该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤pH数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2019.10.27-11.15由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,土壤部分数据在3.10-3.23间数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年6月1日至2019年9月20日的黑河水文气象观测网下游四道桥超级站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是柽柳。观测在四道桥超级站(101.1374E, 42.0012N)旁开展,样方1个,大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
高亚洲地区对气候变化非常敏感,是全球变化研究的热点区域。气温和降水的变化会在冰雪冻融的时间上反映出来。星载微波遥感能提供时空连续的冰雪表面状态监测能力,当冰雪中很小一部分开始融化造成微量液态水,也会反映在主动和被动微波遥感信号中。在微波波段,冰与液态水的介电常数差异巨大,因此为微波遥感监测冰雪融化提供了基础理论。在被动微波情况下,当冰雪开始融化而出现液态水时,其吸收和发射率迅速增加,因此其发射率和亮度温度、后向散射系数也会迅速改变。本数据集为利用1979年至2018年长时间序列卫星微波辐射计和散射计观测反演的高亚洲地区冰雪融化的初始时间。被动微波遥感数据为搭载在卫星上的SMMR(1979~1987年),以及搭载于DMSP上的SSM/I-SSMIS辐射计(1988年至今)。主动微波遥感数据为QuikSCAT卫星散射计(2000~2009年)。
熊川, 施建成, 姚汝桢, 雷永荟, 潘金梅
该数据集包含了2019年1月1日至2018年12月31日黑河流域地表过程综合观测网中游张掖湿地站气象要素观测数据。站点位于甘肃省张掖市国家湿地公园,下垫面是芦苇湿地。观测点的经纬度是100.4464E, 38.9751N,海拔1460m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m处,风向传感器架设在10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处;四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在6m(探头垂直向上和向下方向各一个)、冠层内安装在0.25m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm)(单位:摄氏度)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河水文气象观测网上游阿柔超级站气象要素梯度观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。空气温度、相对湿度、风速传感器分别架设在1m、2m、5m、10m、15m、25m处,共6层,朝向正北;风向传感器架设在10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在阿柔超级站28m观测塔上;四分量辐射仪安装在5m处,朝向正南;两个红外温度计安装在5m处,朝向正南,探头朝向是垂直向下;光合有效辐射仪安装在5m处,朝向正南,探头朝向是垂直向上;土壤部分传感器埋设在塔体正南方向2m处,其中土壤热流板(自校正式)(3块)均埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复;土壤水分传感器分别埋设在地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复。 观测项目有:风速(WS_1m、WS_2m、WS_5m、WS_10m、WS_15m、WS_25m)(单位:米/秒)、风向(WD_10m)(单位:度)、空气温湿度(Ta_1m、Ta_2m、Ta_5m、Ta_10m、Ta_15m、Ta_25m和RH_1m、RH_2m、RH_5m、RH_10m、RH_15m、RH_25m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm_1、Ms_4cm_2、Ms_4cm_3、Ms_6cm、Ms_10cm_1、Ms_10cm_2、Ms_10cm_3、Ms_15cm、Ms_20cm、Ms_30cm、Ms_40cm、Ms_60cm、Ms_80cm、Ms_120cm、Ms_160cm Ms_200cm、Ms_240cm、Ms_280cm、Ms_320cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm_1、Ts_4cm_2、Ts_4cm_3、Ts_6cm、Ts_10cm_1、Ts_10cm_2、Ts_10cm_3、Ts_15cm、Ts_20cm、Ts_30cm、Ts_40cm、Ts_60cm、Ts_80cm、Ts_120cm、Ts_160cm Ts_200cm、Ts_240cm、Ts_280cm、Ts_320cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;土壤热通量在1.1-1.19日之间,7-8月G2,由于传感器线头接触不良,数据缺失;9.3-10.27由于采集器的问题,土壤温湿度数据缺失。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网上游垭口站气象要素观测数据。站点位于青海省祁连县大冬树垭口,下垫面是高寒草甸。观测点的经纬度是100.2421E, 38.0142N,海拔4148m。发布的数据包括空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在2m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪在气象塔6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤热流板埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于传感器问题,10.21后向下短波辐射数据错误;由于积雪覆盖太阳能板导致供电问题,12.10-12.25间数据缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2018年12月31日黑河流域地表过程综合观测网下游混合林站气象要素观测数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E,41.9903N,海拔874m。空气温度、相对湿度传感器架设在28m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在28m处;风速与风向传感器架设在28m,朝向正北;四分量辐射仪安装在24m处,朝向正南;两个红外温度计安装在24m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在24m处,朝向正南,探头垂直向上和向下方向各一个;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_28m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_28m)(单位:米/秒)、风向(WD_28m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm、Ts_160cm、Ts_200cm、Ts_240cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm、Ms_160cm、Ms_200cm、Ms_240cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示; 1月份由于供电问题,数据间断出现一些缺失;由于采集器存储问题,9月14日后土壤水分数据缺失;由于探头问题,9月21日后240 cm深度土壤温度有问题;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网中游黑河遥感站气象要素观测数据。站点位于甘肃省张掖市党寨镇东侧,下垫面是人工草地。观测点的经纬度是100.4756E, 38.8270N,海拔1560m。空气温度湿度传感器架设在1.5m处,朝向正北;气压计在防水箱内;翻斗式雨量计安装在0.7 m处;风速风向传感器架设在10m处,朝向正北;四分量辐射仪安装高度为1.5m,朝向正南;两个红外温度计安装高度为1.5m,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm处;土壤水分探头埋设在2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm处;平均土壤温度探头埋设在2cm和4cm;土壤热流板(3块)依次埋设在地下6cm处;两个光合有效辐射仪分别架设在冠层上方1.5m(探头垂直向上和向下方向各一个),朝向正南。 观测项目有:空气温湿度(Ta_1.5m、RH_1.5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:%)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网上游景阳岭站气象要素观测数据。站点位于青海省祁连县景阳岭垭口,下垫面是高寒草甸。观测点的经纬度是101.1160E, 37.8384N,海拔3750m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于雪覆盖太阳能板引起供电不足,导致2.3-3.18间数据缺失;由于传感器问题,6.6-6.20、6.22-7.30风速风向出现较多NAN无效值,9-10月四分量向上短波辐射数据出错。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了黑河流域地表过程综合观测网上游阿柔站的大孔径闪烁仪通量观测数据。上游阿柔站分别架设了BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为RR-RSS460的接收端和BLS900的发射端,南塔为RR-RSS460的发射端和BLS900的接收端。观测时间为2019年1月1日至2019年12月31日。站点位于青海省祁连县阿柔乡草达坂村,下垫面是高寒草地。北塔的经纬度是100.4712E,38.0568N,南塔的经纬度是100.4572E,38.0384N,海拔高度约3033m。