风速数据被广泛用于科学、管理和政策领域,在评估可再生能源潜力、解决风灾、研究生物现象和探索气候变化等方面发挥着重要作用。但现有的风速产品存在很大的局限性:气象观测数据在空间和时间上存在不连续性,再分析产品和气候模型模拟虽然实现了数据的连续性,但大多未能重现观测到的风速趋势。此外,风速数据的高变异性及站点分布的不均匀和稀缺性,使得传统的统计插值方法,如克里金或主成分分析,在重构全球风速上表现不佳。因而,风速数据成为风速研究中“卡脖子”的难题。 在此,研究团队基于部分卷积神经网络算法(the partial convolutional neural network),融合了34个气候模式数据和气象站点观测数据HadISD(由Met Office Hadley Centre提供),重构了1973-2021年间共588个月的全球10米近地风速,空间分辨率为1.25°×2.5°(纬度×经度),该数据集包含了观测到的风速趋势信息。详细的重构过程请见参考文献中的方法部分。
周俐宏, 曾振中, 江鑫
本数据是研究团队采用新方法定量重建获得的末次冰盛期以来青藏高原不同样点的植被变化数据。首先收集、整理青藏高原及其周边17个植被带1802条现代孢粉数据作为训练集,采用随机森林算法建立基于孢粉数据重建青藏高原植被的模型,该模型预测现代孢粉样点的植被时,与实际植被对比,显示出较高的一致性(>76%)。与传统的生物群区化法相比,新建立的随机森林模型基于孢粉数据预测青藏高原现代植被的准确性更高。随后,将新建立的随机森林模型用于青藏高原51条孢粉化石序列的古植被重建。用贝叶斯方法重新建立各孢粉化石序列的深度-年代模型,并用线性插值方法获取500年间隔的孢粉化石数据。最终用随机森林模型重建出青藏高原22000年以来500年间隔的植被时空格局变化。本数据可以为理解过去高寒植被的变化过程和机制提供依据,为研究过去气候变化对青藏高原植被的影响提供证据,为气候模拟提供边界条件。
秦锋, 赵艳, 曹现勇
通过对西城驿遗址、金蝉口遗址、山那树扎遗址、江西坟遗址、宗日遗址和邦嘎遗址等进行考古调查和发掘,获取了各遗址经纬度、高程、文化属性、文化遗物等基本信息;并且,对遗址发掘过程中的石制品、动植物遗存以及沉积物样品进行科学收集、鉴定和实验室分析,得到了一批遗址碳十四年代数据、孢粉数据、动物遗存骨骼单元分布鉴定数据、植物遗存鉴定数据以及相关同位素数据;同时,对青藏高原及其周边地区相关动植物遗存及同位素进行了整理。基于自然地理因子和不同时期遗址点,在最低成本的控制下实现节点间累积联结的方法,使用GIS(R语言)工具进行空间数值计算,将其结果作为史前时期(新石器—青铜时期)的交流路线。发现路线的形 态由新石器时期的东北—东部—东南—西南边缘呈月牙形环绕发展至青铜时期的由边缘延伸 至腹地呈网络化发展的趋势,这是由高原边缘的交流逐步演化成边缘—腹地的交流、并不断强化的表现。且通过采集青藏高原东部高寒草甸区共49个放牧家畜粪样品(牦牛粪 样品30个、马粪样品11个、羊粪样品8个),并在区域植被调查的基础上,对粪样品开展了花粉分析。该数据集为研究青藏高原新石器时代-青铜先民的活动历史和生业模式提供了数据支撑。
董广辉, 马敏敏, 侯光良, 杨晓燕
自第一次工业革命以来,人类活动已经深刻影响了地球各圈层,且这种影响还将持续扩大和增强。青藏高原作为一个具有全球意义的生态系统单元,同时也是我国重要的生态安全屏障,在水土保持、生物多样性保护、水源涵养和碳收支平衡等诸多方面发挥着至关重要的作用。但近30年来,随着青藏高原人类活动范围的扩大和强度的快速增长,人类活动所造成的各种生态环境问题也日益突出,并严重影响着青藏高原生态功能的发挥。青藏高原人类活动强度空间数据的研究与制备,将有助于深入理解该地区人类活动的影响强度和范围,揭示气候变暖背景下人类活动的变化规律,对于进一步量化辨识人类活动与气候变化对生态系统的影响,以及促进该区域的可持续发展都具有重要意义。 研究人员采用人类足迹指数方法,利用人口密度、土地利用、放牧密度、夜间灯光、铁路和道路等共6种代表人类活动的空间数据,完成了1990、1995、2000、2005、2010、2015和2017年共7期青藏高原人类足迹数据集的制备。依据已有研究和青藏高原区域特点,本数据集对人类足迹方法的优化和调整主要包括:①选取人口密度、土地利用、夜间灯光、放牧密度、道路和铁路六类数据来计算人类活动强度;②调整不同土地利用类型的赋值;③设置人口密度最大强度阈值50人/平方公里,并采用对数方法赋值;④使用牛羊密度数据来表征放牧密度,设置最大强度阈值为1000羊单位/平方公里,并采用对数方法赋值;⑤使用经过校正的DMSP/OLS夜间灯光数据进行赋值;⑥将道路划分为高速公路、国道、省道、县道和其他公路等五个等级分别进行赋值;⑦铁路最大影响范围设为3.5 km;⑧利用冰川和湖泊空间数据进行质量控制。 该数据集来源于数据论文“段群滔, 罗立辉. (2020). 1990–2015年青藏高原人类足迹数据集. 中国科学数据, 5(3). https://doi.org/10.11922/csdata.2019.0082.zh”,在原有数据的基础上增加了2017年的数据。 该数据集的制备可为探究青藏高原地区人类活动空间变化特征和规律提供空间数据,也可为探索该地区人类活动与生态环境间的相互作用提供支撑,对于促进整个青藏高原地区的生态环境保护和可持续发展具有指导作用。
段群滔, 罗立辉
2000-2020年青藏高原城市不透水面和绿地空间组分数据集的数据源主要包括HJ‒1A/B、GF-1/2、ZY‒3等国产卫星影像以及Landsat TM/ETM+/OLI系列卫星影像数据。其中,国产卫星影像辅以Google Earth影像生产不同地理分区的组分训练样本和验证样本数据,应用谷歌地球引擎(Google Earth Engine, GEE)分区测试与校正模型算法参数,基于随机森林算法和Landsat TM/ETM+/OLI系列卫星影像及辅助数据获取归一化人居地密度指数(Normalized Settlement Density Index, NSDI),采用密度分割法且经过人工交互解译修正后,获取城市建成区矢量边界。应用NSDI指数、植被覆盖度指数和青藏高原矢量边界生产青藏高原城市不透水面、城市绿地空间组分原始数据,经校正和精度评价后,生成2000-2020年青藏高原城市不透水面和绿地空间组分数据集。 数据产品的分辨率为30 m,采用统一的坐标系统和存储格式。地理坐标系为WGS84,投影坐标系为Albers,数据存储格式为Geotiff,数据单位为百分比(值域范围0~10000),比例因子为0.01。 为了更准确地量化城市土地覆盖变化,选取了多个典型城市取样,对数据集进行了验证,具体验证方法及精度见已发表的成果。 数据可用于分析和揭示青藏高原土地覆盖变化的影响和未来情景模拟,以期为青藏高原建设环境宜居城市与提升人居环境质量提供科学依据。
