该数据集是从中国科学院青藏高原研究所开发的一套中国区域近地面气象与环境要素再分析数据集中提取得到。该数据集是以国际上现有的 Princeton 再分析资料、GLDAS 资料、GEWEX-SRB 辐射资料,以及 TRMM 降水资料为背景场,融合了中国气象局常规气象观测数据制作而成。其时间分辨率为 3 小时,水平空间分辨率 0.1°,包含近地面气温、近地面气压、近地面空气比湿、近地面全风速、地面向下短波辐射、地面向下长波辐射、地面降水率,共 7 个要素(变量)。
王旭峰
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2021年10月。
王旭峰
基于MODIS 2000年至2020年生长季平均的NDVI与EVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。MOD13Q1 V6产品提供逐像元的植被指数。一个是归一化差值植被指数(NDVI),又称连续性指数,是由现有的国家海洋和大气管理局高级甚高分辨率辐射计(NOAA-AVHRR)导出的NDVI。第二个植被层是增强植被指数(EVI),该指数将冠层背景变化最小化,并在浓密的植被条件下保持敏感性。EVI还使用蓝色波段去除烟雾和亚像素薄云造成的残留大气污染。MODIS NDVI和EVI产品是由大气校正的双向地表反射率计算而来的。该数据空间分辨率为250m。
王旭峰
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
闫世勇
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。采用了CMIP6提供的13个模型4种情景输出的降水与气温数据,对未来降水与气温数据进行后处理,后处理后的降水与气温驱动水文模型,模拟出2046-2065年水循环过程,给出全青藏高原空间0.1度日尺度径流未来可能时空分布。
叶爱中
基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
汪涛, 刘丹, 魏建军
青藏高原气溶胶光学特性地基观测数据集采用Cimel 318太阳光度计连续观测获得,涉及珠峰站和纳木错站共两个站点。这些产品是经过云检测之后的结果。数据覆盖时间从2021年1月1日到2021年12月31日,时间分辨率为逐日。太阳光度计在可见光至近红外设有8个观测通道,中心波长分别为:340、380、440、500、670、870、940和1120 nm。仪器的视场角为1.2°,太阳跟踪精度为0.1°。根据太阳直接辐射可获得6个波段的气溶胶光学厚度,精度估计为0.01-0.02。最终采用AERONET统一反演算法,获得气溶胶光学厚度、Ångström指数、粒度谱、单次散射反照率、相函数、复折射指数和不对称因子等。
丛志远
该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
2000-2020年三极地区0.1º气溶胶光学厚度数据集(也称为“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集),结合Merra-2模式数据与MODIS卫星传感器AOD制作,数据覆盖时间从2000年到2020年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
基于12套过去千年温度资料(包括2套青藏高原夏季温度格点重建数据集、2条北极温度重建序列、1套北极格点温度重建序列、6套全球温度格点重建数据集,以及1套过去千年全球再分析数据集),利用最优信号提取法重建了过去千年(900–1999 CE)青藏高原和北极夏季年分辨率气温变化序列。青藏高原的选取范围是(27°N–36°N, 77°E–106°E),北极的选取范围是(60°N–90°N)。重建目标是仪器观测数据CRUTEM4v数据集6月至8月夏季平均气温基于1961–1990 CE时段的异常值。数据可用于研究过去千年青藏高原和北极的温度变化规律及机理。
史锋
本数据集包括1995,2000,2005,2010和2015年等5期湖泊透明度数据。数据源为:Landsat 5,Landsat 7和Landsat 8。使用方法:利于实测光谱反射率,在分析光谱反射率与同步测量的透明度之间的关系的基础上,采用半经验方法选择最佳波段组合,建立青藏高原湖泊透明度算法,获得水体透明度。通过实测点的验证表明水体的透明度估算相对误差在35%。
宋开山