大孔径闪烁仪的有效高度13.0m,光径长度是2390m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器调整和供电不足,大孔径闪烁仪数据由于信号和供电等问题缺失的日期为:2019.04.20-2019.04.30;2019.05.07-2019.05.13;2019.10.21-2019.10.25;2019.12.30-2019.12.31。 关于发布数据的几点说明:(1)上游LAS数据以BLS900为主,缺失时刻由RR-RSS460观测补充,两者都缺失则以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H :感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了黑河流域地表过程综合观测网下游四道桥站的大孔径闪烁仪通量观测数据。下游四道桥站分别架设了BLS450、BLS900和RR-RSS460型号的大孔径闪烁仪,北塔为接收端,南塔为发射端。观测时间为2019年1月1日至2019年12月31日。站点位于内蒙古额济纳旗,下垫面是柽柳、胡杨、裸地和耕地。北塔的经纬度是101.137E,42.008N,南塔的经纬度是101.131E,41.987N,海拔高度约873m。大孔径闪烁仪的有效高度25.5m,光径长度是2350m,采样频率是1min。 大孔径闪烁仪原始观测数据为1min,发布的数据为经过处理与质量控制后的数据,其中感热通量主要是结合自动气象站观测数据,基于莫宁-奥布霍夫相似理论通过迭代计算得到,主要的质量控制步骤包括:(1)剔除Cn2达到饱和的数据(BLS900&BLS450:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14);(2)剔除解调信号强度较弱的数据(BLS900&BLS450:Average X Intensity<1000;RR-RSS460:Demod>-20mv);(3)剔除降水时刻的数据;(4)剔除稳定条件下的弱湍流的数据(u*小于0.1m/s)。在迭代计算过程中,对于BLS900&BLS450,选取Thiermann and Grassl(1992)的稳定度普适函数;对于RR-RSS460,选取Andreas(1988)的稳定度普适函数,详细介绍请参考Liu et al. (2011, 2013)。由于仪器故障,大孔径闪烁仪数据缺失的日期为:2019.04.14-2019.04.25;2019.11.02-2019.11.12。 关于发布数据的几点说明:(1)下游LAS数据以BLS900为主,其次为BLS450,最后为RR-RSS460,最终缺失时刻以-6999标记。(2)数据表头:Date/Time :日期/时间(格式:yyyy/m/d h:mm),Cn2 :空气折射指数结构参数(单位:m-2/3),H:感热通量(单位:W/m2)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xlsx格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含2019年8月28日至2019年12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)、物候期及覆盖度(Fc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含2019年8月28日至2019年12月31日黑河流域地表过程综合观测网下游混合林站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网下游四道桥超级站气象要素梯度观测系统数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873m。空气温度、相对湿度、风速传感器分别架设在5m、7m、10m、15m、20m、28m处,共6层,朝向正北;风向传感器架设在15m处,朝向正北;气压计安装在防水箱内;翻斗式雨量计安装在28m处;四分量辐射仪安装在10m处,朝向正南;两个红外温度计安装在10m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在10m处,朝向正南,探头垂直向上和向下方向各一个;土壤部分传感器安装在塔体南侧2m处,其中土壤热流板(自校正式)(3块)依次埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm、160cm和200cm处。 观测项目有:风速(WS_5m、WS_7m、WS_10m、WS_15m、WS_20m、WS_28m)(单位:米/秒)、风向(WD_15m)(单位:度)、空气温湿度(Ta_5m、Ta_7m、Ta_10m、Ta_15m、Ta_20m、Ta_28m和RH_5m、RH_7m、RH_10m、RH_15m、RH_20m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上和向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm、Ms_200cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm、Ts_200cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;4-10月由于传感器的问题,2m深度土壤温度数据出错;11.13日后红外温度2数据出错;9.15日后土壤温湿度断续出现错误;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 任志国, 谭俊磊, 张阳, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网下游四道桥超级站宇宙射线观测系统数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873 m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
车涛, 朱忠礼, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网中游花寨子荒漠站气象要素观测数据。站点位于甘肃省张掖市花寨子,下垫面是盐爪爪山前荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装防水箱内;翻斗式雨量计安装在10m处;风速风向传感器架设在5m、10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_5m、WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;风速风向偶尔出现一些错误值,由于传感器的问题,2.28-3.10间20cm土壤温度,5-7月土壤热通量2观测数据出现错误值;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 任志国, 谭俊磊, 张阳, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网上游大沙龙站气象要素观测数据。站点位于青海省祁连县西侧沙龙滩地区,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739m。空气温度、相对湿度传感器架设在5m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在10m处;风速与风向传感器架设在10m,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下4cm、10cm、20cm、40cm、80cm、120cm、160cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,并距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_5m、RH_5m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度)、土壤水分(Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:体积含水量,百分比)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-9-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含2019年8月28日至2019年12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)和归一化绿度指数。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网下游荒漠站气象要素观测数据。站点位于内蒙古额济纳旗荒漠滩,下垫面是红砂荒漠。观测点的经纬度是100.9872E, 42.1135N,海拔1054m。空气温度、相对湿度传感器架设在5m、10m处,朝向正北;气压计安装防水箱内;翻斗式雨量计安装在10m处;风速传感器架设在5m、10m处,风向传感器架设在10m处,朝向正北;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、60cm和100cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处。 观测项目有:空气温湿度(Ta_5m、RH_5m、Ta_10m、RH_10m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_5m、WS_10m)(单位:米/秒)、风向(WD_10m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm)(单位:体积含水量,百分比)和土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2019-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年6月1日至2019年9月20日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计7个,每个样方大小约30m×30m,经纬度分别为(100.376°E, 38.853°N)、(100.377° E, 38.858°N)、(100.374°E, 38.855°N)、(100.374°E, 38.858°N)、(100.371°E, 38.854°N)、(100.369°E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日黑河流域地表过程综合观测网上游阿柔超级站宇宙射线观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河水文气象观测网中游张掖湿地站涡动相关仪观测数据。