中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室研发的全球气候系统模式FGOALS-f3-H/L 参加CMIP6 高分辨率模式比较计划数据集。CAS FGOALS-f3-H的水平分辨率为0.25°,CAS FGOALS-f3-L的水平分辨率为1°,由标准的外部条件强迫,对1950-2014年和2015-2050年时间段进行了2套模拟,实验ID分别为 "highresSST-present "和 "highresSST-future"。模式输出包含多种时间尺度,包括:小时平均值、三小时平均值、六小时瞬时值、日平均值和月平均值数据集。
包庆
CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集包含了CMIP6中情景模式比较子计划(ScenarioMIP)的4种SSP情景组合。(1) SSP126:在SSP1(低强迫情景)基础上对RCP2.6情景的升级(辐射强迫在2100年达到2.6W/m2)。(2)SSP245:在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3)SSP370:在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4)SSP585:在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。 利用GRU数据对原始CMIP数据进行后处理偏差校正得到2046-2065年月尺度降水(pr)和气温(tas)预估后处理数据集, 参考期为1985-2014年。
叶爱中
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应,制备了青藏高原感热异常的全球模拟 敏感性试验数据集。 本数据包含三组敏感性试验:(1)全耦合模式CESM1.2.0中春季3-5月高原感热偏强cgcm_lar_mon_3-12-2.nc和高原感热偏弱cgcm_sma_mon_3-12-2.nc的敏感性试验;(2)单独大气环流模式CAM4.0中春季3-5月高原感热偏强cam_lar_mon3-8.nc和高原感热偏弱cam_sma_mon3-8.nc的敏感性试验。 包括:三维风、位势高度、气温、地表温度、比湿、感热通量、潜热通量、降水等常规变量 空间范围:全球模拟结果
段安民
1990-2020年全球高分辨率模拟近海洋表层气温-降水-海温数据集来源于最新CMIP6计划。CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集中包含了全球近海洋表层气温(tmp)、降水(pr)和海温(tos)数据。其中气温和降水数据包含CMIP6中情景模式比较子计划(ScenarioMIP)的4种不同实验场景的共享经济路径(shared socioeconomic pathway, SSP)与辐射强迫(representative concentration pathway, RCP)的矩形组合。(1) SSP126: 在SSP1(低强迫情景)基础上对RCP2.6情景的升级 (辐射强迫在2100年达到2.6W/m2)。(2) SSP245: 在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3) SSP370: 在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4) SSP585: 在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。海温数据提供SSP126情景数据。
叶爱中
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
1)该套数据集为来自美国国家环境预报中心(NCEP)和国家大气研究中心(NCAR)联合研制的全球大气再分析数据,是利用观测资料、预报模式和同化系统对全球从1948年到目前的气象资料进行再分析形成的格点资料。数据变量包括地表、近地表(.995sigma层)和不同气压层的多个气象变量,如降水、温度、相对湿度、海平面气压、位势高度、风场和热通量等。 2)覆盖时间为1948年至2018年,其中1948至1957年数据是非高斯格点数据;覆盖范围为全球。空间分辨率为2.5°经纬网格。垂直分层为17个标准气压层,分别为1000、925、850、700、600、500、400、300、250、200、150、100、70、50、30、20、10 hPa,和28 sigma层。部分变量为8层(omega)和12层(humidities);时间分辨率为逐6小时、逐日、逐月和长期逐月平均(1981年至2010年平均)。逐日数据由每日0Z,6Z,12Z和18Z 4个时次值作平均得到的。 3)缺测值为-9.96921e+36f。数据以nc格式存放,文件名为var.time.stat.nc, 每个文件包括经纬度、时间和大气要素变量。 数据的详细情况见数据说明链接http://www.esrl.noaa.gov/pad/data 。
NOAA, NCAR
NCEP/NCAR再分析数据工程(1.0)是美国国家环境预报中心-国家大气研究中心(National Centers for Environmental Prediction–National Center for Atmospheric Research: NCEP–NCAR)利用美国国家先进的分析/预测系统去对过去的资料(1948-最近)进行数据同化处理。 这些数据大部分都是来自PSD(物理科学部:Physical Sciences Division)原始日平均的数据。然而,自1948到1957阶段数据有一点不同,属于常规(非高斯)栅格数据。目前官方网站公布的资料一般是从1948至今,最新一天的资料一般会更新到当天的前两日。对于等压面上的资料,一般垂直分辨率会有17层,从1000hPa到10hPa。水平分辨率一般为2.5°×2.5°。NCEP再分析资料是国际上比较系统的大气科学再分析数据集,与欧洲中心的再分析资料相比,其覆盖的起始年份要早一些,最新的资料更新也更快一些。两套再分析数据集是目前国际上使用最为广泛的数据集。 数据的详细情况见https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
罗德海, 姚遥
北美多模型集合NMME是由美国模式中心(包括NOAA/NCEP、NOAA/GFDL、IRI、NCAR、NASA)和加拿大CMC联合发布的多模式集合季节预报系统数据集。数据包含1982-2010年回报数据和2011年至今的实时气象预报数据。其时间分辨率为逐月,覆盖范围为全球,水平空间分辨率为1°。NMME共有9个气候预报模式,每个模式包含6-28个集合成员,预见期为9-12个月。其气候模式的名称、来源、集合成员和预见期如下: 1)CMC1-CanCM3,Environment Canada,10个模式,12个月 2)CMC2-CanCM4,Environment Canada,10个模式,12个月 3)COLA-RSMAS-CCSM3,National Center for Atmospheric Research,6个模式,12个月 4)COLA-RSMAS-CCSM34,National Center for Atmospheric Research,10个模式,12个月 5)GFDL-CM2p1-aer04,NOAA Geophysical Fluid Dynamics Laboratory,10个模式,12个月 6)GFDL-CM2p5-FLOR-A06,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 7)GFDL-CM2p5-FLOR-B01,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 8)NASA-GMAO-062012,NASA Global Modeling and Assimilation Office,12个模式,9个月 9)NCEP-CFSv2,NOAA National Centers for Environmental Prediction,24/28个模式,10个月 除CFSv2模式外(只含降水和平均气温),其他模式数据变量包含降水、平均气温、最高气温和最低气温。每个模式集合成员每月的一个变量数据存放一个nc文件。各变量的气象要素、变量名、单位和物理意义如下: 1)平均气温,tref,K,月平均近地面(2m)平均气温 2)最高气温,tmax,K,月平均近地面(2m)最高气温 3)最低气温,tmin,K,月平均近地面(2m)最低气温 4)降水,prec,mm/day,月平均降水量。 该数据集在气候预报,水文预报驱动,量化模式预报不确定性方面得到广泛的应用。
叶爱中
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件