匡文慧, 郭长庆, 窦银银
该数据集主要包括北温带湖泊在1985-2020年间4个时段的结冰观测频率值(ICO),以及湖泊所在位置、面积、高程等信息。其中,4个时间段分别为1985-1998(P1)、1999-2006(P2)、2007-2014(P3)以及2015-2020(P4),目的是提高计算时段内的“有效观测”次数,进而提高准确度。4个时段的ICO由各个时段内所有Landsat影像统计的“结冰”次数与“有效观测”次数的比值计算,其他的湖泊信息通过表格中的“Hylak_id”列与HydroLAKEs数据集相对应。此外,该数据仅保留了P1-P4均观测有效,且面积大于1平方千米的湖泊,约为3万个。该数据集可以反映近几十年来湖泊结冰情况对气候变化的响应。(详见论文)
王欣驰
建立在碳、 氮稳定同位素分析方法基础上的古食谱分析的基本原理是我即我食(You are what you eat),即动物组织器官的化学组成与其生前饮食密切相关,通过对相关元素同位素比值的检测可直接揭示古代人与动物食物结构,进而探讨先民生业与家畜驯养研究的手段。骨骼胶原蛋白与牙齿釉蛋白在埋藏过程中不易污染却可以保持其结构的完整性,其蛋白质氨基酸及元素的组成与含量相对固定,是古食谱分析的主要对象。对青藏高原西南部云南怒江石岭岗遗址人骨和动物骨的胶原进行碳、氮稳定同位素分析。
董广辉, 任乐乐
地表向下辐射(SDR)包括短波向下辐射(SWDR)和长波向下辐射(LWDR),对能源和气候研究具有重要意义。考虑到东亚-太平洋(EAP)地区缺乏具有高时空分辨率的可靠SDR数据,利用下一代地球静止卫星Himawari-8开发了2016至2020年、时空分辨率为10min/0.05°的短波和长波数据集。SDR产品充分考虑了云、高气溶胶背景和地形效应对SWDR的影响。与云和地球辐射能系统(CERES)、欧洲中期天气预报中心(ECMWF)、下一代再分析(ERA5)和全球陆表特征参量产品(GLASS)等辐射产品对比,新SDR产品不仅分辨率明显更高,而且产品精度也更优。在精度方面,新SWDR的每小时和每日均方根误差分别为104.9和31.5 Wm-2,远小于CERES(分别为121.6和38.6 Wm-2)、ERA5(分别为176.6和39.5 Wm-2)和GLASS(每日36.5 Wm-2)。同时,新LWDR每小时和每日值的RMSE分别为19.6和14.4 Wm-2,与CERES和ERA5相当,在高海拔地区甚至更优。
胡斯勒图, 王天星, 杜艺涵
该数据集是利用气候模型COSMOS运行的,37.5-32kaBP轨道变化瞬变试验TRN40ka,来自Zhang et al(2021, Nature Geoscience,https://www.nature.com/articles/s41561-021-00846-6)。 具体的试验设计请参考原文献。 COSMOS(ECHAM5-JSBACH-MPI-OM)是德国马普所研发的海洋大气植被耦合气候模型。大气-陆面模块ECHAM5-JSBACH的空间分辨率为T31(∼3.75°),垂直19层;海洋模块MPI-OM是不规则网格,水平分辨率为 (3°×1.8°) ,垂直40层。
张旭
该数据集包括中国2001~2018年月尺度或年尺度的地表短波波段反照率、植被光合有效辐射吸收比、叶面积指数、森林覆盖度和非森林植被覆盖度、地表温度、地表净辐射、地表蒸散发、地上部分自养呼吸、地下部分自养呼吸、总初级生产力和净初级生产力。空间分辨率为0.1°。此外,还包括在气候驱动下(无人类干扰)的以上11个生态系统参量在2001~2018年间的时空变化。因此,该数据集可以反映气候变化与人类活动对21世纪中国陆地生产系统的影响。
陈永喆, 冯晓明, 田汉勤, 武旭同, 高镇, 冯宇, 朴世龙, 吕楠, 潘乃青, 傅伯杰
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
该研究通过分析云南腾冲青海(Tengchongqinghai,TCQH)湖泊沉积岩芯中的支链甘油二烷基甘油四醚酯(brGDGTs)和叶蜡氢同位素,首次展示了末次冰期以来(过去8.8万年以来)低纬陆地高分辨率年均温度变化历史。根据TCQH岩心建立出的南亚年均温度,该区域存在8.8-7.1万年和4.5-2.2万年两个暖期,温度变幅约2-3 °C,这样的变幅基本达到了该区域冰期-间冰期的变幅,全新世以来温度呈持续增温趋势,升温约1-2°C。
赵成
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
现代花粉与植被和气候的关系是利用花粉定性解释和定量重建过去植被和气候的重要参考依据。提取湖泊沉积物中的花粉组合所蕴含的古植被和古气候信号,需要组建一个高质量的湖泊表层沉积物现代孢粉数据集。然而,青藏高原已有的湖泊表层沉积物花粉数据集并不能很好地代表其植被类型和气候梯度,仍存在空白区域,如青藏高原中东部的高寒草甸区尚缺乏现代湖泊花粉数据,影响了重建研究的可靠性。 为了构建高寒草甸区样点空间分布均匀的现代孢粉数据集,作者于2018年7月~8月采集了青藏高原中部和东部117个湖泊的表层沉积物样品。每个样品选取约10克(湿样)采用常规酸碱法和过筛法(7 μm)提取花粉。每个花粉样品至少鉴定、统计500粒陆生植物花粉粒。 本高寒草甸现代花粉数据集花粉组合以莎草科花粉为主(Cyperaceae;平均值68.4%,最大值95.9%),其他草本植物花粉如禾本科(Poaceae;平均值10.3%,最大值87.7%)、毛茛科(Ranunculaceae;平均值4.8%,最大值33.6%)、蒿属(Artemisia;平均值3.7%,最大值24.5%)、菊科(Asteraceae;平均值2.1%,最大值33.6%)等为常见花粉类型。柳属(Salix;平均值0.4%,最大值5.3%)为主要的灌木植物花粉,而乔木植物花粉含量低(平均值0.9%,最大值5.8%),主要包括松属(Pinus;平均值0.3%,最大值1.8%)、桦属(Betula;平均值0.1%,最大值0.9%)和桤木属(Alnus;平均值0.1%,最大值0.7%)。花粉组合尽管受到远源花粉(如乔木花粉)的影响,但仍能很好地代表高寒草甸植物群落组成。 本数据集除包含花粉类型的原始统计数据和百分比数据,也包括每个采样点现代气候数据。每个样点现代气候数据采用中国区域地面气象要素驱动数据集(1979-2018;0.1°空间分辨率)中最近栅格数据代替,并计算样点的年降水量(Pann)、年均气温(Tann)、最冷月均温(Mtco)和最热月均温(Mtwa),用于构建花粉-气候校准集。