站点位于甘肃省张掖市,下垫面是湿地。观测点的经纬度是100.44640E, 38.97514N,海拔1460.00m。涡动相关仪的架高5.2m,采样频率是10Hz,超声朝向是正北向,超声风速仪(Gill)与CO2/H2O分析仪(Li7500A)之间的距离是25cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。2月20日-3月11日,3月23日-4月11日,5月17日-6月5日由于涡动系统的供电出现问题,通量数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含2019年8月28日至2019年12月31日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网上游阿柔超级站涡动相关仪观测数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。涡动相关仪的架高3.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季由于供电不足,观测数据会有一些缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2019年11月1日的黑河流域地表过程综合观测网上游景阳岭站涡动相关仪观测数据。站点位于青海省祁连县景阳岭垭口,下垫面是高寒草甸。观测点的经纬度是101.1160E, 37.8384N,海拔3750m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是15cm,9月30日后更换为超声风速温度仪(CSAT3B)与CO2/H2O分析仪(Li7500DS)组合。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季由于供电不足,观测数据会有一些缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网下游荒漠站涡动相关仪观测数据。站点位于内蒙古额济纳旗,下垫面是荒漠。观测点的经纬度是100.9872E, 42.1135N,海拔1054m。涡动相关仪的架高4.7m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是15cm,9月21日后更换为闭路涡动相关仪(CPEC200)。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。9月14日-9月21日仪器调试期间,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网上游大沙龙站涡动相关仪观测数据。站点位于青海省祁连县,下垫面是沼泽化高寒草甸。观测点的经纬度是98.9406E, 38.8399N,海拔3739 m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500RS)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。上半年由于供电不足和采集器的问题,数据间断出现错误,6.18-7.29由于采集器及存储卡的问题数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网下游四道桥超级站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374E, 42.0012N,海拔873 m。涡动相关仪的架高8m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。7月15日-7月25日涡动系统调配,9月12日-9月28日涡动系统更换调试,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网中游花寨子站涡动相关仪观测数据。站点位于甘肃省张掖市,下垫面是荒漠。观测点的经纬度是100.3201E, 38.7659N,海拔1731.00m。涡动相关仪的架高4.5m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。11-12月由于供电原因,数据出现缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网下游混合林站涡动相关仪观测数据。站点位于内蒙古额济纳旗四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E, 41.9903N,海拔874 m。涡动相关仪的架高22m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500)之间的距离是17cm,9月28日后更换为超声风速温度仪(CSAT3B)与CO2/H2O分析仪(Li7500DS)组合。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。冬季水汽密度出现一些负值,进行了剔除;9月13-28日仪器调试期,数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 任志国, 谭俊磊, 张阳, 李新
该数据集包含了2019年1月1日至2019年12月31日的黑河流域地表过程综合观测网上游垭口站涡动相关仪观测数据。站点位于青海省祁连县,下垫面是高寒草甸。观测点的经纬度是100.2421, 38.0142N,海拔4148 m。涡动相关仪的架高3.2m,采样频率是10Hz,超声朝向是正北向,超声风速仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是15cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。该站冬季会出现缺电现象,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(比插补数据好);9数据质量差))。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)和Che et al. (2019),观测数据处理请参考Liu et al. (2011)。
刘绍民, 车涛, 徐自为, 张阳, 谭俊磊, 任志国, 李新
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
彭守璋
本数据集包含珠穆朗玛大气与环境综合观测研究站,2017-2018年观测的气温、气压、相对湿度、风速、降水、总辐射、P2.5浓度、短波辐射等日平均值。 数据服务对象为从事青藏高原气象研究的学生和科研人员。 其中降水数据是人工雨量桶观测,蒸发数据为Φ20mm蒸发皿观测,其它均为半小时的观测值处理后得到的日均值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。
马耀明
本数据集包括2017年1月1日至2018年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。
罗伦, 朱立平
本数据集包含由卫星重力测量数据得到的2002年4月至2019年12月格陵兰岛冰盖质量变化数据。所采用的卫星重力数据来自于美国宇航局NASA与德国宇航局DLR合作的重力场恢复与气候学实验双星星座(GRACE,2002年4月至2017年6月)及其后续任务GRACE Follow-On(GRACE-FO,2018年6月至今)。此外为了填补GRACE和GRACE-FO之间的数据中断,我们额外采用了由欧洲空间局Swarm三星星座的GNSS轨道摄动数据反演得到的重力场数据。数据格式为Matlab数据文件,冰盖质量变化转化为等效水高,表达在0.25°x0.25°格网上,时间分辨率为1个月。本数据集可用于近二十年格陵兰岛冰盖质量变化特征及其与全球气候变化之间关系的研究。
张宇, 沈嗣钧
Data content: Standard ring-width chronology derived from Wilson juniper shrub around the northern shore of the Nam Co Lake; May-June SZI (Standardized Moisture Anomaly Index) drought reconstruction for the Nam Co region. Time span: 1605 to 2010. Temporal resolution: Yearly. Application and prospects: Hydroclimate study on the south-central Tibetan Plateau.
LU Xiaoming, HUANG Ru, WANG Yafeng, ZHANG Baoqing, ZHU Haifeng, CAMARERO J. Julio, Eryuan Liang
黑河流域近地表大气驱动数据,是采用Weather Research and Forecasting(WRF)模式制备的黑河流域逐时0.05°× 0.05°包括2m气温、地表气压、2m水汽混合比、辐射、10m风场和累积降水等近地表大气要素的驱动数据。通过与15个中国气象局常规自动气象站(CMA)站点逐日观测资料和两期黑河流域生态-水文过程综合遥感观测联合试验(WATER和HiWATER)的站点逐时观测资料在不同时间尺度上进行验证,得出以下结论:2m地表气温、地表气压和相对湿度都是比较可信的,尤其是2m地表气温和地表气压,平均误差都很小且相关系数都达到0.96以上;向下短波辐射与WATER站点观测数据的相关性达到0.9以上;降水资料通过降雨和降雪两种相态与观测资料在不同时间尺度和空间尺度上进行验证,降雨与观测资料在年、月、日和时尺度上吻合得很好,与观测资料在年和月尺度上的相关系数高达0.94和0.84;降雪与观测资料在月尺度上的相关性达到0.78,与积雪覆盖率MODIS遥感产品的空间分布相当吻合,峰值分布也一致。液态和固态降水的验证表明WRF模式能够在地形复杂而干旱的黑河流域进行降尺度分析,所模拟的资料能够满足流域尺度水文建模和水资源平衡研究。 2013年提供了2000-2012年数据。 2016年更新了2013-2015年数据。 2019年更新了2016-2018年数据。 2022年更新了2019-2021年数据。
潘小多
