北极放大效应是 20 世纪最显著的气候变化现象。为理解北极放大效应对全球气候变化的响应及影响,科学家们开展了 CMIP6 子计划北极放大效应比较计划(PAMIP)。 中国科学院大气物理研究所的气候系统模式 FGOALS-f3-L 参加了上述计划并完成和提交了 8 组大样本集合试验。这些试验基于陆气耦合模式,分别考虑了不同下垫面强迫的组合在工业革命前情景、 现代气候情景和未来气候变化情景下,全球海温和海冰变化对大气环流及全球气候系统的影响。所有的试验外强迫固定在 2000 年,采用 100 个集合,从 2000 年 4 月 1 日开始积分到 2001 年 6 月 30 日。以上数据为进一步理解北极放大效应现象及其影响提供了新的科学数据和科学依据。
何编
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集包含了CMIP6中情景模式比较子计划(ScenarioMIP)的4种SSP情景组合。(1) SSP126:在SSP1(低强迫情景)基础上对RCP2.6情景的升级(辐射强迫在2100年达到2.6W/m2)。(2)SSP245:在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3)SSP370:在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4)SSP585:在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。 利用GRU数据对原始CMIP数据进行后处理偏差校正得到2046-2065年月尺度降水(pr)和气温(tas)预估后处理数据集, 参考期为1985-2014年。
叶爱中
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应,制备了青藏高原感热异常的全球模拟 敏感性试验数据集。 本数据包含三组敏感性试验:(1)全耦合模式CESM1.2.0中春季3-5月高原感热偏强cgcm_lar_mon_3-12-2.nc和高原感热偏弱cgcm_sma_mon_3-12-2.nc的敏感性试验;(2)单独大气环流模式CAM4.0中春季3-5月高原感热偏强cam_lar_mon3-8.nc和高原感热偏弱cam_sma_mon3-8.nc的敏感性试验。 包括:三维风、位势高度、气温、地表温度、比湿、感热通量、潜热通量、降水等常规变量 空间范围:全球模拟结果
段安民
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。本文利用Aqua和Terra星白天和晚上的四次观测值求得了年平均地表温度。先下载了分辨率为1公里的8天地表温度合成产品MOD11A2、MYD11A2,再通过MRT(MODIS Reprojection Tool)对两景数据进行了批量拼接和投影转化,最后使用IDL计算得到了2010年以后的年平均MODIS地表温度数据。
牛富俊
根据 CMIP5 3 个未来情景(RCP2.6、RCP4.5、RCP8.5)资料,获得了 2006-2100 世纪全球年平均气温的空间分布。经分析发现在 RCP2.6 情景下,年平均气温呈现增长的趋势,增长率介于 0.0 °C/decade 至 0.2 °C/decade 之间(P<0.05),其中,高纬度地区增长较快,介于 0.1 °C/decade 至 0.2 °C/decade之间。综合 21 世纪全球年平均气温空间和时间变化特征,年平均气温在不同的气候情景下都呈现出变暖的趋势,高纬度地区年平均气温呈现出更加敏感和快速的增长。
牛富俊
1990-2020年全球高分辨率模拟近海洋表层气温-降水-海温数据集来源于最新CMIP6计划。CMIP6是世界气候研究项目(WCRP)组织的第六次气候模式比较计划。原始数据来源于https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6。该数据集中包含了全球近海洋表层气温(tmp)、降水(pr)和海温(tos)数据。其中气温和降水数据包含CMIP6中情景模式比较子计划(ScenarioMIP)的4种不同实验场景的共享经济路径(shared socioeconomic pathway, SSP)与辐射强迫(representative concentration pathway, RCP)的矩形组合。(1) SSP126: 在SSP1(低强迫情景)基础上对RCP2.6情景的升级 (辐射强迫在2100年达到2.6W/m2)。(2) SSP245: 在SSP2(中等强迫情景)基础上对RCP4.5情景的升级 (辐射强迫在2100年达到4.5 W/m2)。(3) SSP370: 在SSP3(中等强迫情景)基础上新增的RCP7.0排放路径 (辐射强迫在2100年达到7.0 W/m2)。(4) SSP585: 在SSP5(高强迫情景)基础上对RCP8.5情景的升级(SSP585是唯一能使辐射强迫在2100年达到8.5 W/m2的SSP场景)。海温数据提供SSP126情景数据。
