该数据集包含了2018年6月16日至2018年10月18日的黑河水文气象观测网下游四道桥(包括柽柳与胡杨林)叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是柽柳与胡杨。观测在四道桥超级站(101.1374E, 42.0012N)和混合林站(101.1335E, 41.9903N)旁开展,样方共计2个,每个样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
2019-06-07
该数据集包含2018年6月15日至11月7日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
2019-06-07
该数据集由三部分组成:①2018年8月16日至8月30日在祁连山石羊河流域上游7条支流及下游青土湖进行的植物样地调查数据;②2018年9月25日至10月3日在黑河、疏勒河流域主要支流进行的植物样地调查数据;③2013年8月18日至2018年8月8日在青海湖与黑河流域的植物样地调查数据。第一部分调查涉及草本、灌木、乔木的生长特性与数量信息;第二部分主要调查乔木,对草本仅作粗略估计;第三部分主要调查草甸植被。 三部分调查依据植被类型设置样地,每个样地至少选取 3 个样方(分乔木、灌木、草本)。其中,草本样方面积为 1m×1m 或 0.5m×0.5m;荒漠灌木样方面积为 10m×10m;森林灌丛面积为 2m×2m;灌木灌丛面积4m×4m;乔木样方面积为20m×20m。在每个样方内进行植物群落调查:乔木样方调查主要调查物种数量、物种多度、20株乔木每木检尺(含株高、胸径、冠幅、活枝下高)、样方内全部乔木胸径;灌木样方主要调查全部灌木的物种数量、多度、灌木冠幅、灌木株高;草本样方主要调查草本物种数量、多度或分盖度、平均株高、总盖度,地上生物量。
2019-06-05
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。 第三极地区为40°1′52″N~23°11′59″N、105°43′45″E~61°28′45″E的世界屋脊生态地理区,其中包括青藏高原、横断山脉、喜马拉雅山脉、兴都库什山脉、帕米尔高原。划分依据:以海拔高度4000 m为基准,融合地形坡度,参考山体完整性和生态系统整体性,空间分辨率为0.008°×0.008°。
2019-05-02
地表蒸散发(Evapotranspiration,ET)是地球系统中水循环和能量传输的重要环节,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域乃至全球水资源规划管理具有重要的指导意义。随着遥感技术的发展,遥感估算地表蒸散发已成为获取区域与全球蒸散发的一个有效途径,目前多种中低分辨率地表蒸散发产品已业务化生产和发布,但遥感估算地表蒸散发模型在模型机理、输入数据、参数化方案等方面仍存在许多不确定性,因此,需要通过真实性检验来定量评价遥感估算地表蒸散发产品的精度。但在真实性检验过程中,存在地表蒸散发遥感估算值与站点观测值的空间尺度不匹配问题,因此卫星像元尺度地表蒸散发的相对真值获取是关键。 以黑河流域综合观测网2012年6-9月中游“非均匀下垫面地表蒸散发的多尺度观测试验”中通量观测矩阵的4(村庄)、5(玉米)、6(玉米)、7(玉米)、8(玉米)、11(玉米)、12(玉米)、13(玉米)、14(玉米)、15(玉米)、17(果园)号站和2014-2015年1-12月下游绿洲胡杨林站(胡杨林)、混合林站(柽柳/胡杨)、裸地站(裸地)、农田站(甜瓜)、四道桥站(柽柳)观测数据(自动气象站、涡动相关仪、大孔径闪烁仪等)为基础,以高分辨率遥感数据(地表温度、植被指数、净辐射等)作为辅助数据,分布图见图1,考虑地表异质性对ET尺度扩展的影响,通过直接检验和交叉检验对6种尺度扩展方法(面积权重法、基于Priestley-Taylor公式的尺度扩展方法、不等权重面到面回归克里格方法、人工神经网络、随机森林、深度信念网络)进行比较和分析,最终优选一种综合的方法(在下垫面均匀时,采用面积权重法;在下垫面中度非均匀时,采用不等权重面到面回归克里格方法;下垫面高度非均匀时采用随机森林方法)分别获取中游和下游通量观测矩阵区域MODIS卫星过境瞬时/日的地表蒸散发像元尺度相对真值(空间分辨率为1km),并通过与大孔径闪烁仪观测值(参考值)进行验证分析,结果表明:该数据集整体精度良好,中游卫星像元尺度相对真值瞬时和逐日的平均绝对百分误差(MAPE)分别为2.6%和4.5%,下游卫星像元尺度相对真值瞬时和逐日的MAPE分别为9.7%和12.7%,可以用来验证其它遥感产品。该像元地表蒸散发数据既能解决遥感估算值与站点观测值的空间不匹配问题,又能表征验证过程的不确定性。所有站点信息和尺度扩展方法请参考Li et al. (2018)和 Liu et al. (2016),观测数据处理请参考Liu et al. (2016)。
2019-04-27
该数据集提供了南极洲1公里分辨率数字高程模型(DEM)。DEM结合了欧洲遥感卫星-1 (ERS-1)卫星雷达高度计(SRA)和冰、云和陆地高度计(ICESat)地球科学激光高度计系统(GLAS)的测量数据。ERS-1数据来自1994年3月开始的168天的两个长重复周期,GLAS数据来自2003年2月20日至2008年3月21日。数据集大约为240mb,由两个网格化二进制文件和两个用于可视化图像(ENVI)头文件的环境组成,可以使用ENVI或其他类似软件包查看。这些数据可以通过FTP获得。
2019-04-11
数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。 北极地区指北极圈66°34′以内的区域和格陵兰岛在北极圈以外的部分。高程数据包括北极数字dem及山影数据(hillshade),tif格式。范围为66°N~90°N,空间分辨率为0.008°×0.008°。 数据下载自NASA全球高程数据 DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。
2019-03-14
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
2019-02-10
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
2019-02-10
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
2019-02-06
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件