冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
青藏高原湖泊众多,该地区湖泊冰期物候和持续时间对区域和全球气候变化非常敏感,因此被用作气候变化研究的关键指标,特别是地球三极环境变化对比研究。但由于其自然环境恶劣,人口稀少,缺乏对湖泊冰物候的常规现场测量。利用中分辨率成像光谱仪(MODIS)归一化差雪指数(NDSI)数据,以500米的分辨率对湖泊冰进行了监测,填补了观测空白。利用传统的雪图算法对晴天条件下的湖泊日冰量和覆盖范围进行检测,利用湖泊表面条件的时空连续性,通过一系列步骤对云层覆盖条件下的湖泊日冰量和覆盖范围进行重新确定。通过时间序列分析308个大于3km2的湖泊确定为湖冰范围和覆盖的有效记录,形成每日湖冰范围和覆盖数据集,包括216个湖泊。
邱玉宝
青藏高原地区积雪的赋存变化较快,高原周边高山区具有冰雪资源丰富。在充分考虑青藏高原的地形和山地积雪特征的情况下,本套数据集采用了AVHRR数据,逐步实现保持积雪分类精度的情况下逐日、十天、每月积雪面积数据产品。本数据包含青藏高原2007-2015年每天/10天/每月积雪面积数据,数据平均精度可达0.92。可为青藏高原地区历史时期积雪变化提供可靠数据。
邱玉宝
由于青藏高原地区季节性积雪具有赋存时间短、雪层较薄的特点,在对水循环等问题的理解中,迫切需要日时间尺度的积雪覆盖率动态监测数据。本数据集基于MODIS Snow Cover Daily L3 Global 500 m Grid数据,包括MODIS/Terra上午星数据(MOD10A1)和MODIS/Aqua下午星数据(MYD10A1)的归一化积雪指数NDSI数据产品,数据格式为hdf,投影方式为正弦曲线地图投影,结合90m的SRTM地形数据和多种云覆盖下积雪覆盖率估算算法的优势,实现云覆盖条件下的积雪覆盖率再估算,满足高亚洲地区逐日少云(< 10%)数据产品的生产要求,构建了 2002 - 2016 年高亚洲地区 MODIS 逐日积雪覆盖率数据集。选取无云条件下的二值积雪产品作为参考,通过云量分布和积雪总面积的时空对比,表明该产品的时空特征和二值产品具有较好的一致性。以 2013 年冬季为例,当积雪覆盖率大于 50%时,其相关性可达 0.8628。本数据集可为高亚洲地区的积雪动态监测、气候环境、水文和能量平衡、灾害评估等研究提供逐日积雪覆盖率数据。
邱玉宝
青藏高原地区积雪的赋存变化较快,高原周边高山区具有冰雪资源丰富,大气对流活跃等特点,而光学遥感往往受云的影响,在日时间尺度上积雪覆盖监测需要考虑去云问题。在充分考虑青藏高原的地形和山地积雪特征的情况下,本套数据集采用了多种去云过程和步骤相结合,逐步实现保持积雪分类精度的情况下,完成逐日积雪面积的云量消除,形成了“青藏高原 MODIS 逐日无云积雪面积”的逐步综合分类算法,完成了“青藏高原 MODIS 逐日无云积雪面积数据集(2002 - 2015 年)”。选取 2009年 10 月 1 日至 2011 年 4 月 30 日中的两个积雪季为算法研究和精度验证试验数据,采用研究区 145 个地面台站提供的雪深数据作为地面参考。结果表明,在高原地区,当积雪深度> 3 cm 时,无云积雪产品总分类精度达到 96.6%,积雪分类精度达 89.0%,整个算法流程对WGS84投影的中等分辨率的MODIS积雪产品MOD10A1以及MYD10A1为基础,去云的精度损失较低,数据可靠性较高。
邱玉宝
八宝河流域逐日无云MODIS积雪面积比例数据集(2008.1.1-2014.6.1)是在MODIS逐日积雪产品—MOD10A1的基础上,采用一种基于三次样条函数插值的去云算法进行去云处理后得到(唐志广,2013)。 该数据集采用UTM(横轴等角割圆柱)投影方式,空间分辨率500m,提供逐日的八宝河流域积雪反照率(Snow Albedo Daily-SAD)结果。数据集为逐日文件,从2008年1月1日到2014年6月1日。每个文件为当日的积雪反照率结果,数值为0-100(%),为ENVI标准文件,命名规则为:MOD10A1.AYYYYddd_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud.img,其中YYYY代表年, ddd代表儒略日(001-365/366)。文件可直接用ENVI或者ARCMAP等软件打开察看。 进行去云处理的原始MODIS积雪数据产品来源于由美国国家雪冰数据中心(NSIDC)处理的MOD10A1产品,这一数据集为hdf格式,采用sinusoidal投影。 八宝河流域逐日无云MODIS反照率数据集(2008.1.1-2014.1.1)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为500m,经度范围为100.2°~101.2°E,纬度为37.6°~38.3°N。 投影信息:UTM(横轴等角割圆柱)投影。 