叶爱中
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
该数据集包含了黑河流域地表过程综合观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为RR-RSS460的接收端和BLS900的发射端,南塔为RR-RSS460的发射端和BLS900的接收端。观测时间为2021年1月1日至2021年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度13.0m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。 关于发布数据的几点说明:(1)上游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
1)数据内容:2001-2018年南极冰盖近地面月气温时空数据集。 2)数据来源及加工方法:利用中分辨率成像光谱仪(MODIS)地表温度测量数据,结合119个气象站的现场气温记录,利用神经网络模型重建了南极冰盖(AIS)近地面气温数据,分辨率为0.05°×0.05°,时间尺度为2001-2018。 3)数据质量描述:精度优于ERA5再分析资料。 4)数据应用成果及前景:该数据库可用于研究南极冰盖近地面气温的时空分布特征,研究SAM和ENSO等对南极气温年际变化的影响。此外,由于数值天气预报模式输入的独立性,该数据集有可能用于气候模式验证和数据同化。
张雪影
数据集为中国多情景多模式逐月平均气温数据,空间分辨率为0.0083333°(约1km),时间为2021年1月-2100年12月。数据为NETCDF格式。数据是根据IPCC耦合模式比较计划第六阶段(CMIP6)发布的全球>100 km气候模式数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成。数据采用IPCC最新发布的SSP情景(SSP119、SSP245、SSP585),每个情景包含三个GCMs(EC-Earth3、GFDL-ESM4、MRI-ESM2-0)气候数据,数据集包含的地理空间范围是中国主要陆地,不含南海岛礁等区域。单位为0.1℃。文件命名是GCM_SSP_tmp-30s-序号.nc,30s即0.0083333°,序号从1-40,序号1表示2021.1-2022.12,依次表示年份;以EC-Earth3_ssp119_tmp-30s-1.nc文件为例,表示SSP119情景下EC-Earth3气候模的1km分辨率2021.1-2022.12逐月均温数据,含24个图层。欲更深入的理解数据请参阅文献引用方式下的数据作者已发表的论文。
彭守璋
近地表气温是反映气候变化的重要物理参数。为了获得中国地区高时空分辨率的日数据(Tmax、Tmin和Tavg),我们充分分析了各种现有数据(再分析数据、遥感数据和原位数据)的优缺点。针对不同的天气条件建立了不同的Ta重建模型,并通过建立不同区域的修正方程进一步提高数据精度。最后,获得了1979 - 2018年中国逐日气温数据集(Tmax、Tmin和Tavg),空间分辨率为0.1°。 对于Tmax,使用原位数据的验证表明,均方根误差(RMSE)范围为0.86°C至1.78°C,平均绝对误差(MAE)范围为0.63°C至1.40°C,皮尔逊系数(R2)范围为0.96至0.99。Tmin的RMSE为0.78°C ~ 2.09°C, MAE为0.58°C ~ 1.61°C, R2为0.95 ~ 0.99。对于Tavg, RMSE范围为0.35°C ~ 1.00°C, MAE范围为0.27°C ~ 0.68°C, R2范围为0.99 ~ 1.00。此外,利用多种评价指标分析Ta的时空变化趋势,Tavg增加幅度大于0.0°C/a,与全球变暖的总体趋势一致。 综上所述,该数据集具有较高的空间分辨率和可靠的精度,弥补了之前在高空间分辨率下缺失的温度值(Tmax、Tmin和Tavg)。该数据集也为研究气候变化,特别是高温干旱和低温冷害提供了关键参数。
方舒, 毛克彪
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