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: Distributed Time—Variant Gain Hydrological Model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上,实际蒸发模拟同气象局公开的站点观测基本一致。模型模拟出1998-2017年水循环过程,经过验证之后,给出全青藏高原空间0.01度日尺度实际蒸发(包含土壤蒸发和植物蒸腾)时空分布。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
《2015年第三极部分湖泊水体细菌后处理产品和常规水质参数》数据集收集了2015年期间青藏高原地区部分湖泊水体采样细菌分析结果和常规水质参数。通过整理归纳汇总得到2015年第三极部分湖泊水体细菌后处理产品,数据格式为excel,方便用户查看。样品由计慕侃老师采集于2015年7月1日至7月15日,包含28个湖泊(巴木错,白马纳木错,班戈错(盐湖), 班公错,崩错,别若则错,错鄂(申扎),错鄂(那曲),达瓦错,当穹错,当惹雍错,洞错,鄂雅错,公珠错,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛错,朋彦错(盐湖),蓬错,枪勇错,色林错,吴如错,物玛错,扎日南木错,扎西错),共计138个样品。其中湖泊水体细菌DNA提取方法如下:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal,序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后移除仅在数据库中出现一次的序列。常规水质检测参数包括:溶解氧、电导率、溶解性总固体、盐度、氧化还原电位、不挥发有机碳、总氮等。其中,溶解氧采用电极极谱法;电导率采用电导率仪;盐度采用盐度计;溶解性总固体采用TDS测试仪;氧化还原电位采用ORP在线分析仪;不挥发有机碳采用TOC分析仪;总氮采用分光光度法分别得到水质参数结果供参考。
叶爱中
典型年三极冰雪微生物后处理产品收集了2010-2018年期间南北极以及青藏高原地区冰川、冰川雪和冰里采样细菌分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极和青藏高原地区冰川雪和冰里原核为刘勇勤老师实验组在2010-2018年间从NCBI数据库收集的细菌16S核糖体RNA基因序列。收集的序列通过使用DOTOUR软件计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平;青藏高原冰川采集时间为2010-2018年间,包含刘勇勤老师实验组分离的青藏高原7条冰川(珠峰东绒布冰川,天山一号冰川,古里雅冰川,老虎沟冰川,木孜塔格冰川,七一冰川和玉珠峰冰川),向述荣老师分离的马兰冰川和张新芳老师分离的若岗日冰川的细菌16S核糖体RNA基因序列。冰川样品采集后带回北京青藏高原院研究所生态实验室和兰州冰冻圈国家实验室,涂布平板后于不同温度下(4-25摄氏度)培养20天-90天并挑取单菌落纯化。分离的细菌提取DNA后以27F/1492R引物扩增16S核糖体RNA基因片段,并使用Sanger法测序。16S核糖体RNA基因序列通过“Classifier”软件与RDP数据库进行比对,在可靠性大于80%的情况下鉴定到属一级水平。
叶爱中
典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
“亚洲水塔”青藏高原(TP)的降水在区域水和能源循环中发挥着关键作用,对下游国家的水资源供应有重要影响。气象站点所获取的降水信息通常被认为是最准确的,但在地形复杂、环境恶劣的青藏高原中,气象站数据却十分有限。卫星和再分析降水产品可以为地面测量提供补充信息,特别是在大面积测量不足的区域。在这里,我们通过使用人工神经网络 (ANN) 和环境变量(包括海拔、地表压力和风速)确定各种数据源的权重来最优地融合站点、卫星和再分析数据。在 1998-2017 年期间,以每日时间尺度和 0.1° 的空间分辨率生成了一个多源降水 (MSP) 数据集横跨青藏高原。与其他四颗卫星产品相比,MSP与标准观测的日降水相关系数(CC)最高(0.74),均方根误差第二低,表明MSP的质量和数据合并的有效性方法。我们使用分布式水文模型进一步评估了青藏高原长江和黄河源头测量不佳的不同降水产品的水文效用。在 2004-2014 年期间,MSP 实现了每日流量模拟的最佳 Nash-Sutcliffe 效率系数(超过 0.8)和 CC(超过 0.9)。此外,基于多重搭配评估,MSP 在未测量的西部 TP 上表现最好。该合并方法可应用于全球其他数据稀缺地区,为水文研究提供高质量的降水数据。整个 TP 的左下角的经纬度、行数和列数以及网格单元信息都包含在每个 ASCII 文件中。