该数据集包含1975-2013年青藏高原地区的海螺沟冰川、帕隆94号冰川、七一冰川、小冬克玛底冰川、慕士塔格冰川15号冰川、煤矿冰川以及NM551冰川物质平衡数据。基于世界冰川目录中收集的冰川物质平衡观测数据(World Glacier Inventory,https://nsidc.org/data/G10002/versions/1)以及姚檀栋等发布于第三极环境数据中心平台的(Third Pole Environment Database,http://en.tpedatabase.cn/)冰川物质平衡观测数据以及Global Land Data Assimilation System(GLDAS)数据集提供的气象要素数据(meteo.xlsx中为提取出的各冰川几何中心所在数据网格上的气象要素,包括降水、近地面气温、净辐射、雪面蒸发和雪深时间序列),采用冰川物质平衡计算公式重构了1975-2013年上述七个冰川的物质平衡序列。此重构数据是基于已发布的冰川物质平衡数据对冰川物质平衡公式中的参数进行了率定,并利用冰川物质平衡公式对长时间序列物质平衡进行了重构,其中参数率定结果以及长时间序列数据重构结果均与相关研究成果进行了比对,论证了该数据成果的合理性,具体可参考以下论文。该数据可用于所涉及冰川区域水资源变化研究、扩充了青藏高原冰川物质平衡数据集,并可为未来冰川物质平衡重构相关研究提供参考。
刘晓婉
青藏高原0.01°空间分辨率近地表气温数据集(1979-2018)通过对中国区域地面气象要素驱动数据集中空间分辨率为0.1°的气温数据进行降尺度得到。它包含日均气温和三小时分辨率的瞬时气温。其空间分辨率为0.01°(约1km)。时间范围为1979年到2018年。空间范围为73°E-106°E, 23°N-40°N。该数据集可以为地表辐射与能量平衡、气候变化、水文气象等领域的研究与应用提供较高空间分辨率的近地表气温数据。
丁利荣, 周纪, 王伟, 马晋
通过资料整理和数字化,基于ArcGIS平台,构建了西亚地区地震区划图。地震区划图以伊朗地震研究机构的图件为基础,并广泛收集最新的活动断裂研究资料,图件范围包括伊朗及周边国家和地区,图中标绘了发震断层(活动断层)的位置、活动性质和主要参考文献资料,以及1960年至2019年5级以上地震的震中位置。区划图中以未来50年超越概率10%的地震动加速率峰值(PGA)为指标,进行地震危险性分区。图件可用于西亚地区的活动构造和地震灾害研究,为西亚地区的大型工程与基础设施建设提供地震安全保障。
刘志成
中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏公路沿线部分的研究区域主要是青藏公路自西大滩到那曲约700公里长、公路两侧20~30公里宽的区域,这一区域广泛分布着多年冻土。青藏公路沿线基础数据库包含以下类型的数据: 1、冰冻圈数据。包括:积雪深度分布。 2、自然环境与资源。包括: 基础地质:第四纪地质(Quatgeo) 3、公路沿线冻土钻孔观测数据(Borehole):青藏公路沿线200个钻孔探测资料。 工程地质剖面图(CAD):岩性分布、含水量、颗分资料等 4、青藏公路沿线地区冰川质量平衡分布模型(Model):预测冻土格网数据。 青藏公路沿线图形数据包括13幅的比例尺为1:250000图幅;格网尺寸为100×100m。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏公路.DOC”。
李新
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
Shalik Ram Sigdel, Hui Zhang, Haifeng Zhu, Sher Muhammad, Eryuan Liang
一个具有完整全球海洋覆盖范围的网格化海洋温度数据集是了解气候变化和气候变异性的一个非常有价值的资源。大气物理研究所(iap)通过若干创新步骤,对1990年以来2000米高空的历史海洋地下温度进行了新的客观分析。第一种方法是使用一组更新的过去的观察结果,这些新的观测结果已经被纠正了偏差(例如,在地震中)。XBT偏置校正CH14方案,XBT社区推荐。第二个是在海洋中不同地方的值之间使用协变性和来自包括一个全面海洋模型的若干气候模型的背景信息。第三个是扩大每个观测对较大区域的影响,认识到南大洋广阔开放的广阔空间的相对同质性。然后,这些观测也被用来提供更精细的尺度细节。最后,通过使用最近观测到的海洋状态的知识仔细地评估了新的分析,但是使用更遥远的过去的观测的稀疏分布进行次采样,以表明该方法产生无偏的历史重建。 海面风场数据集使用RSS第7版微波辐射计风速数据构建。输入的微波数据由遥感系统处理,资金来自美国宇航局测量计划和美国宇航局地球科学物理海洋学计划。 该风速产品用于气候研究,因为输入数据经过了仔细的相互校准和一致的处理。每个netCDF文件包含: 1)风速月平均值,网格尺寸360x180x自1988年1月以来所有月份的数量(随时间增加); 2)一组12个月的气候学风速,网格大小为360x180,气候学是1988-2007年20年期间计算的平均值; 3)从1988年1月以来360x180x#个月的月平均数减去上述气候图得出的风速月异常(随时间增加); 4)风速趋势图,网格尺寸360x180,趋势计算时间为1988-01-01至最近完整日历年;5)时间纬度图(有效数据至少需要10%的纬度单元),网格尺寸为自1988年1月起180 x#个月(随时间增加)
葛咏, 李强子, 董文
该数据来源于地球物理课题组ANTILOPE-I的原始地震数据,主要包含西藏西部地区的走时数据。全部数据采用人工手动拾取的办法进行处理。处理过程中采用带宽滤波,滤波范围0.05-2Hz。由于采用远震数据,所以在采集过程中使用了互相关的办法对波形进行“对齐”。数据质量良好,因为所提取的数据均来自于全球地震目录定位的大于5.5级的地震,并且每一个事件均有明显的起跳点。该数据的公布可以使其他地震学家利用该数据对该地区的地下结构进行重建和分析。
张衡
The data set contains nearly 15 years of eddy covariance data from an alpine steppe ecosystem on the central Tibetan Plateau.The data was processed following standardized quality control methods to allow for comparability between the different years of our record and with other data sets. To ensure meaningful estimates of ecosystem atmosphere exchange, careful application of the following correction procedures and analyses was necessary: (1) Due to the remote location, continuous maintenance of the eddy covariance (EC) system was not always possible, so that cleaning and calibration of the sensors was performed irregularly. Furthermore, the high proportion of bare soil and high wind speeds led to accumulation of dirt in the measurement path of the infrared gas analyzer (IRGA). The installation of the sensor in such a challenging environment resulted in a considerable drift in CO2 and H2O gas density measurements. If not accounted for, this concentration bias may distort the estimation of the carbon uptake. We applied a modified drift correction procedure following Fratini et al. (2014) which, instead of a linear interpolation between calibration dates, uses the CO2 concentration measurements from the Mt. Waliguan atmospheric observatory as reference time series. (2) We applied rigorous quality filtering of the calculated fluxes to retain only fluxes which represent actual physical processes. (3) During the long measurement period, there were several buildings constructed in the near vicinity of the EC system. We investigated the influence of these obstacles on the turbulent flow regime to identify fluxes with uncertain land cover contribution and exclude them from subsequent computations. (4) We calculated the de-facto standard correction for instrument surface heating during cold conditions (hereafter called sensor self heating correction) following Burba et al. (2008) and a revision of the original method following Frank and Massman (2020). (5)Subsequently, we applied the traditional and widely used gap filling procedure following Reichstein et al. (2005) to provide a more complete overview of the annual net ecosystem CO2 exchange.(6) We estimated the flux uncertainty by calculating the random flux error (RE) following Finkelstein and Sims (2001) and by using the standard deviation of the fluxes used for gap filling(NEE_fsd) as a measure for spatial and temporal variation.