数据格式:ENVI标准格式。文件命名规则:"MOD10A1.A"+"YYYYddd"+"_h25v05_Snow_SAD_Grid_2D_reproj_babaohe_nocloud"+".img",其中YYYY代表年,ddd代表儒略日(001-365/366),其中该数据集的ENVI文件是由头文件和主体内容构成。头文件包括行数、列数、波段数、文件类型、数据类型、数据记录格式、和投影信息等;以2000055_FSC_0.5km.img 文件为例,其头文件信息如下: ENVI description = { ENVI File, Created [Wed Nov 26 11:50:00 2014]} samples = 187 lines = 132 bands = 1 header offset = 0 file type = ENVI Standard data type = 4 :代表byte型 interleave = bsq :数据记录格式为BSQ sensor type = Unknown byte order = 0 map info = {UTM, 1.000, 1.000, 596240.026, 4244174.613, 5.0000000000e+002, 5.0000000000e+002, 47, North, WGS-84, units=Meters} coordinate system string = {PROJCS["UTM_Zone_47N",GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT ["Degree",0.0174532925199433]],PROJECTION["Transverse_Mercator"],PARAMETER["False_Easting",500000.0],PARAMETER["False_Northing",0.0],PARAMETER ["Central_Meridian",99.0],PARAMETER["Scale_Factor",0.9996],PARAMETER["Latitude_Of_Origin",0.0],UNIT["Meter",1.0]]} wavelength units = Unknown
王建, 潘海珠
本数据集是基于MODIS的积雪面积比例制图集成算法Coupled Regional Approach (CRA)而获得的积雪覆盖数据集。CRA算法主要包括三部分,首先利用N-FINDR(体积迭代方法)和OSP(Orthogonal Subspace Projection)在图像上根据设定自动提取端元(提取了30个端元);在自动提取的基础上,结合IGBG土地覆盖类型图,通过人工筛选方法选择了积雪、植被、云、土壤、岩石和水6种类型端元,并根据2009年影像建立了年度光谱数据库,每个月上中下旬共3个光谱,一年共36个光谱;利用建立的光谱数据库作为先验知识,在先验知识的基础上利用全约束线性解混方法(FCLS)进行亚像元分解获取初级积雪面积比例产品。并采用改进地形影响的NDSI比值算法获取积雪面积,然后进行时空数据插值,最后与AMSR-E微波雪深产品进行多源数据融合而得到。 该数据集采用经纬度(Geographic)投影方式,大地基准面为WGS84,空间分辨率0.005°,提供2008-2010年逐日的青藏高原无云覆盖积雪面积图。数据集按年份存放,共由3个文件夹组成,从2008到2010。每个文件夹里包含当年的逐日积雪覆盖分类结果,为tif文件,命名规则为:YYYY***.tif,其中YYYY代表年(2008-2010),***代表日(001~365/366)。可直接用ARCGIS或者ENVI打开。
郝晓华
青藏高原近20年土壤水分及雪水当量的参数反演研究项目属于国家自然科学基金“中国西部环境与生态科学”重大研究计划,负责人为中国科学院遥感应用研究所施建成研究员,项目运行时间为2004.1-2007.12。 该项目汇交数据:青藏高原2001-2005年逐月MODIS雪盖产品。 该数据集是利用MODIS获取的影像数据,结合ASTER影像数据,在青藏高原进行亚像元级的雪盖面积分类和变化分析研究。主要研究内容是研究亚像元雪盖面积分类算法,包括利用归一化积雪指数进行统计回归方法和混合像元分解方法。在进行混合像元分解中,采用线性混合模型,并提出利用归一化积雪指数和归一化植被指数进行雪端元和非雪端元的自动提取; 在亚像元雪盖面积分类算法的基础上,进行青藏高原雪盖面积变化分析,通过建立决策树的方法,进行云和雪的检测和去云处理,并利用时间序列影像,进行合成和镶嵌,构成青藏高原的亚像元雪盖面积分类数据库, 对青藏高原雪盖面积的空间分布和变化特征进行分析和描述。
施建成, 许丽娜
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件