洪仲坤, 龙笛
针对青藏高原泛三江并流区的17.9万km2的区域,通过Sentinel-1升降轨,以及Palsar-1升轨三种SAR数据进行InSAR变形观测,根据获取的InSAR变形图像,结合地貌和光学影像特征进行综合解译。共识别得到海拔4000m以下的活动性滑坡949处。需要注意的是,因不同SAR数据的观测角度、敏感度和观测时相的差异,同一滑坡用不同数据解译存在一定的差异,在滑坡的范围、边界方面需要借助地面和光学影像进行修正。滑坡InSAR识别比例尺的概念与传统空间分辨率不同,主要依靠变形强度,因此一些规模较小,但与背景相比变形特征突出,整体性强,与地物具有逻辑空间关系的滑坡也能得以解译(配合SAR的强度图、地形阴影图、光学遥感影像为地物参照)。本次最小解译区域可达几个像素,如参考怒江沿江公路解译了一处只有4个像素的公路边坡滑坡。
姚鑫
本数据是研究团队综合利用Sentinel-1 SAR数据,AMSR-2微波辐射计数据以及MODIS LST产品所生产的青藏工程走廊区域高分辨土壤冻融数据集。基于新提出的算法,本产品提供月尺度100m空间分辨土壤冻融状态检测结果,并通过气象站点和土壤温度站点进行精度验证。基于青藏工程走廊地区的4个气象站点进行精度验证,结果表明基于升轨和降轨Sentinel-1的土壤冻融检测结果的整体准确率分别为84.63%和77.09%。基于那曲土壤湿度/温度监测站点进行精度验证,升轨和降轨结果的平均整体精度为78.58%和76.66。该产品弥补了传统土壤冻融产品空间分辨率不足(>1km)的问题,为青藏工程走廊区域高分辨率土壤冻融监测提供了可能。
周欣, 刘修国, 周俊雄, 张正加, 陈启浩, 解清华
基于长时间序列MODIS积雪产品,采用隐马尔可夫随机场(Hidden Markov Random Field, HMRF)建模框架,制备了青藏高原2002-2021年空间分辨率为500 m的逐日无云积雪数据集。该建模框架将MODIS积雪产品的光谱信息、时空背景信息,以及环境相关信息以最优形式进行整合,不仅填补了云层遮挡引起的数据空缺,而且提高了原始MODIS积雪产品的精度。特别地,本数据集在环境背景信息中引入了太阳辐射能量对积雪分布的影响,有效改进了地形复杂山区的积雪识别精度。通过与实测雪深、Landsat-8 OLI识别的积雪分布对比分析,本数据集精度依次为98.31%和92.44%,并且在积雪转化期、海拔较高、太阳辐射较多的阳坡提升效果显著。本数据集改善了原始MODIS积雪产品时空不连续和在地形复杂山区精度较低的问题,能为青藏高原气候变化研究和水资源管理提供重要的数据基础。
黄艳, 许嘉慧
1978-2016青藏高原湖冰物候数据集包含青藏高原132个湖泊(面积大于40平方公里)1978-2016年的湖冰物候(开始结冰日、完全结冰日、开始融化日、完全融化、冰期、完全结冰期)。数据集利用模型和遥感结合的方式获取物候信息,首先基于MOD11A2提取的全湖平均湖面温度率定改进的湖泊半物理模型(air2water)生成日尺度长时序湖面温度序列,再利用MOD10A1雪覆盖产品获取湖冰物候提取的温度阈值。与现有研究结果和数据集对比,相关性(R方)高于0.75。该数据集结合遥感技术和数值模型的优势,为大时空尺度上分析青藏高原湖泊水-气交换、水热平衡及湖泊中生物化学过程对气候变化的响应提供支撑。
郭立男, 吴艳红, Zheng Hongxing, 张兵, 迟皓婧, 范兰馨
本数据库包括青藏高原坡度、坡向及数字高程模型数据(DEM)。数据来源于地理空间数据云网站下载的分辨率为30m*30m的数值高程模型数据,利用Arcgis软件的表面分析功能,提取出了青藏高原的坡度和坡向信息。该数据经多人复查审核,其数据完整性、位置精度、属性精度均符合标准,质量优良可靠。该数据作为工程地质条件之一,是进行青藏高原重大工程扰动灾害、重大自然灾害的发育规律研究及易发性、危险性及风险分析的基础数据。
祁生文
流域内的水量平衡可以通过单个湖泊的水位波动体现,而区域湖泊水位的一致性波动则可以反映区域有效水分的变化。以往的研究主要通过分析湖泊沉积物的多代用指标来重建过去的有效水分,缺少对区域有效水分变化的定量研究。青藏高原及东中亚地区典型湖泊区域全新世有效水分连续模拟结果数据集是基于湖泊能量平衡模型、湖泊水量平衡模型及瞬态气候演变模型,以构建的虚拟湖泊为载体,连续且定量地展示了青藏高原青海湖、沉错、班公错等以及东中亚地区青土湖、呼伦湖、岱海等湖泊区域全新世有效水分变化。模拟结果为探究千年尺度上湖泊演化过程提供了新的视角。