Felix Nieberding, 马耀明, Christian Wille, Gerardo Fratini, Magnus Ole Asmussen, 王玉阳, 马伟强, Torsten Sachs
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
太阳总辐射和直接辐射采用国产辐射表(TBQ-4-1,TBS-2,China)测量,温湿度采用自动气象站(HOBO weather station, Model H21, Onset Company, USA)测量。本数据为太阳辐射和气象要素数据,包括太阳总辐射和直接辐射,波长范围270-3200nm,单位W/m2。温湿度和水汽压单位分别为℃、%、hPa。太阳辐射和气象要素数据来源于数据提供者的测量。数据覆盖时间为2013-2016年。该数据集可以用于中国亚热带地区的太阳辐射及其变化机制等相关研究。
白建辉
我们基于中国数字测震台网记录的发生在印度洋的8个地震(2009-2018)的波形资料,利用观测和三维理论波形互相关方法,获得了印度、尼泊尔和中国西南部地区的929个高质量的ScS-S走时残差(Differential traveltimes.dat)。这些时差显示出高达10s的横向变化,表明D”区剪切波速度在横向300km的距离上可以达到7%。结果表明,化学异常和可能的熔体有助于古老的俯冲带下地幔底部结构的形成,我们的研究为此提供了新的观测证据。
李国辉, 白玲
西亚地区荒漠化专题数据主要包括:西亚地区沙化土地分布图和西亚地区退化草地分布图,空间分辨率为30m。西亚地区沙化土地分布图包含的土地类型有沙地、盐碱地、裸土地和裸岩石砾地,西亚地区退化草地分布图将草地划分为高覆盖草地、中覆盖草地和低覆盖草地三类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”,数据空间分辨率为30m。数据主要是基于2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。数据验证方式为野外实地验证和高精度影像验证两种方式,验证精度达到85%以上。
本数据集包括青藏高原及其周边共5个采样点碳质气溶胶包括有机碳和黑碳的浓度和空间分布信息。本数据包含的黑碳和有机碳数据采用膜采样,滤膜为石英滤膜,采样器为大流量采样器,切割粒径为总悬浮颗粒物(TSP),每个滤膜采样周期为24h或48h。采用热光法测定其有机碳和黑碳含量,方法检出限分别为0.43和0.12 ug/cm2。此外,还计算了黑碳的吸光参数(MAC)。该数据集将作为青藏高原及其周边区域碳质气溶胶污染状况及背景值的参考数据集。
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
This data set is output from WRF model. The data include ‘LU_INDEX’ (land use category), ‘ZNU’(eta values on half (mass) levels), ‘ZNW’(eta values on full (w) levels),’ZS’(depths of centers of soil layers), ‘DZS’ (thicknesses of soil layers), ‘VAR_SSO’ (variance of subgrid-scale orography), ‘U’(x-wind component), ‘V’(y-wind component),’W’(z-wind component),’T’(perturbation potential temperature (theta-t0)), ‘Q2’ ('QV at 2 M), ‘T2’ (TEMP at 2 M), ‘TH2’ ('POT TEMP at 2 M), ‘PSFC’ (SFC pressure), ‘U10’ (U at 10 M), ‘V10’ (V at 10 M), ‘QVAPOR’ (Water vapor mixing ratio), ‘QLOUD’ (Cloud water mixing ratio),’QRAIN’ (Rain water mixing ratio), ‘QICE’ (Ice mixing ratio), ‘QSNOW’ (Snow mixing ratio), ‘SHDMAX’ (annual max veg fraction), ‘SHDMIN’ (annual min veg fraction), ‘SNOALB’ (annual max snow albedo in fraction), ‘TSLB’ (soil temperature), ‘SMOIS’ (soil moisture), ‘GRDFLX’ (ground heat flux), ‘LAI’ (Leaf area index),’ HGT’ (Terrain Height), ‘TSK’ (surface skin temperature), ‘SWDOWN’ (downward short wave flux at ground surface), ‘GLW’ (downward long wave flux at ground surface), ‘HFX’ (upward heat flux at the surface), ‘QFX’ (upward moisture flux at the surface), ‘LH’ (latent heat flux at the surface), ‘SNOWC’ (flag indicating snow coverage (1 for snow cover)), and so on. The data is in netCDF format with a spatial resolution of 10 km.
Xuelong Chen
1)数据内容:包含中亚地区,区域范围:30°N~60°N,40°E~90°E; 2)数据来源:对CMIP数据集进行加工,采用双线性插值方法将不同分辨率模式数据插值到0.5°× 0.5°,CRU观测数据1901年——2014年; 3)数据质量:时间长度较长,数据质量良好,缺测值统一用999标识; 3)数据应用成果集前景:数据已用于进行对中亚地区温度模拟能力评估,通过计算并分析中亚地区的温区的域平均、相对误差、均方根误差、泰勒图、EOF分解、季节变化等评估气候系统模式模拟中亚地区历史气候变化的能力。 4) 数据可靠性:通过对比分析观测和模拟资料的年变化,数据结果均呈显著的增温趋势,通过对数据结果进行相关性检验,均通过99%信度检验。同时,CMIP计划数据和CRU数据也是较为常用的数据集,在很多进行气候变化的研究中,也经常采用这样的数据。
马金玉
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。土壤相对湿度指数是表征土壤干旱的指标之一,能直接反映作物可利用水分的状况。
葛咏, 吴骅
三江源国家公园包括长江源、黄河源、澜沧江源3 个园区,总面积为12.31 万平方公里,介于东经89°50'57"—99°14'57",北纬32°22'36"—36°47'53",占三江源国土面积的31.16%。 本数据集是基于《三江源国家公园总体规划》中的三江源国家公园区位图进行数字化而产生。数据包含长江源园区、黄河源园区和澜沧江园区的边界。 数据格式为Shapefile格式。推荐使用arcmap打开数据。
王旭峰
该数据集描述了雅鲁藏布江流域的降水时空分布,融合了 CMA、GLDAS、ITP-Forcing、MERRA2、TRMM五套再分析降水产品和卫星降水产品, 并结合流域内9个国家气象站和166个水利部雨量筒的观测降水制作而成,时间范围为1981-2016年,时间分辨率为3 h,空间分辨率为5 km,单位是mm/h。该数据将为雅江流域的研究提供更好的数据支撑,可用于研究流域水文过程对气候变化的响应等领域。具体使用信息请看随数据一同上传的说明文档。
汪远伟, 王磊, 李秀萍, 周璟