本数据为基于WRF模式4.1.2版本和WRFDA同化系统4.1.2版本建立的中亚区域再分析资料,变量包含气温、气压、风速、降水、辐射。再分析的建立使用了循环同化的方式,每6小时使用3DVAR同化一次,同化的资料包括常规大气观测和卫星辐射资料。其中常规资料主要来源为GTS,来源包括人工站、自动站、探空和飞机报,观测要素包括气温、气压、风速和湿度。卫星观测包括反演数据和辐射数据,反演数据主要为极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到54km水平分辨率;辐射数据包含了MSU、AMSU和MHS等微波辐射和HIRS红外辐射数据。模拟采用双层嵌套的方式,水平分辨率分别为27公里和9公里,垂直方向共38层,模式层顶为10hPa。模式的侧边界条件由ERA-Interim再分析逐6小时的分析场提供,模式使用的物理方案为Thompson微物理方案,CAM辐射方案,MYJ边界层方案、Grell对流方案和Noah陆面模式。本资料覆盖区域包括中亚地区的哈萨克斯坦、塔吉克斯坦、吉尔吉斯斯坦、土库曼斯坦和乌兹别克斯坦五个国家以及里海、咸海、巴尔喀什湖、伊萨克湖等中亚地区的湖泊,可用于该区域的气候、生态、水文等方面的研究。以中亚地区台站观测的降水为参照,本数据的模拟效果和融合降水产品MSWEP相似,优于ERA5和ERA-Interim。
姚遥
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
中亚的生态系统脆弱,自然灾害频发,水资源短缺,冰川加速融化,是气候变化敏感区之一。在评估该地区的脆弱性、影响性和适应性时,急需高分辨率的气候预估数据集。为此,我们对来自CMIP5的三个偏差订正后的全球气候模式(MPI-ESM-MR、CCSM4和HadGEM2-ES),在中亚地区开展了9千米的动力降尺度,继而生产了一个中亚高分辨率气候预估数据集,将其命名为HCPD-CA(High-resolution Climate Projection Dataset in Central Asia)。它的历史时段是1986-2005,未来时段是2031-2050,排放情景是RCP4.5。这个数据集有4个静态变量和10个常被用于驱动生态和水文模型的气象要素。静态变量有地形高度(HGT, m)、土地利用类型(LU_INDEX, 21 categories)、陆地水体(LANDMASK, 1代表陆地, 0代表水体)和土壤类型(ISLTYP, 16 categories)。10个气象要素是日降水量(PREC,mm/day)、2米日平均/最高/最低温(T2MEAN/T2MAX/T2MIN,K)、2米日平均相对湿度(RH2MEAN,%)、10米日平均维向和经向风(U10MEAN/V10MEAN,m/s)、日平均向下短波/长波辐射(SWD/LWD,W/m2)和日平均地表气压(PSFC,Pa)。评估结果显示:这个数据产品在描述中亚各个气象要素的平均态上有很高的质量,这保证了其可用性。未来气候变化的主要特征是:升温剧烈(年均温升高1.62-2.02℃),向下短波和长波辐射显著增强,其他气象要素变化很小。HCPD-CA数据集可被用于评估未来气候变化对中亚的多方面影响,特别是在生态和水文系统上。
邱源
北极大河流域地面气象要素驱动数据集,包括地表日最大、最小及平均气温、日降水量、日均风速共5个要素。数据为NETCDF格式,水平空间分辨率约为0.1度(0.083°),范围包括了Yenisy、Lena、Ob、Yukon及Mackenzie流域,该数据可为北极大河流域水文过程模拟提供驱动数据。利用进一步质量控制的全球历史气候网数据集(GHCN)、全球日气象数据集(GSOD)、美国历史气候网数据集(USHCN)、加拿大气候数据集(AHCCD)、前苏联/俄罗斯气候数据集(USSR/Russia)的气象站点日观测数据,以ClimateNA(北美)、Worldclim(欧亚)数据作为背景场,采用薄板样条函数插值方法生成。
赵求东, 吴玉伟
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
This file contains the datasets used in a manuscript published in JGR Biogeosciences (Nieberding, F., Wille, C., Ma, Y., Wang, Y., Maurischat, P., Lehnert, L., and Sachs, T.: Winter daytime warming and shift in summer monsoon increase plant cover and net CO2 uptake in a central Tibetan alpine steppe ecosystem, Journal of Geophysical Research: Biogeosciences, 126, e2021JG006441, doi:10.1029/2021JG006441, 2021.). The manuscript contains all the details on how the data was generated and processed and the corresponding code was published in the supplementary material.