李育
该数据为2020年西藏26个湖泊70个点位浮游植物数据,采样时间为8-9月,采样方式为常规浮游植物采样方式,样品采集1.5升,后经鲁哥氏液固定,静止沉淀后虹吸浓缩后,利用倒置显微镜镜检结果。数据包括硅藻、绿藻、蓝藻、甲藻、裸藻、隐藻、棕鞭藻、黄藻、褐藻和轮藻等10个门类,共计77种/属不同浮游植物的密度数据。该数据为原始数据,未经过处理,单位为个/L。该数据可以用于表征这些湖泊敞水区浮游植物的组成、丰度,也可用于计算这些湖泊中浮游植物群落的多样性。
张民
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
湖泊汇集上游流域的径流及其携带的泥沙和营养物质,是流域中物质迁移的重要“归宿”,因此湖泊水体和沉积物属性在很大程度上受湖泊流域的属性(如湖泊上游的气候、地形和植被条件)影响。本数据集根据数字高程模型提取青藏高原上1525个湖泊(面积从0.2到4503平方公里)的流域范围,计算了湖泊水体、地形、气候、植被、土壤/地质和人类活动等6方面的721个属性,是首套青藏高原湖泊流域属性数据集,可为青藏高原湖泊(特别是缺资料湖泊)研究提供基础数据。
刘军志
本数据为青藏高原1:25万重大工程扰动灾害数据。对于灾害解译范围,线路工程(国道、高速、铁路、电网工程)及水电工程,以工程两侧第一分水岭为界;矿山、油田和口岸工程,以距离工程1km为界。工程扰动灾害划分为两类:①由工程建设诱发的滑坡、崩塌、泥石流灾害;②可能影响工程的自然灾害,规定上述解译范围内的所有自然灾害均属于第②类工程扰动灾害。其数据包含滑坡的位置、长、宽、高差、分布高程、成因类型、诱发因素、发生时间、岩性等要素及灾害相关工程及工程建设年份等。依据Google earth影像及1:50万地质图解译全区工程扰动灾害,共解译了6176个灾害点;主要利用Google earth进行扰动灾害解译,同时结合野外考察验证解译结果,利用ArcGIS生成灾害分布图件;数据来源于Google earth高分辨率影像,原始数据精度高,在灾害文件生成过程中严格按照解译规范,并有专人审查,数据质量可靠;依据所收集数据可进行研究区灾害风险分析,为已建工程的顺利运行和未建/在建线路工程的建设提供理论指导。
祁生文
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
本数据包含国内青藏高原范围内的1:400万精度的断裂数据,属性表字段包括断裂名称、断裂长度、走向、倾向、断层性质、古地震等。该数据来源于地震局,后来通过大量查阅断裂相关的文献,又在原始数据的基础上添加了断裂的活动年代这一属性。原始数据资料精度可靠,并有专人负责质量审查;经多人复查审核,其数据完整性、位置精度、属性精度均符合有关技术规定和标准的要求,质量优良可靠。该断裂数据可为青藏高原区域的一些断裂相关的研究工作提供基础数据支撑。
祁生文
冰川区域内的近地表气温变化和温度预测的可靠性是水文和冰川学研究的重要问题,由于缺乏高海拔观测,这些问题仍然难以捉摸。本研究基于从 6 个不同流域的 12 个自动气象站、43 个温度记录仪和 6 个国家气象站收集的 2019 年气温数据,展示了不同冰川/非冰川地区的气温变化,并评估了不同温度预测的可靠性,以减少消融估计中的误差。结果表明,不同气候背景下温度递减率 (LRs) 的空间异质性很大,最陡峭的 LRs 位于寒冷干燥的青藏高原西北部,最低的 LRs 位于受暖湿季风影响的青藏高原东南部。青藏高原西部和中部高海拔冰川区的近地表气温受下降风的影响较小,因此可以从冰川外的记录中线性预测。相比之下,青藏高原东南部温带冰川上盛行的局地降风风对环境气温的降温作用明显,因此,冰川上气温明显低于同等海拔的非冰川地区。因此,来自低海拔非冰川站的线性温度预测可能导致正度日数高估 40%,特别是对于流线距离长且冷却效果显着的大型冰川。这些发现提供了值得注意的证据,表明在估算青藏高原冰川融化时,应仔细考虑不同气候条件下高海拔冰川的不同 LR 和相关冷却效应。
杨威
在共享社会经济路径(SSP)5-8.5情景下4个CMIP6模式2015-2100年的模拟结果。选取标准为这四个模式水平分辨率均小于1°,且均有日数据。从原始模拟结果中提取了8个代表极端气候的变量,分别是日最高气温的极高值(TXx)、日最低气温的极高值(TNx)、日最高气温的极低值(TXn)、日最低气温的极低值(TNn)、连续干旱日数(CDD)、连续湿润日数(CWD)、降水强度(SDII)和强降水日数(R20mm)。数据时间分辨率为年,空间范围为青藏高原地区,时间范围为2015-2100年。