UHSLC提供了具有两个质量控制级别(QC)的潮汐测量数据。 其中快速交付(FD)数据是在数据收集的1-2个月内发布的,并且只接收关注于大级别转移和明显异常值的基本QC。GLOSS/CLIVAR(以前称为WOCE)“快速”海平面数据是按小时、每天和每月的价值进行分配。这个项目得到了NOAA的气候和全球变化计划的支持。其中每个文件都有一个名称“h######dat”,其中“h”表示每小时的海平面数据,而“###”表示站点号码,每个站点都存在一个文件。UHSLC数据集是GLOSS数据流。在UHSLC数据库中有许多潮汐记录,但骨干是光缆核心网(GCN)——全球300个验潮站的全球集合,它是全球原位海平面网络的基础。该网络被设计成在各种时间尺度上提供全球沿海海平面变化的均匀分布采样。
董文, University of hawaii sealevel center (UHSLC)
本数据为中亚大湖区2017年逐6小时分辨率常规和卫星资料。其中常规资料包含中亚大湖区及其周边地区(中国、哈萨克斯坦、吉尔吉斯斯坦、土库曼斯坦、塔吉克斯坦、乌兹别克斯坦、阿富汗、俄罗斯、伊朗、巴基斯坦、印度等)的地面台站和探空站点观测,观测要素包含气温、气压、风速和湿度,每个时次的站点数平在600个左右,站点间距离在10-100km之间;卫星资料来源于极轨气象卫星(NOAA-18、NOAA-19、METOP-A和METOP-B)反演的云导风,并重采样到30km水平分辨率。云导风通过追踪示踪云的移动来估计风速,由示踪云的高度确定风场高度。本数据全部来源于全球电信系统Geostationary Tether Satellite(GTS),经过质量控制剔除了质量较差的观测资料。该数据可应用于中亚大湖区的资料同化,也可用于检验和评估模式对中亚大湖区的数值模拟。
姚遥
本数据总结了2016年中亚五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦)农业以及社会经济现状。本数据来源于中亚五国统计年鉴,包括总人口、耕地面积、粮食生产面积、GDP、农业GDP占总GDP比重、工业GDP占总GDP比重、森林面积等六个要素。详细的统计了中亚五国六个社会经济要素的情况。通过统计可以看出中亚五国六个要素之间各有侧重。本数据为项目提供了基础数据,便于后续分析中亚生态与社会的情况,为项目数据分析提供了数据支持。
刘铁
在全球变暖的背景下,干旱发生的频率和强度呈增加趋势,由于干旱灾害所引发的水资源匮乏、粮食危机、生态恶化(如荒漠化)等,直接威胁到国家的粮食安全和社会经济发展,干旱灾害风险评估及应急管理的技术水平亟待提高。“一带一路”沿线区域生态环境脆弱、农业耕地集中、干旱灾害频繁,利用遥感卫星监测大区域的干旱水平及其时空变化,对于科学掌握“一带一路”地区的干旱格局、区域分异特征,及其对农业耕地的影响具有重要的科学和现实意义。相对湿润度指数为某段时间的降水量与同时段内潜在蒸散量之差再除以同时段内潜在蒸散量得到。降水量数据来自TRMM/GPM卫星降水数据降尺度,潜在蒸散量的估算采用Thornthwaite方法。详细算法请参考《气象干旱国家标准》(GB/T 20481-2017)。数据仅覆盖一带一路沿线34个关键节点区域。
吴骅
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤容重数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤有机碳数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
中亚地区气温和辐射数据时间分辨率为月尺度,空间分辨率分别为0.5度和0.05度,采用GCS_WGS_1984投影坐标系统。其中,辐射数据计算采用了GLDAS的下行短波辐射、空气温度数据和空气水汽压数据、MOD11C3的地表温度/发射率数据、MCD43C3地表反照率数据和ASTER_GEDv4.1比辐射率数据计算得到;温度数据计算采用了MOD06_L2云产品和MOD07_L2大气剖面数据计算得到。本数据基于先进的遥感算法,充分利用目前精度较高的遥感数据和产品,区别于传统的气候模式对气候要素的估算原理。本数据可用于中亚地区水资源时空变化特征、农业水资源供需关系分析和水资源开发潜力评估等。
宋进喜, 蒋晓辉
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。 PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。
张永强
过去五十年,阿拉斯加地区冰川对海平面贡献占全球山地冰川总贡献的三分之一。 在RGI6.0的基础上,我们利用遥感和地理信息系统技术对阿拉斯加地区冰川编目数据进行了更新。更新的冰川编目采用的数据源为2018年Landsat OLI空间分辨率15m遥感影像,使用的方法为人工解译。结果显示,阿拉斯加地区冰川编目包括了现有冰川27043条,总面积81285km2。数据误差4.3%。该数据将为研究全球变化大背景下阿拉斯加地区冰川变化评估、冰川变化的区域和全球影响提供重要的数据支撑。
上官冬辉, 李耀军
The dataset integrated glacier inventory data and 426 Landsat TM/ETM+/OLI images, and adopted manual visual interpretation to extract glacial lake boundaries within a 10-km buffer from glacier terminals using ArcGIS and ENVI software, normalized difference water index maps, and Google Earth images. It was established that 26,089 and 28,953 glacial lakes in HMA, with sizes of 0.0054–5.83 km2, covered a combined area of 1692.74 ± 231.44 and 1955.94 ± 259.68 km2 in 1990 and 2018, respectively. The current glacial lake inventory provided fundamental data for water resource evaluation, assessment of glacial lake outburst floods, and glacier hydrology studies in the mountain cryosphere region.
WANG Xin, GUO Xiaoyu, YANG Chengde, LIU Qionghuan, WEI Junfeng, ZHANG Yong, LIU Shiyin, ZHANG Yanlin, JIANG Zongli, TANG Zhiguang
土地覆盖数据是了解人类活动与全球变化之间复杂相互作用的关键信息来源。基于清华大学制作的30 m分辨率的FROM-GLC全球土地覆盖产品,利用34个泛第三极关键节点区域矢量对其进行裁剪等处理,获得本数据集。本数据集的一级分类体系为:10.农田;20.森林;30.草地;40.灌木丛;50.湿地;60.水体;70.苔原;80.不透水面;90.裸地;100.冰雪;120.云。其数据质量取决于FROM-GLC产品质量,本数据集作为所有遥感数据的研究基础,为项目提供了基底数据。
葛咏, 凌峰, 张一行
1) 数据内容:为了描述青藏高原上的大气水资源,我们提供了两个变量。 一种叫做大气柱水汽收入(CWI),定义为单位面积大气柱水汽通量散度和地表面蒸发之和。 CWI变量为0.25×0.25度网格资料,单位为kg/m2或毫米。 另一个是大气水塔指数(AWTI),是整个TP区域大气水资源净收入的总和,AWTI即cwi乘以高原(75-105E, 25-40N, altitude> 2.5km)格点面积之和,单位为Gt. 2) 数据来源:基于ERA5再分析数据产品计算得到 3) 数据质量描述:ERA5是目前精度较高的再分析数据 4) 数据应用成果及前景: 上述两个变量提供了高原大气中水汽净收入量,
阎虹如