Felix Nieberding, 马耀明, Christian Wille, Lukas Lehnert, Yuyang Wang, Philipp Maurischat, Weiqiang Ma, Torsten Sachs
包括典型冰川(浪卡子县枪勇冰川:东经90.23°,北纬28.88°,海拔4898米,地表覆被为基岩;申扎县甲岗山冰川:东经88.69°,北纬30.82°,海拔5362米,地表覆被为碎石和杂草)2019-2020年自动气象观测数据。枪勇冰川记录包含1.5米温度、1.5米湿度、2米风速、2米风向、地表温度等数据。该自动气象站的数据采用USB离线获取的方式收集,初始记录时间为2019年8月6日19时10分,记录间隔为10分钟,2019年10月24日现场下载数据,未能连接上。2020年12月20日16:30到现场下载数据,仍然无法连接到电脑,于是将数采仪取回带到北京后将数据读出。数据未缺失,但风速数据在2020年7月14日9:30之后有问题(极可能是风向标被破坏所致)。甲岗山冰川初始记录时间为2019年8月9日15时00分,记录间隔为1分钟,电源主要是通过蓄电池和太阳能板来维持。该自动气象站无内部存储,数据每小时通过GPRS上传至HOBO网站,由专人定期下载。2020年1月5日23:34,1.5米温湿度传感器出现异常,温度和湿度数据丢失。2020年6月30日21:20之后所有数据完全无法通过网站下载。2020年12月19日将数采仪取回,下载到2020年6月23日19:43至9月25日3:36的数据。之后更换温湿度传感器,于12月21日12:27重新开始观测。目前数据由三段组成(2019.8.9-2020.6.30;2020.6.23-2020.9.25;2020.12.19-2020.12.29),经检查,数据有部分缺失,个别数据因记录电池电压,时间上有重复,需要核对。甲岗山冰川前端气象观测数据使用美国ONSET 公司HOBO RX3004-00-01型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。枪勇冰川前端气象观测数据使用美国ONSET 公司HOBO U21-USB型号自动气象站采集,温湿度探头型号为S-THB-M002 ,风速风向传感器型号S-WSET-B ,地温温度传感器型号S-TMB-M006 。
张东启
该数据集是来自CMIP5的3个全球气候模式(CCSM4、HadGEM2-ES和MPI-ESM-MR)的高分辨率动力降尺度结果,使用的区域模式是WRF,覆盖中亚五国,空间分辨率是9km,未来时段是2031-2050(包含1.5-2℃升温阈值对应的10年区间),历史参考时段是1986-2005,碳排放情景是RCP4.5,包含的变量是2米气温和降水(对流和非对流降水),时间分辨率是年。该数据可以用于中亚气候预估。
邱源
CMIP5(Coupled Model Intercomparison Project Phase 5)是气候耦合模型相互比较项目的第五阶段实验,提供了一个多气候模式环境,可用于预估“一带一路”关键节点区域未来气候变化,以应对关键节点区域的环境气候问题。本数据集以“一带一路”关键节点区域为研究区,对CMIP5的43个气候模式对研究区未来气候变化的预估能力进行评估,以模拟结果的均方根误差为标准,分别选取RCP4.5及RCP8.5情景下模拟能力最优的气候模式,对研究区进行气候模拟,得到研究区2006至2065年降雨量、气温的未来预估数据,并使用统计降尺度方法使数据集空间分辨率达到10km,时间分辨率为每月。每一期数据具有三个波段,分别是气温最大值、气温最小值和降雨量。本数据集中,降雨量单位为kg/(m^2*s),气温单位为K。本数据集为应对关键节点区域的环境气候问题提供数据基础。
李炘妍, 凌峰
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
丁利荣, 周纪, 王伟, 马晋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
太阳总辐射和直接辐射采用国产辐射表(TBQ-4-1,TBS-2,China)测量,温湿度采用自动气象站(HOBO weather station, Model H21, Onset Company, USA)测量。本数据为太阳辐射和气象要素数据,包括太阳总辐射和直接辐射,波长范围270-3200nm,单位W/m2。温湿度和水汽压单位分别为℃、%、hPa。太阳辐射和气象要素数据来源于数据提供者的测量。数据覆盖时间为2013-2016年。该数据集可以用于中国亚热带地区的太阳辐射及其变化机制等相关研究。
白建辉
This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.