张冉
该数据集是刘勇勤课题组从2010年以来多次野外采样积累的数据汇总而成,包括青藏高原12个冰川的冰芯和雪坑微生物丰度数据(5409条记录)和38个冰川的溶解性有机碳和总氮数据(2532条记录,包括冰芯、雪坑、表面冰、表面雪和冰前径流等生境)。所采样的冰川覆盖范围广,气候条件多样,多年平均气温从-13.4℃(古里亚冰川)到2.9℃(朱溪沟冰川),多年平均降水量从76.9毫米(15号冰川)到927.8毫米(24K冰川)。这些数据可为研究冰川碳氮循环和全球变暖背景下冰川退缩对下游生态系统的影响提供基础数据。
刘勇勤
1) 青藏高原地面气象驱动数据集(2019-2020),包括地表温度(Land surface temperature)、地表降水率(Mean total precipitation rate)、下行短波辐射(Mean surface downward long-wave radiation flux)以及下行长波辐射(Mean surface downward short-wave radiation flux)4个气象要素。 2) 该数据集以ERA5再分析数据为基础,辅以MODIS NDVI、MODIS DEM、FY3D MWRI DEM数据产品。通过多元线性回归方法对ERA5再分析数据进行降尺度处理,最后通过重采样生成。 3) 青藏高原地面气象驱动数据集(2019-2020)各数据要素均以TIFF格式存储,时间分辨率包括(每日、每月、每年),空间分辨率统一为0.1°×0.1°。 4) 本数据方便不会使用.nc格式的此类同化数据的科研人员和学生使用。在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。
朱立平, 杜宝隆
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
本数据集为覆盖全球范围考虑积融雪过程的标准化水分距平指数(SZIsnow),该干旱指数数据集由GLDAS-2驱动产生。该指数考虑了与干旱发展相关的诸多水文过程,尤其是积融雪过程。目前许多干旱指数忽略了积融雪过程,导致不能准确地对积雪地区干旱的发生和发展进行评估,该指数很好地弥补了这一不足,解决了干旱物理机制解析与多时间尺度分析无法兼顾,不同类型干旱难以统一评估的两个难题。经验证该指数能够很好地对全球不同地区的历史干旱时间进行定量描述,其优异表现在高纬度和高海拔地区更为突出。因此本数据集可以为干旱的监测评估以及干旱相关研究提供科学参考。
吴普特, 田磊, 张宝庆
最大冻结深度是季节冻土热状态的重要指标,由于全球变暖,季节冻土的最大冻结深度不断下降。发布了中国西北五省、西藏和周边地区1961-2020年每10年的最大冻结深度数据集,空间分辨率为1km。该数据集是采用2001-2010年的最大冻结深度实测数据和空间环境变量构建的支持向量机回归模型,模拟了1961-2020年中国西北、西藏和周边地区的最大冻结深度。验证结果表明:支持向量机回归模型具有良好的空间泛化能力,最大土壤冻结深度的预测值和实测值之间具有较高的一致性,1980s、1990s、2000s和2010s四个时期模拟结果的决定系数分别为0.77、0.83、0.73和0.71。预测结果的百分位区间表明,模拟结果具有良好的稳定性。基于该数据集,发现我国西北地区最大土壤冻结深度不断下降,其中,青海的下降速率最快,平均每十年下降0.53 cm。该数据集为中国西北、高山亚洲和第三极等地区季节冻土的研究提供数据支持。
王冰泉, 冉有华
温湿指数(THI)1973年由奥利弗(J.E.Oliver)提出,其物理意义是湿度订正以后的温度。它考虑了温度以及相对湿度对人体舒适度的综合影响,是衡量区域气候舒适度的一项重要指标。在参考已有关于生理气候评价指标分级标准的基础上,结合青藏高原自然地理特征,面向青藏高原人居环境适宜性评价需求,研制了青藏高原(3000米以上)温湿指数及其适宜性分区结果(包括不适宜、临界适宜、一般适宜、比较适宜与高度适宜)。
封志明, 李鹏, 林裕梅