曹现勇, 田芳, 李凯, 倪健
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
全面估算了1132个大于1 km2湖泊的水量变化。总的来说,1976至2019年间,湖泊水储量增加了169.7±15.1 Gt(3.9±0.4 Gt yr-1),主要发生在内流区(157.6±11.6或3.7±0.3 Gt yr-1)。1976至1995年间,湖泊水量显示减少(-45.2±8.2Gt或-2.4±0.4Gt yr-1),但在1995至2019年间,大幅增加(214.9±12.7Gt或9.0±0.5Gt yr-1)。2010至2015年间,水量增速减缓(23.1±6.5 Gt或4.6±1.3 Gt yr-1),随后在2015至2019年间再次出现高值(65.7±6.7 Gt或16.4±1.7 Gt yr-1)。在1976-2019年间,冰川补给湖水量增加(127.1±14.3 Gt)远远高于非冰川补给湖(42.6±4.9 Gt),这也与冰川补给湖数量多,面积广有关。另外,封闭湖水量增幅(161.9±14.0 Gt)大大高于外流湖(7.8±5.8 Gt)。
张国庆
该数据包含波密2008年降水稳定同位素δ18O日均值,气温和降水量;降水样品由波密气象局采集,降水稳定同位素是在法国气候与环境科学实验室(Laboratoire des Sciences du Climat et de l’Environnement, France)测定,δ18O由MAT-252质谱仪测定。气温和降水量由波密气象局在降水事件发生时记录,气温为降水事件开始与结束的平均值。降水稳定同位素δ18O精度为0.05‰。 该数据研究已发表在JOURNAL OF CLIMATE,题为Precipitation Water Stable Isotopes in the South Tibetan Plateau: Observations and Modeling。
高晶
对未来气候变化的有效评价,特别是对未来降水量的预测,是制定适应战略的重要依据。本数据是基于RegCM4.6模型,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP2.6、RCP4.5、RCP6.0和RCP8.5)、HadGEM2-ES(RCP2.6、RCP4.5和RCP8.5)、IPSL-CM5A-LR(RCP2.6、RCP4.5、RCP6.0和RCP8.5)、MIROC5(RCP2.6、RCP4.5、RCP6.0和RCP8.5)和NorESM1-M(RCP2.6、RCP4.5、RCP6.0和RCP8.5)等多模型不同碳排放浓度情景下进行区域动力降尺度,获得2007-2099年空间分辨率为0.25度,时间分辨率分别为3小时(部分为6小时)、逐日和逐年的21套中国全境未来气候数据。
潘小多, 张磊
该数据集为孟加拉,Satkhira、Barisal、Sylhet3个观测站点2017-2018年的日降水稳定同位素数据(δ18O,δD,d-excess),由Bangladesh Atomic Energy Commission (BAEC)采集,在中国科学院青藏高原研究所环境与地表过程重点实验室用Picarro L2130i 波长扫描光腔衰荡光谱仪测得。 三个观测点样品采集地点及时间: Satkhira :2017.03.11-2018.07.16 Barisal:2017.03.05-2018.07.02 Sylhet : 2017.02.20-2018.09.04
高晶
通过近30年的研究,人们对青藏高原,特别是喜马拉雅山以北地区降水稳定同位素(2H和18O)的气候控制作用有了充分的认识。然而,尼泊尔(喜马拉雅山以南)对降水稳定同位素的控制知识还远远不够。 本研究描述了2016年5月10日至2018年9月21日期间尼泊尔加德满都降水稳定同位素的季节内和年度变化,并分析了对降水稳定同位素的可能控制因素。所有样品均位于尼泊尔首都加德满都(27°42′N, 85°20′E),平均海拔约1400m。并结合了2001年1月1日至2018年9月21日的气象资料,给出了降水量(P)、温度(T)和相对湿度(RH)的值。
高晶
采自青藏高原的冰芯样品提供了冰雪同位素组成变化的高分辨率记录。该数据集包含了自1864-2006年各年的冰芯氧稳定同位素数据,冰芯是从青藏高原南部宁金岗桑冰川钻取得到,长度为55.1米,通过利用中国科学院青藏高原研究所 环境变化与地表过程重点实验室的MAT-253同位素质谱分析仪测得氧同位素数据,测量精度为0.05%。 数据采集地点: 宁金刚桑冰川(90.2°E,29.04°N,海拔高度5950米)
高晶
降水中稳定的氧同位素比(δ18O)是全球大气过程的综合示踪剂。 自1990年代以来,一直致力于研究位于青藏高原TP上20多个站点的降水同位素组成,这些站点位于西风和季风之间的气团交汇处。 在本文中,我们建立了一个青藏高原月尺度降水δ18 O的数据库,并使用不同的模型来评估TP上降水δ18 O的气候控制。 降水δ18 O的时空格局及其与温度和降水的关系揭示了三个不同的域,分别与西风(北TP),印度季风(南TP)及其之间的过渡有关。
高晶