为了了解北半球气温变化的时空变化特征,该研究用 CRU(Climatic Research Unit)网格数据计算了 30 年(1971-2000)年平均气温的空间分布。年平均气温随着纬度的升高而降低,变化范围从大于 30 °C 到小于-25 °C。在相同纬度地区,高海拔地区(比如青藏高原、蒙古高原和西西伯利亚山区)的年平均气温凸显低温的趋势。同时我们完成了分辨率为0.5 °× 0.5 °北半球1901-2016年间的年平均气温变化趋势分布图。
尹国安, 石亚亚
利用长时间序列Landsat遥感数据,获取了整个青藏高原近50年(1970s~2021)共15期湖泊观测数据,对大于1平方公里湖泊的数量及面积变化进行了详细分析。研究发现青藏高原湖泊数量从1970年代的1080个增加到2021年的~1400个。相应地,湖泊面积从1970年代的4万平方公里增加到了2021年的5万平方公里,净增加了1万平方公里。青藏高原湖泊并非持续单调地增加。在1970s至1995年间,大部分湖泊呈现萎缩状态;但在1995年之后,除2015年外,青藏高原湖泊的数量和面积总体呈现出持续增加趋势。流域尺度上,除雅鲁藏布流域外,均在扩张。
张国庆
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
吉尔吉斯斯坦西天山Kara-Batkak冰川气象站(42°9'46″N,78°16'21″E,3280m)。 观测数据包括逐时气象要素(气温(℃)、气温最高(℃)、气温最高出现时间、气温最低(℃)、气温最低出现时间、0.1mm小时雨量(mm)、0.5mm小时雨量(mm)、瞬时风向(°)、瞬时风速(m/s)、2分钟风向(°)、2分钟风速(m/s)、10分钟风向(°)、10分钟风速(m/s)、最大风速时风向(°)、最大风速(m/s)、最大风速时间、极大风速时风向(°)、极大风速(m/s)、极大风速时间、分钟内极大瞬时风速风向(°)、分钟内极大瞬时风速(m/s)、相对湿度(%)、最小相对湿度(%)、最小相对湿度出现时间、水气压(hPa)、露点温度(℃)、气压(hPa)、海平面气压(hPa)、气压最高(hPa)、气压最高出现时间、气压最低(hPa)、气压最低出现时间)。 气象观测要素,经过积累和统计,加工成气候资料,为农业、林业、工业、交通、军事、水文、医疗卫生和环境保护等部门进行规划、设计和研究,提供重要的数据。
霍文
时空连续的积雪覆盖面积对陆表能量水分交换、山区水文、陆面模式、数值天气预报以及气候变化研究具有重要意义,而云的大量存在,造成光学遥感积雪覆盖面积中严重的数据空缺。本数据集采用Terra和Aqua双星MODIS观测,以及FY-2E和FY-2F VISSR双星观测,获取受云影响较小的积雪覆盖 度(亚像元积雪覆盖),并根据时序信息补充剩余云像元的积雪覆盖度,最终得到无云积雪覆盖度。本数据集包括青藏高原0.005度(约500 m)和中国地区的0.05度(约5 km)空间分辨率逐日积雪覆盖度。
蒋玲梅
本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
1)数据内容:高分辨率西南极冰盖表面物质平衡格点数据库 投影:Polar Stereographic Projection 2)数据来源及加工方法:基于高分辨率冰芯代用资料、ERA-Interim再分析降水和蒸发数据和极地气候模式RACMO2.3输出结果,利用改进的类克里格插值方法,建立了西南极冰盖表面物质平衡格点数据集 3)数据质量描述:精度优于再分析资料。 4)数据应用成果及前景:该数据库可用于水文学、气候学及冰川学等学科领域,比如:气候模式(CMIP5及 CESM等)的验证,西南极冰盖物质平衡长时间尺度变化评估研究。
王叶堂
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网下游混合林站气象要素观测数据。站点位于内蒙古额济纳旗达来呼布镇四道桥,下垫面是胡杨与柽柳。观测点的经纬度是101.1335E,41.9903N,海拔874m。空气温度、相对湿度传感器架设在28m处,朝向正北;气压计安装在地面上的防撬箱内;翻斗式雨量计安装在28m处;风速与风向传感器架设在28m,朝向正北;四分量辐射仪安装在24m处,朝向正南;两个红外温度计安装在24m处,朝向正南,探头朝向是垂直向下;两个光合有效辐射仪安装在24m处,朝向正南,探头垂直向上和向下方向各一个;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤水分探头埋设在地下2cm、4cm、10cm、20cm、40cm、60cm、100cm、160cm、200cm和240cm处,在距离气象塔2m的正南方;土壤热流板(3块)依次埋设在地下6cm处,在距离气象塔2m的正南方。 观测项目有:空气温湿度(Ta_28m、RH_28m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、风速(WS_28m)(单位:米/秒)、风向(WD_28m)(单位:度)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_60cm、Ts_100cm、Ts_160cm、Ts_200cm、Ts_240cm)(单位:摄氏度)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_60cm、Ms_100cm、Ms_160cm、Ms_200cm、Ms_240cm)(单位:体积含水量,百分比)、向上与向下光合有效辐射(PAR_up、PAR_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示; 由于采集器内部电池供电不足,导致1月6日至9日,11月10日至12月14日间数据间断出现一些缺失;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30;(6)命名规则为:AWS+站点名称 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
本数据为RCP4.5情景下的月干燥指数数据集(Aridity Index, AI)。AI数据为降水与潜在蒸散发的比值。本数据由14个模式平均计算得到。这14个模式分别为:CanESM2;CCSM4;CNRM-CM5;CSIRO-Mk3-6-0;GISS-E2-R;HadGEM2-CC;HadGEM2-ES;inmcm4;IPSL-CM5A-LR;MIROC5;MIROC-ESM-CHEM;MIROC-ESM;MPI-ESM-LR;MRI-CGCM3。空间分辨率为全球2度*2度,时间分辨率为2020年1月-2099年12月。该数据集即可用于中亚大湖区未来干湿变化情景分析,也可用于全球其他区域在未来情景下的干湿过去和格局的分析。
华丽娟
本数据集包含从2017年1月1日到2018年12月31日,纳木错台站观测的气温、气压、相对湿度、风速、降水、总辐射等日值。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 该数据的服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域。 测量参数的单位和精度如下: 空气温度,单位:℃,精度:0.1℃; 空气相对湿度,单位:%,精度:0.1%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.1hPa; 降水,单位:mm,精度:0.1mm; 总辐射,单位:W/m2,精度:0.1W/m2。
王君波, 邬光剑
积雪面积比例(fractional snow cover, FSC)是定量描述单位像元内积雪覆盖面积(Snow Cover Area SCA)与像元空间范围的比值。本数据集涵盖区域为北极地区(北纬35°至北纬90°),使用Google Earth Engine平台,采用的初始数据为MOD09GA 分辨率为1000m的全球地表反射率产品,数据制备时间为2000年2月24日至2019年11月18日。方法为:在训练样本区域,使用Landsat 8地表反射率的数据和SNOMAP算法制备FSC的参考数据集,将该数据集作为训练样本区域FSC真值,从而建立训练样本区域FSC与基于MODIS地表反射率产品的雪被指数NDSI之间的线性回归模型。使用该模型,将MODIS全球地表反射率产品作为输入,制备北极地区积雪面积比例时序数据。该数据集可为区域气候模拟、水文模型等提供积雪分布的定量信息。