在国家重点研发计划“冰冻圈和极地环境变化关键参数观测与反演”第一课题“冰冻圈关键参数多尺度观测与数据产品研制“的资助下,中国科学院青藏高原研究所张寅生课题组发展了青藏高原地区降尺度雪深产品。青藏高原积雪深度降尺度数据集来源于积雪概率数据和中国雪深长时间序列数据集的融合结果,采用新发展的亚像元时空分解算法对原始0.25度的积雪深度数据进行时空降尺度,得到0.05度逐日积雪深度产品。通过降尺度前后的雪深产品精度评估的对比,发现降尺度后雪深产品的均方根误差由原产品的2.15 cm减少到了1.54 cm。 青藏高原积雪深度降尺度数据集(2000-2018)的产品信息细节如下。投影为经纬度,空间分辨率0.05 度(约5公里),时间范围为2000年9月1日-2018年9月1日,为Tif格式文件,命名规则为:SD_YYYYDDD.tif,其中YYYY代表年,ddd代表儒略日(001-365)。积雪深度(SD),单位:厘米(cm)。空间分辨率为0.05度。时间分辨率为逐日。
闫大江, 马宁, 张寅生
本数据为降水数据,是热带降水测量任务TRMM(Tropical Rainfall Measuring Mission)逐月降水产品TRMM 3B43,融合青藏高原为主主体的范围区域(25~40°N;73~105°E)内332个气象站点降水数据,该气象站降水数据源自中国气象局国家气象信息中心。本数据集采用站点3°插值优化变分订正方法计算获得的再分析数据集。时间跨度为1998年1月至2018年12月的月样本资料,空间覆盖范围是25~40°N;73~105°E,空间分辨率为1°*1°。
徐祥德, 孙婵
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
冰川是西部山区河流的补给水源,是西部地区人们赖以生存、发展工、农、牧业的最基本要素之一。冰川既是宝贵的淡水资源,又是山区形成严重自然灾害的发源地,如突发性冰湖溃决洪水、冰川泥石流和冰崩等。冰川水文监测是研究冰川融水特征、冰川融水对河流的补给作用、冰川表面消融与径流关系、冰面产流和汇流过程、及冰川和季节性积雪融水诱发的洪水和泥石流计算和预报的基础。目前主要以在流域出山口建立水文监测站,开展实地监测为主。本数集为4条代表性冰川的月值径流数据 (珠西沟冰川、帕隆4号冰川、老虎沟冰川、七一冰川)。通过雷达或压力式水位计测量冰川融水相对水位变化,通过实地径流断面测流与相对水位建立径流曲线,计算每条冰川的径流总量,径流单位为m3/s。
杨威, 李忠勤, 王宁练, 秦翔
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
湖泊盐度是湖泊水环境的重要参数,是水资源的重要体现,也是气候变化研究的重要组成部分。本数据基于实测获取的青藏高原湖泊盐度数据,其中盐度以实用盐度单位(psu)进行表征,该盐度值使用电导率传感器测量获得的比电导率(SpC)转换得到。使用Arcgis软件将测量数据转化为空间矢量.shp格式,得到实测盐度空间分布数据文件。该数据可作为地区湖泊环境、水文、水生态、水资源等科学研究的基础数据以及相关研究参考。
朱立平
本数据集提供青藏高原124个湖泊实测水质参数,湖泊总面积为24,570 平方千米,占青藏高原湖泊总面积的53% 。实测湖泊水质参数包括水温、盐度、pH、叶绿素a浓度、蓝绿藻(BGA)浓度、浊度、溶解氧(DO)、荧光溶解有机物(fDOM)和水体透明度(SD)。测量方法中,盐度使用电导率是传感器测量获得的比电导率(SpC)转换得到,叶绿素a和蓝绿藻(BGA)浓度使用总藻类荧光传感器测量,温度使用温度传感器测量,pH使用pH传感器测量,溶解氧(DO)使用光学溶解氧传感器测量,fDOM使用荧光传感器测量,单位是硫酸奎宁单位(QSU),浊度使用浊度传感器测量,以Formazin比浊法为单位(FNU)。上述传感器测量获取的参数均使用YSIEXO或HACH多参数水质仪测量,测量时,传感器位于湖面以下约10-20厘米处。湖泊水体透明度使用塞氏盘测量法进行测量。
朱立平
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
邬光剑
该数据集是2015年青藏高原基础数据,原始数据来源于国家基础地理信息中心,通过分幅数据拼接裁剪,形成青藏高原区域的数据。数据内容包括1:100万省级行政区划、1:100万道路、1:25万水系的地理图层。行政区划数据属性包括NAME、CODE、pinyin(名称、代码、拼音);道路数据属性包括:GB、RN、NAME、RTEG、TYPE(基础地理信息分类码、道路编码、道路名称、道路等级、道路类型);水系数据属性包括:GB、HYDC、NAME、PERIOD(基础地理信息分类码、水系名称代码、名称、时令)。
杨雅萍