本数据集来源于论文:Su, T. et al. (2019). No high tibetan plateau until the Neogene. Science Advances, 5(3), eaav2189. doi:10.1126/sciadv.aav2189 数据为该论文的补充数据,主要包含研究人员搜集的棕榈化石记录,与伦坡拉盆地棕榈化石相近的棕榈属的气候范围数据,以及伦坡拉盆地化石与现代棕榈属化石的形态比较数据。 2016年,研究团队在青藏高原中部伦坡拉盆地(32.033°N, 89.767°E)发现了保存较为完好的棕榈化石,将其与已有的棕榈化石进行了比较,发现它和已有的棕榈化石形态都不相同,因此,研究人员建立了一个新种——西藏似沙巴棕(<em>Sabalites tibensis</em> T. Su et Z.K. Zhou)。研究人员利用棕榈化石结合古气候模型重建了青藏高原中部的古高程,得出结论:新近纪之前青藏高原还没有出现。 数据中包含的表格如下: (1)Table S1. Fossil records of palms around the world(世界范围内的棕榈化石记录) (2)Table S2. Morphological comparisons between fossils from Lunpola Basin and modern palm genera(伦坡拉盆地化石与现代棕榈属化石的形态比较数据) (3)Table S3. Climate ranges of 12 living genera that show the closest morphological similarity to S. tibetensis T. Su et Z.K. Zhou sp. nov.(与新发现的西藏似沙巴棕化石(<em>S. tibetensis</em> T. Su et Z.K. Zhou sp. nov)形态最接近的12个现存棕榈属的气候范围) 数据也包含论文补充数据中的图形数据。
苏涛
"一带一路"亚洲关键区域流域边界图的划定主要依据以下原则: 原则1:在丝绸之路沿线 原则2:位于干旱半干旱区 原则3:具有较高的水资源风险 原则4:流域完整性 1. 干旱区划分依据 Food and Agriculture Organization of the United Nations. FAO GEONETWORK. Global map of aridity - 10 arc minutes (GeoLayer). (Latest update: 04 Jun 2015) Accessed (6 Mar 2018). URI: http://data.fao.org/ref/221072ae-2090-48a1-be6f-5a88f061431a.html?version=1.0 2. 水资源风险数据: Gassert, F., M. Landis, M. Luck, P. Reig, and T. Shiao. 2014. Aqueduct Global Maps 2.1. Working Paper. Washington, DC: World Resources Institute. 3. 贫困指数数据: Elvidge C D, Sutton P C, Ghosh T, et al. A global poverty map derived from satellite data. Computers & Geosciences, 2009, 35(8): 1652-1660. https://www.ngdc.noaa.gov/eog/dmsp/download_poverty.html 4. 基础流域边界数据: (1) Watershed boundaries were derived from HydroSHEDS drainage basins data (Lehner and Grill 2013) based on a grid resolution of 15 arc-seconds (approximately 500 m at the equator), which can be free download via https://hydrosheds.cr.usgs.gov/hydro.php (2) AQUASTAT Hydrological basins: This dataset is developed as part of a GIS-based information system on water resources. It has been published in the framework of the AQUASTAT - programme of the Land and Water Division of the Food and Agriculture Organization of the United Nations. The map is also available in the SOLAW Report 15: “Sustainable options for addressing land and water problems – A problem tree and case studies”. Data can be free download via http://www.fao.org/nr/water/aquamaps/ (3) HydroBASINS: https://www.hydrosheds.org/downloads 5. The GloRiC provides a database of river types and sub-classifications for all river reaches globally. https://www.hydrosheds.org/page/gloric 6. HydroATLAS offers a global compendium of hydro-environmental sub-basin and river reach characteristics at 15 arc-second resolution. https://www.hydrosheds.org/page/hydroatlas 覆盖面积146.94万平方公里,具体包含如下区域:怒江流域,死海流域,锡斯坦河流域,黄河流域,约旦-叙利亚东部流域,印度河流域,伊朗内流区,乌尔米耶湖流域,石羊河流域,哈里卢德-穆尔加布河流域,两河流域,疏勒河流域,黑河流域,伊塞克库尔湖,塔里木河流域,吐鲁番-哈密盆地,艾比湖流域,准噶尔盆地,阿姆河流域,玛纳斯河流域,乌伦古河流域,额敏河流域,楚河-塔拉斯河流域,锡尔河流域,伊犁河流域,里海流域,澜沧江流域,长江流域,青海湖水系,柴达木盆地东部,柴达木盆地西部,羌塘高原区,雅鲁藏布江流域.
