English | 中文
该数据集包含了基于ASTER GDEM v3提取的三江源地区数字高程数据,空间分辨率为30m。数字高程模型(Digital Elevation Model,简称DEM),利用有序、有限的位置高程数值矩阵实现对地球表面高程状态的数字化模拟,是建立数字地形模型(Digital Terrain Model,简称DTM)的基础。 NASA(美国国家航空航天局)和METI(日本经济产业省)于2009年6月28日共同发布了ASTER GDEM v1数据产品,并宣布向全球用户免费开放下载使用。2011年10月中旬,NASA和METI共同发布了ASTER GDEM v2版本,在v1的基础之上,新增了26万光学立体像对数据,主要用于改善覆盖范围、提升数据分辨率、提升水体掩模处理精确度。2019年8月5日,NASA和METI共同发布了ASTER GDEM v3版本,在v2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。 本DEM数据是基于ASTER GDEM v3,利用三江源地区边界范围进行拼接处理和修正,空间分辨率为1弧度秒(约30 米),格式为GeoTIFF,参考大地水准面为WGS84/EGM96,特殊DN值:无效像素值为-9999,海平面数据为0。精度:垂直精度20米,水平精度30米。
该数据集包含了三江源地区1km空间分辨率的理论载畜量数据集。该数据集在2015年到2021年收集的地面样点数据基础上,与基于MODIS遥感影像提取的NDVI数据进行建模,反演得到三江源地区地上草地生物量数据,利用羊单位(SU)换算得到公里网格2020年理论载畜量(羊单位,SU)数据集。空间分辨率为1km。在算法中,首先结合地面样方和对应的同时相MODIS植被指数,建立回归关系模型,此外,集成了去云算法、基于地面验证点建立了基于支持向量机分类器的优化算法,最终得到分类效果较好的草地分类产品作为掩膜,最终得到公里网格理论载畜量(羊单位,SU)。该数据集具有很好的高空间分辨率和高时效性等特点。
北极放大效应是 20 世纪最显著的气候变化现象。为理解北极放大效应对全球气候变化的响应及影响,科学家们开展了 CMIP6 子计划北极放大效应比较计划(PAMIP)。 中国科学院大气物理研究所的气候系统模式 FGOALS-f3-L 参加了上述计划并完成和提交了 8 组大样本集合试验。这些试验基于陆气耦合模式,分别考虑了不同下垫面强迫的组合在工业革命前情景、 现代气候情景和未来气候变化情景下,全球海温和海冰变化对大气环流及全球气候系统的影响。所有的试验外强迫固定在 2000 年,采用 100 个集合,从 2000 年 4 月 1 日开始积分到 2001 年 6 月 30 日。以上数据为进一步理解北极放大效应现象及其影响提供了新的科学数据和科学依据。
中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室研发的全球气候系统模式FGOALS-f3-H/L 参加CMIP6 高分辨率模式比较计划数据集。CAS FGOALS-f3-H的水平分辨率为0.25°,CAS FGOALS-f3-L的水平分辨率为1°,由标准的外部条件强迫,对1950-2014年和2015-2050年时间段进行了2套模拟,实验ID分别为 "highresSST-present "和 "highresSST-future"。模式输出包含多种时间尺度,包括:小时平均值、三小时平均值、六小时瞬时值、日平均值和月平均值数据集。
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
冰川表面运动提取在冰川动力学与物质平衡变化研究中具有重要意义,针对当前我国自主遥感卫星数据在冰川运动监测应用中存在的不足,选用GF-3卫星FSI模式下获取的2019—2020年间覆盖青藏高原高山区典型冰川的SAR数据,借助并行化偏移量跟踪算法获取了研究区冰川表面流速分布。GF-3影像凭借其良好的空间分辨率,在规模较小、运动缓慢的冰川运动提取方面具有显著的优势,能够更好地体现冰川运动细节信息及其差异性。该研究有助于分析气候变化背景下青藏高原地区冰川的运动规律及其时空演变特征。
南极McMurdo Dry Valleys 冰川表面流速遥感后处理产品,基于Antarctic Ice Sheet Velocity and Mapping Project(AIV)数据,通过先进的算法和数值工具后处理得到。该产品利用Sentinel-1/2/Landsat数据绘制,提供了McMurdo Dry Valleys 均匀、高分辨率(60m)的冰流速结果,时间覆盖范围从2015到2020。
该数据为第六次国际耦合模式比较计划 (CMIP6)在中等排放场景(ssp245)下对2020年-2100年南极海冰密集度数据的模拟。对CMIP6的25个模式数据统一插值后进行集合平均。海冰密集度数据大小在0-1之间,数据时间范围从2020年1月至2100年12月,时间分辨率为月,空间范围为南纬45°以南,空间分辨率为1°×1°。该数据提供了中等排放情景下,南极海冰的的状态和演变,可为南极未来变化等研究提供参考。
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。采用了CMIP6提供的13个模型4种情景输出的降水与气温数据,对未来降水与气温数据进行后处理,后处理后的降水与气温驱动水文模型,模拟出2046-2065年水循环过程,给出全青藏高原空间0.1度日尺度径流未来可能时空分布。
基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
基于中国第33次南极科学考察,在东南极中山站至Dome A断面上获取的雪冰金属元素浓度时空分布数据集,主要包括:1、距离中山站202公里处获取的一支浅冰芯,冰芯涵盖时间长度为1990年至2017年,分辨率为年,包括金属元素铁以及氢氧同位素等数据。2、沿着东南极中山站-Dome A断面,每个10公里采集一个样品,金属元素包括稀土元素和钡等元素。数据可用于研究自然源和人类活动对南极雪冰的污染和贡献等。
火狐浏览器
谷歌浏览器
联系方式
友情链接
帮助信息
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件