该数据集是基于16个动态全球植被模式(TRENDY v8)在S2情景下(CO2+Climate)模拟的NPP,表征生态系统净初级生产力。数据来源于Le Quéré et al. (2019),具体信息和方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域,空间上用最近邻方法插值到0.5度,时间上保持了原有的月尺度。该数据集是标准的模型输出数据,常被用作评定总初级生产力的时间和空间格局,且与其它遥感观测、通量观测等数据进行比较和参考,具有实际意义和理论价值。
Stephen Sitch
地表太阳入射辐射(Surface Solar Irradiance,SSI)是FY-4A L2定量反演产品之一,覆盖范围为全圆盘,无投影,空间分辨率为4km,时间分辨率可达15min(20180921开始全天共40个观测时次,除每个整点时次的观测外,每3hr整点前后15min各有一次观测),光谱范围为0.2µm~5.0µm。产品输出要素包括总辐照度、水平面直接辐照度、散射辐照度,有效测量范围为0~1500 W/m2。FY-4A SSI产品在覆盖范围、空间分辨率、时间连续性、输出要素等方面质的提升为进一步开展其在太阳能、农业、生态、交通等专业气象服务中的精细化应用提供了可能。目前研究结果表明,与地基观测相比,FY-4A SSI 产品在中国地区的整体相关性在0.75以上,可用于中国地区太阳能资源评估。
申彦波, 胡玥明, 胡秀琴
青藏高原1km分辨率风能资源数据是采用中国气象局风能资源数值模拟评估系统(WERAS/CMA)研制的,该系统包含典型地形分类模块、中尺度模式WRF和CALMET动力诊断模式。首先从历史上出现过的天气类型中随机抽取典型日进行逐小时风速模拟,再根据天气型出现的频率统计分析得到风能资源的气候平均分布。本数据集包括青藏高原风速和风功率密度,风速的数据精度为0.01m/s,风功率密度的数据精度为0.01W/m2,数据的垂直高度为100米。数据经过了气象站观测资料的检验和订正,主要用于风能资源详查和风电场宏观选址。该数据为2008-2012年全国风能资源详查和评价项目产出数据(项目经费2.9亿),之后成为风能资源相关研究的基础数据,近期财政部没有计划投资再延长这个数据集。
朱蓉, 孙朝阳
汞是一种全球性污染物。青藏高原毗邻当前大气汞排放最严重的地区南亚,可能受到长距离传输的影响。利用冰芯和湖芯可以很好地重建大气汞传输和沉降历史。基于青藏高原和喜马拉雅山南坡8支湖芯和1支冰芯重建了工业革命以来的大气汞沉降历史。本数据集包含青藏高原纳木错、班公错、令戈错、枪勇湖、唐古拉湖和喜马拉雅山南坡Gosainkunda湖、Gokyo湖和Phewa湖的8支湖芯数据,各拉丹冬1支冰芯数据。冰芯数据分辨率为1年,湖芯数据2~20年,数据包含汞浓度数据和沉降通量数据。
康世昌
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
牛犇, 张宪洲
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
该数据集包含纳木那尼冰川(北支)2008-2018年的年物质平衡数据,侧碛和末端自动气象站2011-2019年日气象数据及冰面上2018-2019年的月均气温和相对湿度数据。 冰川物质平衡数据观测时间为每年9月底或10月初,采用冰面测杆和雪坑结合的方法进行观测,获取测杆点的物质平衡数据,然后计算整条冰川的年净物质平衡(具体方法见参考文献)。 2台自动气象站(AWSs,Campbell公司)分别安装在纳木那尼冰川侧碛和末端。AWS1观测时间为2011年10月1日-2018年11月30日,观测数据包括气温(℃)、相对湿度(%)、太阳辐射(W/m2),仪器半小时记录一次气象资料。AWS2观测时间为2010年10月19日-2018年11月30日,观测数据包括风速(m/s)、大气压(hPa)、降水 (mm),仪器每小时记录一次气象资料。首先剔除原始记录中的少量异常数据,然后计算这些参数的日值。数据质量方面:原始数据质量较好,缺失较少。 两个温湿度探头(型号:Hobo MX2301)于2018年安装于冰面,半小时记录一次数据。将半小时数据处理为月均值。原始数据质量较好,没有缺失。 数据以excel文件存储。 该观测资料可以为研究喜马拉雅西段北坡气候、冰川、水资源及其之间的关系提供重要的基础数据,可供研究气候、水文、冰川等的科研工作者使用。
赵华标
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