冉有华, 王磊, 曾甜, 盖春梅, 李虎
本数据集来源于论文:Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. 数据中包含新评估的青藏高原3m深度土壤有机碳库格点数据及相应的R代码,格点数据空间分辨率为0.1°。 以往对青藏高原土壤碳库的评估多以现代气候、植被等特性为根据,未考虑古气候条件、土层厚度等因素的影响。本研究中,研究人员综合考虑了古气候和现代气候条件、土层厚度和土壤理化属性、植被和地形等因素,通过机器学习算法重新评估了青藏高原3m深度土壤碳库。新评估得到的青藏高原土壤碳储量为36.6 Pg C (38.9-34.2 Pg C),约为陆地生态系统模型模拟均值的3倍(11.5±4.2 Pg C)。同时,研究指出,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。 数据中包含以下字段: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
丁金枝, 汪涛
本数据集来源于论文:Chen, J.*#, Huang, Y.*#, Brachi, B.*#, Yun, Q.*#, Zhang, W., Lu, W., Li, H., Li, W., Sun, X., Wang, G., He, J., Zhou, Z., Chen, K., Ji, Y., Shi, M., Sun, W., Yang, Y.*, Zhang, R.#, Abbott, R. J.*, & Sun, H.* (2019). Genome-wide analysis of Cushion willow provides insights into alpine plant divergence in a biodiversity hotspot. Nature Communications, 10(1), 5230. doi:10.1038/s41467-019-13128-y. 本数据集包含青藏高原高山植物小垫柳Fasta格式的基因组组装文件,包括核苷酸(DNA)、核糖核酸(RNA)、蛋白质编码序列(Protein)序列数据,以及gff格式的基因组组装注释文件。 组装等级:染色体级别 基因组覆盖程度:全基因组 参考基因组:是 组装方法:SMARTdenovo 1.0; CANU 1.3 测序方法及测序深度: PacBio, 125×; Illumina Hiseq X Ten, 43×; Oxford Nanopore Technologies, 74× 基因组组装统计: 基因组大小(bp):339,587,529 GC含量:34.15% 染色体数量:19 细胞器基因组数量:2 基因组组装序列数量:30 最大组装序列长度(bp):39,688,537 最小组装序列长度(bp):57,080 平均组装序列长度(bp):11,319,584 基因组组装序列N50(bp):17,922,059 基因组组装序列N90(bp):13,388,179 全基因组组装注释: Protein:30,209 tRNA:784 rRNA:118 ncRNA:671 详细的注释信息请参见附件。 本数据集中也包含文章中Supplementary Information中的表格数据,数据列表参见附件。 基因组项目号为:GWHAAAA00000000(https://bigd.big.ac.cn/gwh/Assembly/663/show)。
陈家辉, 杨永平, Richard John Abbott, 孙航
该数据集为中国逐月降水量数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。为了便于存储,数据均为int16型存于nc文件中,降水单位分别为0.1mm。 nc数据可使用ArcMAP软件打开制图; 并可用Matlab软件进行提取处理,Matlab发布了读入与存储nc文件的函数,读取函数为ncread,切换到nc文件存储文件夹,语句表达为:ncread (‘XXX.nc’,‘var’, [i j t],[leni lenj lent]),其中XXX.nc为文件名,为字符串需要’’;var是从XXX.nc中读取的变量名,为字符串需要’’;i、j、t分别为读取数据的起始行、列、时间,leni、lenj、lent i分别为在行、列、时间维度上读取的长度。这样,研究区内任何地区、任何时间段均可用此函数读取。Matlab的help里面有很多关于nc数据的命令,可查看。数据坐标系统建议使用WGS84。
彭守璋
本数据集来源于论文:Ding, L., Spicer, R.A., Yang, J., Xu, Q., Cai, F.L., Li, S., Lai, Q.Z., Wang, H.Q., Spicer, T.E.V., Yue, Y.H., Shukla, A., Srivastava, G., Khan, M.A., Bera, S., and Mehrotra, R. 2017. Quantifying the rise of the Himalaya orogen and implications for the South Asian monsoon. Geology, 45:215-218.该项成果是丁林研究员团队在青藏高原开展古高度系列研究成果的一部分。该团队应用植物化石及稳定同位素方法,重建了喜马拉雅-青藏高原造山带南缘定量隆升历史。含植物化石地层锆石U-Pb年代学表明柳区地层时代为晚古新世(56Ma),恰布林地层时代为早中新世(21-19Ma)。植物化石结果表明在喜马拉雅地区完全退出海洋沉积历史前后(55-50Ma),柳区地区仍处于相对较低的海拔高度(~1000m 或更低),直到早中新世,恰布林地区的古高度也仅为~2300m。不同于古新世就具有高海拔 (~5000m)特征的冈底斯山,喜马拉雅从晚古新世时(56Ma)的~1000m 缓慢生长至早中新世时(21-19Ma)的~2300m 高度,此后~5-7 Ma 快速隆升,达到现今高度。过去56 Ma的喜马拉雅-青藏高原与喜马拉雅前陆盆地降水对比揭示,喜马拉雅山隆升可能是藏南地区逐渐干旱的原因。
丁林
本数据集来源于论文: Chen, F.H., Welker, F., Shen, C.C., Bailey, S.E., Bergmann, I., Davis, S., Xia, H., Wang, H., Fischer, R., Freidline, S.E., Yu, T.L., Skinner, M.M., Stelzer, S., Dong, G.R., Fu, Q.M., Dong, G.H., Wang, J., Zhang, D.J., & Hublin, J.J. (2019). A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau. Nature, 569, 409-412. 该成果是陈发虎院士带领其团队多年来在青藏高原开展过去人类活动和环境适应研究获得的又一突破性进展。研究团队分析了甘肃夏河县新发现的古人类下颌骨化石,可以确定其为青藏高原的丹尼索瓦人,建议命名为夏河丹尼索瓦人,简称夏河人。研究团队针对该化石开展了年代学、体质形态学、分子考古学、生存环境、人类适应等多学科综合分析。结果发现,该化石目前是除阿尔泰山地区丹尼索瓦洞以外发现的首例丹尼索瓦人化石,也是青藏高原发现的最早人类活动证据(距今16万年前)。该研究为进一步探讨丹尼索瓦人的体质形态特征及其在东亚地区的分布、青藏高原早期人类活动历史及其对高海拔环境适应等问题提供了关键证据。 数据提取自论文中Supplementary Tables。 数据集包含6个数据表,数据表名称和内容分别为: t1: Distances in mm between meshes generated from CT versus photoscans (PS)(扫描图与CT形成的网格间以毫米为单位的距离); t2: Measurements of the Xiahe mandible after reconstruction(对夏河人下颌重建后的测量); t3: Comparative Dental metrics(牙科指标比较); t4: Comparative crown morphology(牙冠形态比较); t5: Uniprot accession numbers for protein sequences of extant primates used in the phylogenetic analyses(用在系统发育分析中的现存灵长类动物蛋白质序列在蛋白质仓库中的唯一标识号); t6: Specimen names and numbers(样本的名称和编号)。
