, 亢健, 李新, 马明国
选取土壤表层深度0-20cm土壤机械组成数据,选择最优的土壤成分数据空间预测制图方法,制作土壤质地(粒径组成)空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于寒区旱区数据中心,以及黑河流域重大研究计划集成项目(黑河流域上游植被及其环境要素空间插值与动态模拟分析/批准号91325204)集成的土壤采样数据。
岳天祥, 赵娜
采用黑河计划数据管理中心提供的黑河流域30米分辨率的ASTER GDEM数据和90米分辨率的SRTM数据两组栅格数据,以及多来源的点数据。利用HASM升尺度算法,将不同来源和不同精度的栅格数据与高程点数据进行融合,获得黑河流域的高精度坡向数据。首先利用各种点数据对两组栅格数据进行精度验证,根据精度验证的结果,在不同的区域,采用不同的栅格数据作为数据融合的趋势面。计算各样点数据与趋势面的残差,运用HASM算法进行插值获得残差曲面,将趋势面与残差曲面叠加,从而获得最终的坡向曲面。空间分辨率为500米。
岳天祥, 赵娜
采用黑河计划数据管理中心提供的每日四次常规气象观测数据集,包括13个站点。对逐日蒸发进行统计整理,计算逐个站点的2000-2009年多年逐月蒸发数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐月蒸发分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点蒸发值与地理地形因素(经纬度、高程、坡度、坡向等)的关系,得逐月蒸发分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年月平均蒸发分布。时间分辨率:2000-2009年多年月平均蒸发。空间分辨率:500m。
岳天祥, 赵娜
采用黑河计划数据管理中心提供的黑河流域及周边地区21个气象常规观测站及黑河周边13个全国基准站的站点数据信息,对逐日风速进行统计整理,计算逐个站点的1961-2010年多年逐月风速数据。对其进行空间平稳性分析,计算变异系数,若变异系数大于100%,则采用地理加权回归计算站点与地理地形因素关系,得逐月风速分布趋势;若变异系数小于等于100%,则采用普通最小二乘回归计算站点风速值与地理地形因素(经纬度、高程、坡度、坡向等)的关系,得逐月风速分布趋势;对去掉趋势后的残差采用HASM(High Accuracy Surface Modeling Method)进行拟合修正。最后将趋势面结果与残差修正结果相加即得1961-2010年黑河流域多年月平均风速分布。时间分辨率:1961-2010年多年月平均风速。空间分辨率:500m。
岳天祥, 赵娜
采用黑河计划数据管理中心提供的黑河流域30米分辨率的ASTER GDEM数据和90米分辨率的SRTM数据两组栅格数据,以及多来源的点数据,这些点数据包括中上游的雷达点云高程数据;根据黑河计划数据管理中心中土壤样点、植被样方提取的高程数据;气候水文站点提取的高程数据;以及课题组测量的高程样点数据。利用HASM升尺度算法,将不同来源和不同精度的栅格数据与高程点数据进行融合,获得黑河流域的高精度DEM数据。首先利用各种点数据对两组栅格数据进行精度验证,根据精度验证的结果,在不同的区域,采用不同的栅格数据作为数据融合的趋势面。计算各样点数据与趋势面的残差,运用HASM算法进行插值获得残差曲面,将趋势面与残差曲面叠加,从而获得最终的DEM曲面。空间分辨率为500米。
岳天祥, 赵娜
采用黑河计划数据管理中心提供的黑河流域30米分辨率的ASTER GDEM数据和90米分辨率的SRTM数据两组栅格数据,以及多来源的点数据。利用HASM升尺度算法,将不同来源和不同精度的栅格数据与高程点数据进行融合,获得黑河流域的高精度坡度数据。首先利用各种点数据对两组栅格数据进行精度验证,根据精度验证的结果,在不同的区域,采用不同的栅格数据作为数据融合的趋势面。计算各样点数据与趋势面的残差,运用HASM算法进行插值获得残差曲面,将趋势面与残差曲面叠加,从而获得最终的坡度曲面。空间分辨率为500米。
岳天祥, 赵娜
黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2015年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。在黑河中游农田、森林区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(RMSE=0.105)。与MODIS MOD13A2产品的时间序列对比分析,充分显示了时间分辨率从16天提高到5天时,稳定的高精度的植被指数对植被生长细节的细致描述。总之,黑河流域1km/5day合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 柳钦火, 仲波, 杨爱霞
黑河流域2015年1km/5天合成叶面积指数(LAI)数据集提供了2015年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PROSAIL模型,针对森林和山地植被采用坡面GOST模型。利用黑河上游森林和中游绿洲的地面实测数据生成的参考图,并将对应的高分辨率参考图升尺度到1km分辨率,与LAI产品进行比较,产品在农田和森林区域与参考值间均具有良好的相关性,总体精度基本满足GCOS规定的误差不超过 (0.5, 20%)的精度阈值。将本产品与MODIS、GEOV1和GLASS等LAI产品进行交叉对比,相比较参考值而言,本LAI产品精度优于同类产品。总之,黑河流域1km/5天合成LAI数据集综合利用多源遥感数据以提高LAI参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 尹高飞, 仲波, 吴俊君, 吴善龙
黑河流域1km/5天合成植被覆盖度(FVC)数据集提供了2015年的5天FVC合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。将全国划分为不同植被区划、地类,分别计算植被指数(NDVI)与FVC的转换系数,采用计算的转换系数查找表和1km/5天合成NDVI产品生产区域1km/5天合成FVC产品。黑河流域1km/5天合成FVC产品通过高分辨率数据可以直接获得植被覆盖比例,减轻低分辨率数据异质性的影响;另外,选择植被生长变化的典型时期,通过对每一个像元时间序列植被指数进行拟合得到每个像元对应的生长曲线参数;再配合土地利用图和植被分类图,寻找区域的代表性均一像元用于训练植被指数的转换系数。通过与黑河流域高分辨率ASTER参考FVC结果相比,首先联合地面实测数据,利用尺度上推方法,将黑河流域ASTER产品聚合到 1km 尺度得到ASTER聚合FVC数据,并与Geoland2项目发布的基于SPOT VEGETATION遥感数据的FVC产品(简称GEOV1 FCOVER)进行间接比较,根据三种数据FVC时间序列曲线图,结果表明:GEOV1的结果较ASTER 影像联合地面实测的结果偏高,黑河流域1km/5天合成FVC产品结果位于两者之间,在实验区内黑河流域1km/5天合成FVC产品优于GEOV1产品。总之,黑河流域1km/5天合成FVC数据集综合利用多源遥感数据以提高FVC参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
穆西晗, 阮改燕, 仲波, 柳钦火
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件