基于1980-2019年青藏高原及附近105个气象站点的气象数据(数据源于中国气象局数据国家气象科学数据中心)计算含氧量,发现含氧量和海拔显著线性相关,y=-0.0263x+283.8,R2=0.9819。因此基于DEM数据栅格计算得到含氧量分布图。由于青藏高原地区自然环境的限制,相关定点观察机构较少,本数据可在一定程度上反应青藏高原地区含氧量的分布情况,对青藏高原人类生存环境等相关研究有一定的借鉴意义。
信忠保
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
青藏高原是陆地表面中低纬度地区多年冻土分布最为广泛的地区,大量研究表明,青藏高原多年冻土的存在和变化强烈影响着区域乃至全球的水文、生态和气候系统。但由于青藏高原高寒缺氧、生存条件恶劣、交通极不便利,数据资源非常贫乏,尤其是在极高海拔的多年冻土区,这种状态不仅严重地限制了对于该区域气候、环境和冻土等诸多方面的研究和理解,也严重限制了适应于该区域遥感反演算法的研发、各类陆面乃至于地球系统模型的模拟和改进,而且也限制了该区域经济发展和国家战略的规划。过去几十年,我们研究团队在青藏高原多年冻土区建立了综合观测网络,展开了对多年冻土地温、活动层水热以及气象因子的系统监测,形成了能够基本覆盖青藏高原高平面的、与多年冻土有关的多要素观测数据。本数据集包括在这一区域的6个自动气象观测站、12个活动层及84个钻孔长时间序列观测数据,主要观测要素包括气象(气温、降水、风速、比湿等)、土壤水热、活动层厚度及冻土温度等观测数据。各观测数据在收集和处理过程中都已经过了严格的质量控制。本数据集面向多学科背景的科学家发布(如:冰冻圈、水文学、生态学和气象科学等),将进一步促进青藏高原水文模型、陆面过程模型和气候模型的验证、发展和改进。
赵林, 胡国杰, 邹德富, 吴通华, 杜二计, 刘广岳, 肖瑶, 李韧, 庞强强, 乔永平, 吴晓东, 孙哲, 幸赞品, 盛煜, 赵拥华, 史健宗, 谢昌卫, 汪凌霄, 王翀, 程国栋
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
统计局
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据
朱立平, 彭萍
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
该数据集包含1975-2013年青藏高原地区的海螺沟冰川、帕隆94号冰川、七一冰川、小冬克玛底冰川、慕士塔格冰川15号冰川、煤矿冰川以及NM551冰川物质平衡数据。基于世界冰川目录中收集的冰川物质平衡观测数据(World Glacier Inventory,https://nsidc.org/data/G10002/versions/1)以及姚檀栋等发布于第三极环境数据中心平台的(Third Pole Environment Database,http://en.tpedatabase.cn/)冰川物质平衡观测数据以及Global Land Data Assimilation System(GLDAS)数据集提供的气象要素数据(meteo.xlsx中为提取出的各冰川几何中心所在数据网格上的气象要素,包括降水、近地面气温、净辐射、雪面蒸发和雪深时间序列),采用冰川物质平衡计算公式重构了1975-2013年上述七个冰川的物质平衡序列。此重构数据是基于已发布的冰川物质平衡数据对冰川物质平衡公式中的参数进行了率定,并利用冰川物质平衡公式对长时间序列物质平衡进行了重构,其中参数率定结果以及长时间序列数据重构结果均与相关研究成果进行了比对,论证了该数据成果的合理性,具体可参考以下论文。该数据可用于所涉及冰川区域水资源变化研究、扩充了青藏高原冰川物质平衡数据集,并可为未来冰川物质平衡重构相关研究提供参考。
刘晓婉
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
丁利荣, 周纪, 王伟, 马晋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
本数据集包括青藏高原及其周边共5个采样点碳质气溶胶包括有机碳和黑碳的浓度和空间分布信息。本数据包含的黑碳和有机碳数据采用膜采样,滤膜为石英滤膜,采样器为大流量采样器,切割粒径为总悬浮颗粒物(TSP),每个滤膜采样周期为24h或48h。采用热光法测定其有机碳和黑碳含量,方法检出限分别为0.43和0.12 ug/cm2。此外,还计算了黑碳的吸光参数(MAC)。该数据集将作为青藏高原及其周边区域碳质气溶胶污染状况及背景值的参考数据集。
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件