陈发虎
该数据为中国逐月最低温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
该数据为中国逐月最高温度数据,空间分辨率为0.0083333°(约1km),时间为1901.1-2021.12。数据格式为NETCDF,即.nc格式。数据单位为0.1 ℃。该数据集是根据CRU发布的全球0.5°气候数据集以及WorldClim发布的全球高分辨率气候数据集,通过Delta空间降尺度方案在中国地区降尺度生成的。并且,使用496个独立气象观测点数据进行验证,验证结果可信。本数据集包含的地理空间范围是全国主要陆地(包含港澳台地区),不含南海岛礁等区域。数据坐标系统建议使用WGS84。
彭守璋
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
本数据集是一个包含接近36年(1983.7-2018.12)的全球高分辨率地表太阳辐射数据集,其分辨率为3小时/逐日/逐月,10公里,数据单位为W/㎡,瞬时值。该数据集可用于水文建模、地表建模和工程应用。该数据集是基于改进的物理参数化方案并以ISCCP-HXG云产品、ERA5再分析数据以及MODIS气溶胶和反照率产品为输入而生成的。验证并和其他全球卫星辐射产品比较表明,该数据集的精度通常比ISCCP-FD、GEWEX-SRB和CERES全球卫星辐射产品的精度要高。该全球辐射数据集将有助于未来地表过程模拟的研究和光伏发电的应用。
唐文君
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2018年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:祁连山站、藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、慕士塔格等七个站 点逐日实测水文(径流、水位、水温等)数据。
朱立平, 彭萍
本数据集来源于论文: Chen, F.H., Dong, G.H., Zhang, D.J., Liu, X.Y., Jia, X., An, C.B., Ma, M.M., Xie, Y.W., Barton, L., Ren, X.Y., Zhao, Z.J., & Wu, X.H. (2015). Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 BP. Science, 347, 248–250. 数据整理自论文内Supplementary Materials中的表格数据。 在这篇文章中,研究人员对来自青藏高原东北地区各地的53处遗址的动物骨骼、植物遗骸及其它人工制品进行了分析,发现自从大麦(Barley)产生后,人类就开始迁移到海拔高达4700米的地区定居。该研究显示,史前人类是在距今3600年以后全球气候转冷的大背景下向青藏高原高海拔地区大规模扩张的,其关键的促进因素是农业技术革新而不是气候变化。 数据集包含4个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Calibrated radiocarbon dates and domesticated plant and animal remains from sites investigated on the NETP(青藏高原东北部研究的遗址的校准的放射性碳年代和驯化动植物遗骸); t2:Radiocarbon dates of the Paleolithic sites on the Tibetan Plateau(青藏高原旧石器时代遗址的放射性碳年代); t3:OSL dates of the Paleolithic sites on the Tibetan Plateau(青藏高原旧石器时代遗址的光释光年代)。 数据详细信息参见附件:Supplementary Materials.pdf,Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3,600 BP.pdf。
陈发虎
黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
贺缠生
数据集包括以下土壤理化性质:pH值、有机质含量、阳离子交换量、根系丰度、总氮(N)、总磷(P)、总钾(K)、碱解氮、速效磷、速效钾、可交换H+、Al3+、Ca2+、Mg2+、K+、Na+、土层厚度、土壤剖面深度、砂、淤泥和C。铺设部分、岩石碎片、体积密度、孔隙、结构、稠度和土壤颜色。提供了质量控制信息(QC)。 分辨率为30弧秒(赤道处约1公里)。土壤性质的垂直变化由8层记录,深度为2.3 m(即0-0.045-0.091、0.091-0.166、0.166-0.289、0.289-0.493、0.493-0.829、0.829-1.383和1.383-2.296 m),以便于在普通土地模型和社区土地模型(CLM)中使用。 数据采用NetCDF格式存储,数据文件名称及其说明如下: 1.THSCH.nc: Saturated water content of FCH 2.PSI_S.nc: Saturated capillary potential of FCH 3.LAMBDA.nc: Pore size distribution index of FCH 4.K_SCH.nc: Saturate hydraulic conductivity of FCH 5.THR.nc: Residual moisture content of FGM 6.THSGM.nc: Saturated water content of FGM 7.ALPHA.nc: The inverse of the air-entry value of FGM 8.N.nc: The shape parameter of FGM 9.L.nc: The pore-connectivity parameter of FGM 10.K_SVG.nc: Saturated hydraulic conductivity of FGM 11.TH33.nc: Water content at -33 kPa of suction pressure, or field capacity 12.TH1500.nc: Water content at -1500 kPa of suction pressure, or permanent wilting point
戴永久, 上官微