Xuelong Chen
1)数据内容:包含中亚地区,区域范围:30°N~60°N,40°E~90°E; 2)数据来源:对CMIP数据集进行加工,采用双线性插值方法将不同分辨率模式数据插值到0.5°× 0.5°,CRU观测数据1901年——2014年; 3)数据质量:时间长度较长,数据质量良好,缺测值统一用999标识; 3)数据应用成果集前景:数据已用于进行对中亚地区温度模拟能力评估,通过计算并分析中亚地区的温区的域平均、相对误差、均方根误差、泰勒图、EOF分解、季节变化等评估气候系统模式模拟中亚地区历史气候变化的能力。 4) 数据可靠性:通过对比分析观测和模拟资料的年变化,数据结果均呈显著的增温趋势,通过对数据结果进行相关性检验,均通过99%信度检验。同时,CMIP计划数据和CRU数据也是较为常用的数据集,在很多进行气候变化的研究中,也经常采用这样的数据。
马金玉
本数据为中亚大湖区2017年逐6小时分辨率常规和卫星资料。其中常规资料包含中亚大湖区及其周边地区(中国、哈萨克斯坦、吉尔吉斯斯坦、土库曼斯坦、塔吉克斯坦、乌兹别克斯坦、阿富汗、俄罗斯、伊朗、巴基斯坦、印度等)的地面台站和探空站点观测,观测要素包含气温、气压、风速和湿度,每个时次的站点数平在600个左右,站点间距离在10-100km之间;卫星资料来源于极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到30km水平分辨率。云导风通过追踪示踪云的移动来估计风速,由示踪云的高度确定风场高度。本数据全部来源于全球电信系统Geostationary Tether Satellite(GTS),经过质量控制剔除了质量较差的观测资料。该数据可应用于中亚大湖区的资料同化,也可用于检验和评估模式对中亚大湖区的数值模拟。
姚遥
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
为了了解北半球气温变化的时空变化特征,该研究用 CRU(Climatic Research Unit)网格数据计算了 30 年(1971-2000)年平均气温的空间分布。年平均气温随着纬度的升高而降低,变化范围从大于 30 °C 到小于-25 °C。在相同纬度地区,高海拔地区(比如青藏高原、蒙古高原和西西伯利亚山区)的年平均气温凸显低温的趋势。同时我们完成了分辨率为0.5 °× 0.5 °北半球1901-2016年间的年平均气温变化趋势分布图。
尹国安, 石亚亚
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
本数据集包含从2017年1月1日到2018年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
王君波, 邬光剑
该数据集记录了阿里荒漠环境综合观测研究站,2017-2018年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据
赵华标
数据内容:本数据集包括1998-2017年青藏高原逐年的气温和降水格点数据,是进行气候变化及其对生态环境影响的基础性数据。数据来源及加工:源数据来自基于国家气象信息中心基础资料专项最新整编的中国地面高密度台站(2400多个国家级气象观测站)的气温和降水日值资料,对缺测站点进行预处理之后,利用ANUSPLIN软件的薄盘样条法 (TPS,Thin Plate Spline)进行空间插值,生成青藏高原及200km缓冲区空间分辨率1km的年值格点数据。数据应用:该数据可用于气候变化对生态环境影响的研究中。
丁明军
试验所采用的区域气候模式(RCM)是国际理论物理中心的RegCM4 (Giorgi et al., 2012),模拟区域为联合区域气候降尺度协同试验第二阶段东亚(CORDEX Phase II East Asia)的推荐区域,覆盖整个中国及其周边的东亚地区。模式的水平分辨率为25 km,模式垂直方向是18层,层顶高度为10 hPa,模式的参数设置按照Gao et al. (2016, 2017),并根据韩振宇等 (2015) 更新了中国土地覆盖数据,以可以地描述下垫面植被状况。RegCM4所需的初始和侧边界条件由CMIP5全球气候模式HadGEM2-ES的模拟结果提供(RCP4.5情景),数据主要包含气温和降水要素。
高学杰
该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
数据内容:本数据集包含3种分辨率(0.25度、0.75度和2度)青藏高原多年平均月温度递减率(单位:℃/m)网格数据 数据来源及加工方法:基于高程标准差和相关性阈值动态检测不同分辨率网格内MODIS地温-海拔样本的有效性来获得局部可靠的温度递减率 数据质量描述:基于青藏高原113个站点的1980-2014年间日平均气温观测,对ERA-Interim气温数据应用0.75度气温递减率产品进行日平均气温的空间降尺度,使其验证误差(均方根误差)由~4℃降低到~2℃。 数据应用成果及前景:该数据集可应用于多种再分析资料的气温降尺度。
张凡, 张宏波
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
该数据集包含了2018年8月31日至2018年12月24日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度) 、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件