马媛, 李弘毅
第三极地区近期冰川变化因其对下游水资源供给的重要意义而成为周边各国政府关注的热点。第三极地区冰川表面高程变化数据产品基于获取于2000年的SRTM和2015年前后ASTER立体像对,在第三极地区范围内选了40余个典型冰川区来进行相应时段冰川表面高程估算。本产品共计估算了第三极地区超过14000条冰川2000-2015s时段内的表面高程变化,调查面积约占整个第三极地区冰川面积的25%。数据的覆盖范围为除阿尔泰山以外的整个第三极地区,空间分辨率为30m。
陈安安
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
该数据集记录了阿里荒漠环境综合观测研究站,2017-2018年气象数据集,数据时间分辨率为天。包含如下基本气象参数:气温(距地面1.5米,半小时观测一次,单位:摄氏度)、相对湿度(距地面1.5米,半小时一次,单位:%)、风速(距地面1.5米,半小时一次,单位:米/秒)、风向(距地面1.5米,半小时一次,单位:度)、气压(距地面1.5米,半小时一次,单位:hPa)、降水量(24时一次,单位:毫米)、水汽压(单位:Kpa)、蒸发(单位:毫米)、向下短波辐射(单位:W/m²)、向上短波辐射(单位:W/m²) 、向下长波辐射(单位:W/m²) 、向上长波辐射(单位:W/m²) 、净辐射(单位:W/m²)、地表反照率(单位:%)。 数据采集地点:中国科学院青藏高原研究所阿里荒漠环境综合观测研究站观测场,经度:79°42'5";纬度:33°23'30";海拔:4264米。 数据从阿里站自动气象站直接下载,其中降水数据是自动雨雪量计和人工观测校正得到每天的降水量,其它均为半小时的观测值经平均得到逐日均值。 观测仪器型号:温度和湿度:HMP45C空气温湿度探头;降水:T200-B雨雪量仪传感器;风速和风向: Vaisala 05013风速风向传感器;净辐射:Kipp Zonen NR01净辐射传感器;气压:Vaisala PTB210大气压传感器。采集器型号:CR 1000,采集时间:30分钟。 本数据表是由专人根据观测记录进行加工和质量控制。严格按照仪器操作规范进行观测和数据采集,在加工生成数据表时,剔除了一些明显误差数据
赵华标
青藏高原湖泊广布,近年来呈现普遍扩张的趋势。掌握这些湖泊的水位及水量变化信息对认识区域水文-气候交互机制及其演变规律意义重大。本数据集包含青藏高原52个大、中型湖泊2000 - 2017年的水位、水量变化,面积-水位关系曲线等信息,多数湖泊的水位及水量变化时间分辨率在月尺度或旬尺度。本数据基于多源测高卫星数据和Landsat光学影像制作,将光学影像观测到的湖泊岸线变动转化为水位信息(简称光学水位),并且借助光学水位移除了多源测高水位之间系统偏差。野外实验和理论分析的结果一致表明光学水位的精度在0.1 - 0.2 m,与测高水位精度相当,测高水位的不确定性用同一周期内有效水面足迹点高程的标准差表示,已经包含在数据集中。本数据集可以应用于水资源和水安全管理,湖泊流域水文分析,水量平衡分析等,尤其在湖泊溢流洪水监测方面有较大的潜力。
李兴东, 龙笛, 黄琦, 韩鹏飞, 赵凡玉, 荣田佳秀
北极圈大河流域内缺乏一套长时间序列的高分辨率降水格点数据,本数据提供了北极主要大河流域的逐日降水,数据集的范围为北纬45°至76.15°,使用的元数据包括:GSOD的1980-2015年气象站点数据,ERA-interim 1980-2018年降水数据,方法为:对站点数据进行风速修正,将其使用空间插值方法获得一套高分辨率的插值降水格点数据,使用改进后的分位数映射法(Quantile-Mapping),以插值降水数据作为背景数据,对ERA-interim数据进行频率订正,最终得到订正后的ERA-interim降水格点数据。可为北极大河流域水文过程的研究提供一套新的降水资料。
雷华锦, 李弘毅
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
数据是根据《1:1,000,000中国植被图集》数字化而来,将图集中的60幅图件一一进行数字化(多边形属性),然后进行投影、匹配、拼接,最后为每个多边形赋植被属性,植被属性包括:vege_id(植被群系编号),新编号,植被群系和亚群系,植被型编号,植被型,植被型组编号,植被型组,植被大类,以及相应的英文属性信息。 《1:1,000,000中国植被图集》由著名植被生态学家侯学煜院士主编,由中国科学院有关研究所、有关部委和各省区有关部门、高等院校等53个单位250多位专家共同编制,于2001年科学出版社正式出版,国内外公开发行。 此图集是我国植被生态学工作者40多年来继《中国植被》等专著出版后又一项总结性成果,是国家自然资源和自然条件的基本图件。它详细反映了我国11个植被类型组、54个植被型的796个群系和亚群系植被单位的分布状况、水平地带性和垂直地带性分布规律,同时反映了我国2000多个植物优势种、主要农作物和经济作物的实际分布状况及优势种与土壤和地面地质的密切关系。由于此图集属于现实植被图图种,故反映出我国植被近斯的质量状况。 此图集为四开本,280页,包括1:1,000,000 分幅的中国植被类型图60幅、1:10,000,000 的中国地势图、中国植被图和中国植被区划图各1幅,附中英文对照图例。 此图集是国家自然资源和自然地理特征的基本图件,是研究全球环境变化、生物多样性、环境保护与监测等必不可少的科学资料和重要依据。植被图是现存植被空间分布在地图上的具体表达,百万分之一中国植被图是迄今为止以全国为对象的最详细、精确的植被图。数据收集时间为2011-2012年,可以服务于从事植被生态研究的学生和科研人员。本数据仅限于研究所内部交流。 图件采用 Albers投影,其参数如下: · 坐 标 系:大地坐标系 · 投 影:Albers正轴等面积双标准纬线圆锥投影 · 南标准纬线:25°N · 北标准纬线:47°N · 中央经线:105°E · 坐标原点:105°E与赤道的交点 · 纬向偏移:0 · 经向偏移:0
侯学煜
数据内容:本数据集包括1998-2017年青藏高原逐年的气温和降水格点数据,是进行气候变化及其对生态环境影响的基础性数据。数据来源及加工:源数据来自基于国家气象信息中心基础资料专项最新整编的中国地面高密度台站(2400多个国家级气象观测站)的气温和降水日值资料,对缺测站点进行预处理之后,利用ANUSPLIN软件的薄盘样条法 (TPS,Thin Plate Spline)进行空间插值,生成青藏高原及200km缓冲区空间分辨率1km的年值格点数据。数据应用:该数据可用于气候变化对生态环境影响的研究中。
丁明军
试验所采用的区域气候模式(RCM)是国际理论物理中心的RegCM4 (Giorgi et al., 2012),模拟区域为联合区域气候降尺度协同试验第二阶段东亚(CORDEX Phase II East Asia)的推荐区域,覆盖整个中国及其周边的东亚地区。模式的水平分辨率为25 km,模式垂直方向是18层,层顶高度为10 hPa,模式的参数设置按照Gao et al. (2016, 2017),并根据韩振宇等 (2015) 更新了中国土地覆盖数据,以可以地描述下垫面植被状况。RegCM4所需的初始和侧边界条件由CMIP5全球气候模式HadGEM2-ES的模拟结果提供(RCP4.5情景),数据主要包含气温和降水要素。
高学杰
南北极海冰数据集原始数据由美国国家冰雪数据中心(The National Snow and Ice Data Center:NSIDC)通过遥感数据生成,数据格式为geotiff格式与image格式,数据空间分辨率为25km,时间分辨率为日。数据内容是南北极的海冰范围及海冰密集度。本研究工作通过对南北极海冰的范围与海冰密集度后处理后生成netcdf格式产品。产品数据包含1979-2019年南北极海冰范围与海冰密集度数据,其时间分辨率为逐日,覆盖范围为南极与北极,水平空间分辨率为12.5km,海冰范围矩阵中数据值为1表示该网格为海冰,海冰密集度用0-1000表示,该网格值除以10即为该网格海冰密集度值。
叶爱中
该数据为中国逐月平均温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件