本数据集来源于论文: Yao, T., Thompson, L., & Yang, W. (2012). Different glacier status with atmospheric circulations in tibetan plateau and surroundings. Nature Climate Change, 1580, 1-5.,数据整理自论文内Supplementary information中的表格数据。 此论文通过对82条冰川退缩、7090条冰川面积减少和15条冰川质量平衡变化的调查,总结了近30年来的冰川状况。 数据集包含8个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Distribution of Glaciers in the TP and surroundings(青藏高原及周边地区冰川分布面积); t2:Data and method for analyzing glacial area reduction in each basin(分析各流域冰川面积减少的数据和方法列表); t3:Glacial area reduction during the past three decades from remote sensing images in the TP and surroundings(基于遥感影像得出的青藏高原及周边地区过去30年中冰川面积减少情况); t4:Glacial length fluctuationin the TP and surroundings in the past three decades(青藏高原及周边地区过去30年中冰川长度波动数据); t5:Detailed information on the glaciers for recent mass balance measurement in the TP and surroundings(青藏高原及周边地区近年来冰川质量平衡测量方法的详细信息); t6:Recent annual mass balances in different regions in the TP(青藏高原不同区域近年来每年质量平衡数据); t7:Mass balance of Long-time series for the Qiyi, Xiaodongkemadi and Kangwure Glaciers in the TP(青藏高原七一冰川,小冬克玛底冰川和抗物热冰川质量平衡长时间序列数据)。 数据详细信息参见附件:Supplementary information.pdf,Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings.pdf。
姚檀栋
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 高程数据图是根据中国1:25万等高线和高程点形成的1km数据,包括DEM、山影(hillshade)、坡度(Slope)、坡向(Aspect)图 数据集投影: 两种投影方式 : 正轴割圆锥等面积投影 Albers Conical Equal Area(105、25、47) 大地坐标WGS84坐标系
汤国安
本数据集来源于论文:Zhang, J. F., Xu, B., Turner, F., Zhou, L., Gao, P., Lü, X., & Nesje, A. (2017). Long-term glacier melt fluctuations over the past 2500 yr in monsoonal High Asia revealed by radiocarbon-dated lacustrine pollen concentrates. Geology, 45(4), 359-362. 在本文中,中国科学院青藏高原研究所、地球科学卓越创新中心徐柏青研究员及其博士后张继峰与来自北京大学等单位的合作者,对高原南部枪勇冰川冰前湖沉积物进行了多方法(植物残体、孢粉浓缩物、全有机质)放射性碳测年,提出了一个重建古冰川融化强度的新指标(“老孢粉效应”,即沉积物孢粉年龄与沉积物真实年龄的差值)。该研究发现北半球温度及西风环流活动可能是高原季风区冰川百年尺度波动的主控因素,高原近代的冰川融化强度达到过去2500年以来最强,超过了历史上的中世纪暖期和罗马暖期。 数据由论文作者提供,数据包含了基于老孢粉效应(ΔAgepollen)重建的过去2500年枪勇冰川融化强度变化数据。 研究人员从枪勇错冰前湖获得了一根3.06米长的湖芯(QYL09-4)和一根1.06m长的平行重力钻湖芯(QY-3),使用新的复合提取及纯化程序,从沉积物中获得了相对纯的孢粉浓缩物和植物残体浓缩物(PRC;> 125μm)。对全有机质,PRC和孢粉浓缩物分别进行了14C年代测定。所有14C年龄都使用IntCal13(Reimer et al., 2013)进行了校准。年龄深度模型基于210Pb、137Cs年龄及五个PRC的14C年龄。使用Oxcal 4.2(Bronk Ramsey,2008)中的P_Sequence算法构建岩芯的年龄深度模型。将校准的孢粉年龄中减去根据沉积模型得出的真实沉积物年龄,从而得出老孢粉效应值(ΔAgepollen)。 数据为湖芯(QYL09-4)的放射性碳测年与老孢粉效应数据。 数据包含字段如下: Lab No.:样本编号 Dating Material:测年材料 Depth (cm):深度(厘米) 14C age (yr BP):碳14年龄(年 距今) ΔAgepollen (≥95.4 % yrs):孢粉年龄与估算的沉积物年龄间的差值(≥95.4 % 年) Sediment Age (CE):沉积物年龄(公元) 数据详细信息参见附件:ZhangJF et al. 2017 GEOLOGY_Long-term glacier melt fluctuations over the past 2500 yr on the Tibetan Plateau.pdf。
张继峰
本数据集来源于论文:Huang, R., Zhu, H.F., Liang, E.Y., Liu, B., Shi, J.F., Zhang, R.B., Yuan, Y.J., & Grießinger, J. (2019). A tree ring-based winter temperature reconstruction for the southeastern Tibetan Plateau since 1340 CE. Climate Dynamics, 53(5-6), 3221-3233. 在本文中,为了了解过去几百年冬季温度变化历史及其驱动因素,中国科学院青藏高原研究所高寒生态重点实验室、青藏高原地球科学卓越创新中心梁尔源研究员课题组,利用2007-2016年期间采集的树木年轮样本重建了青藏高原东南部地区公元1340年以来的冬季(11-2月)最低温度变化历史。 数据由论文作者提供,数据包含了1340-2007年青藏高原东南部昌都地区冬季的最低温度重建数据。 数据包含以下字段: year:年 Tmin.recon( ℃):重建的最低温度( ℃) 数据详细信息参见附件:A tree ring-based winter temperature reconstruction for the southeasternTibetan Plateau since 1340 CE.pdf
黄茹, 朱海峰, 梁尔源
本数据集来源于论文: Pei, S.P., Niu, F.L., Ben-Zion, Y., Sun, Q., Liu, Y.B., Xue, X.T., Su,J.R., & Shao, Z.G. (2019). Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault. Nature Geoscience. 12. 387-392. doi:10.1038/s41561-019-0347-1. 数据整理自论文内Supplementary information中的表格数据。 该论文研究位于青藏高原东缘与四川盆地西部的龙门山断裂带在大地震中的结构演化过程,通过对地震波速度同震降低和震后恢复现象的观测,发现芦山地震的发生显著加速了汶川地震破裂区的愈合。 数据集包含3个数据表,数据表名称和内容分别为: Data list:数据列表; t1:Data of the four periods(汶川地震前、汶川地震后、芦山地震前、芦山地震后四个时期的数据); t2:The average velocities with error in Figure 2 in the paper for Wenchuan earthquake (WCEQ) and Lushan earthquake (LSEQ) area(文章中图二汶川地震和芦山地震区域含误差的平均速度)。 数据详细信息参见附件:Supplementary information.pdf,Seismic velocity reduction and accelerated recovery due to earthquakes on the Longmenshan fault.pdf。
裴顺平
本数据来源于全国地理信息资源目录服务系统中1:100万全国基础地理数据库,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将青藏高原作为一个整体进行了拼接融合、裁切,以便于青藏高原研究中的使用。数据现势性为2017年。 本数据集为青藏高原1:100万行政边界,包括行政国界线(National_Tibet_line)、省界(Province_Tibet),市(州)界(City_Tibet)县界图层(County_Tibet_poly)和县界线图层(County_Tibet_line)。 行政境界面图层(County_Tibet_poly)属性项名称及定义: 属性项 描述 填写实例 PAC 行政区划代码 513230 NAME 名称 县界名称 行政边界线图层(BOUL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 630200 行政边界线图层(County_Tibet_line)属性项含义: 属性项 代码 描述 GB 630200 省级界线 GB 640200 地、市、州级行政区界 GB 650201 县级行政区界(已定)
国家基础地理信息中心
青藏高原是世界上中低纬度地区冻土面积最大的地区。目前已编制了一些多年冻土分布图,但由于资料来源有限、标准不明确、验证不充分、高质量空间数据集的缺乏,使得在TP上绘制多年冻土分布图存在较大的不确定性。 本数据集基于改进的中分辨率成像光谱仪(MODIS)地表温度(LSTs)2003-2012年1km晴空MOD11A2 (Terra MODIS)和MYD11A2(Aqua MODIS)产品(reprocessing version 5)的冻融指数及冻土顶部温度(TTOP)模型模拟了多年冻土的分布,生成了青藏高原冻土图。并通过野外地面观测、土壤含水率和容重等各种调查数据对该图进行了验证。 冻土属性主要包括:季节性冻土(Seasonally frozen ground)、多年冻土(Permafrost)、非冻土区域(Unfrozen ground)。 数据集为青藏高原冻土研究提供了更详细的冻土分布资料和基础资料。
赵林
此边界数据总集包含五种类型的边界: 1、TPBoundary_2500m:基于ETOPO5 Global Surface Relief,采用ENVI+IDL 提取青藏高原经度(65~105E),纬度(20~45N)范围内海拔高程2500米的数据。 2、TPBoundary_3000m:基于ETOPO5 Global Surface Relief,采用ENVI+IDL 提取青藏高原经度(65~105E),纬度(20~45N)范围内海拔高程3000米的数据。 3、TPBoundary_HF(high_frequency):李炳元(1987)曾对确定青藏高原范围的原则与具体界线进行了较系统的讨论,从高原地貌形成和基本特征角度,提出了依据地貌特征、高原面及其海拔高度,同时考虑山体完整性作为确定高原范围的基本原则。张镱锂(2002) 根据相关领域研究的新成果和多年野外实践,论证确定青藏高原范围和界线的原则, 结合信息技术方法对青藏高原范围与界线位置进行了精确的定位和定量分析,得出:青藏高 原在中国境内部分西起帕米尔高原,东至横断山脉,南自喜马拉雅山脉南缘,北迄昆仑山— 祁连山北侧。 2017年4月14日,中华人民共和国民政部发布《关于增补藏南地区公开使用地名(第一批)的公告》,增加了乌间岭、米拉日、曲登嘎布日、梅楚卡、白明拉山口、纳姆卡姆等6个藏南地区地名。 4、TPBoundary_new (2021):伴随青藏高原研究的深入,高原内外多学科研究程度和认识的提高,及地理大数据、地球观测科学和技术的进步,张镱锂等2021年版青藏高原范围界线数据研发基于ASTER GDEM和Google Earth 遥感影像等资料综合分析完成,该范围界线北起西昆仑山-祁连山山脉北麓,南抵喜马拉雅山等山脉南麓,南北最宽达1560 km;西自兴都库什山脉和帕米尔高原西缘,东抵横断山等山脉东缘,东西最长约3360 km;经纬度范围为25°59′30″N~40°1′0″N、67°40′37″E~104°40′57″E,总面积为308.34万km2,平均海拔约4320 m。在行政区域上,青藏高原分布于中国、印度、巴基斯坦、塔吉克斯坦、阿富汗、尼泊尔、不丹、缅甸、吉尔吉斯斯坦等9个国家。 5、TPBoundary_rectangle:根据范围Lon(63~105E) Lat(20~45N),画取长方形,数据采用经纬度投影WGS84。 青藏高原边界作为基础数据,可以为各类地学数据及科学研究青藏高原作参考依据。
张镱锂
基于第二次全国土壤调查的中国1:1000000比例尺土壤图和8595个土壤剖面图,以及美国农业部(USDA)中国区域土地和气候模拟标准,开发了一个多层土壤粒度分布数据集(砂、粉土和粘土含量)。 采用多边形链接方法,结合土壤剖面和地图多边形之间的距离、剖面的样本大小和土壤分类信息,推导出砂、粉土和粘土的含量分布图。该数据集分辨率为1公里,可用于区域范围内的土地和气候建模。 数据特征 投影:GCS_Krasovsky_1940 覆盖范围:中国 分辨率:0.00833 度(约一公里) 数据格式:FLT, TIFF 取值范围:0%-100% 文件说明 浮点栅格文件包括: sand1.flt, clay1.flt – 表层(0-30cm) 砂粒、粘粒含量。 sand2.flt, clay2.flt – 底层(30-100cm) 砂粒、粘粒含量。 psd.hdr – 头文件: ncols – 列数 nrows – 行数 xllcorner – 左下角纬度 yllcorner – 左下角经度 cellsize – 单元格大小 NODATA_value – 空值 byteorder - LSBFIRST, Least Significant Bit First TIFF 栅格文件包括: sand1.tif, clay1.tif -表层(0-30cm) 砂粒、粘粒含量。 sand2.tif, clay2.tif -底层(30-100cm) 砂粒、粘粒含量。
上官微, 戴永久
中国土地利用现状遥感监测数据库是在国家科技支撑计划、中国科学院知识创新工程重要方向项目等多项重大科技项目的支持下经过多年的积累建立的覆盖全国陆地区域的多时相土地利用现状数据库。 数据集为西北(南)六省包括:新疆、西藏、青海、云南、四川、甘肃。以1970s、1980s、1995、2000、2005、2010、2015年Landsatt TM/ETM遥感影像为底图,利用专业软件通过人工目视解译生成。然后在矢量数据的基础上栅格化生成的1KM栅格数据。 土地利用类型包括耕地、林地、草地、水域、居民地和未利用土地6个一级土地类型以及25个二级类型。 数据包括经纬度 WGS投影(Geo)和等面积圆锥投影(Albers)两种投影方式 中国土地利用现状遥感监测数据库是目前我国精度最高的土地利用遥感监测数据产品,已经在国家土地资源调查、水文、生态研究中发挥着重要作用
刘纪远
青藏高原流域边界数据集使用2000年的航天飞机雷达地形任务收集的干涉合成孔径雷达SRTM DEM 数据、参考河流、湖泊等水系辅助数据,利用arcgis水文模型,分析、提取河网,将青藏高原划分为AmuDayra、Brahmaputra、Ganges、Hexi、Indus、Inner、Mekong、Qaidam、Salween、Tarim、Yangtze、Yellow等12个子流域。其中研究区外围边界是基于2500米等高线。
张国庆
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件