南极

简介:南极,是地球大气的冷源之一,也是一个对气候变化十分敏感的地区。随着全球气候变暖,南极成为多个国际计划研究全球气候变化的关键地区。全球的冰雪大多存储在南极,南极洲95%以上地区被平均厚度2000米的冰盖、冰架和终年不化的积雪所覆盖,拥有能使全球海平面升高66米的冰大陆。

发布时间:2022-03-10

数据集:49

  • 北美多模型集合NMME数据集(1982-2010)

    北美多模型集合NMME是由美国模式中心(包括NOAA/NCEP、NOAA/GFDL、IRI、NCAR、NASA)和加拿大CMC联合发布的多模式集合季节预报系统数据集。数据包含1982-2010年回报数据和2011年至今的实时气象预报数据。其时间分辨率为逐月,覆盖范围为全球,水平空间分辨率为1°。NMME共有9个气候预报模式,每个模式包含6-28个集合成员,预见期为9-12个月。其气候模式的名称、来源、集合成员和预见期如下: 1)CMC1-CanCM3,Environment Canada,10个模式,12个月 2)CMC2-CanCM4,Environment Canada,10个模式,12个月 3)COLA-RSMAS-CCSM3,National Center for Atmospheric Research,6个模式,12个月 4)COLA-RSMAS-CCSM34,National Center for Atmospheric Research,10个模式,12个月 5)GFDL-CM2p1-aer04,NOAA Geophysical Fluid Dynamics Laboratory,10个模式,12个月 6)GFDL-CM2p5-FLOR-A06,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 7)GFDL-CM2p5-FLOR-B01,NOAA Geophysical Fluid Dynamics Laboratory,12个模式,12个月 8)NASA-GMAO-062012,NASA Global Modeling and Assimilation Office,12个模式,9个月 9)NCEP-CFSv2,NOAA National Centers for Environmental Prediction,24/28个模式,10个月 除CFSv2模式外(只含降水和平均气温),其他模式数据变量包含降水、平均气温、最高气温和最低气温。每个模式集合成员每月的一个变量数据存放一个nc文件。各变量的气象要素、变量名、单位和物理意义如下: 1)平均气温,tref,K,月平均近地面(2m)平均气温 2)最高气温,tmax,K,月平均近地面(2m)最高气温 3)最低气温,tmin,K,月平均近地面(2m)最低气温 4)降水,prec,mm/day,月平均降水量。 该数据集在气候预报,水文预报驱动,量化模式预报不确定性方面得到广泛的应用。

    2018-02-18 4057 查看详情

  • AMSR-E全球陆表被动微波遥感发射率数据集(2002-2012)

    本数据集考虑到搭载在Aqua卫星上的高级微波扫描辐射计(AMSR-E)和中分辨率成像光谱仪(MODIS)的同步观测特点,采用MODIS的地表温度和大气水汽数据作为输入,通过考虑大气影响的发射率估算模型,生产了全球晴空条件下AMSR-E传感器运行期间(2002年6月~2011年10月)的陆表多通道双极化微波瞬时发射率。通过产品低频无线电信号影响、数据间比对、统计分析、不同地表覆盖条件的发射率特征、频率依赖和相关性研究等开展验证性分析,结果表明瞬时发射率的动态细节丰富,月内日变化标准差在0.02以内,其时空变化、频率依赖和相关性符合自然物理过程的理解。此套数据集包括AMSR-E全生命周期的全球陆表逐日、侯、旬、半月及月产品,可用于开展星载被动微波遥感模拟、陆面模型以及陆表温度、积雪、大气降水/水汽/可降水量等反演研究。数据的投影坐标采用标准的EASE-GRID投影,数据存储方式为二进制浮点型格点(矩阵大小为1383*586),数据获得之后可用ENVI/IDL等软件或者相应程序代码以二进制文件的方式读取。

    2018-02-16 3560 查看详情

  • 南极Law Dome冰芯甲烷浓度(1010-1980)

    从公元1000年到现在大气中甲烷的浓度在南北极冰芯呈现显著的上升,本数据来自澳大利亚塔斯马尼亚实验室,对冰芯样品采取湿法提取,通过对所有样品使用相同的测量程序和校准, 获取了高分辨率数据。数据结果与瑞士伯尔尼大学、丹麦哥本哈根大学以及美国俄亥俄州大学等国际著名冰芯温室气体实验室结果一致。 各变量的物理意义: 第一列:时间;第二列:甲烷浓度数值

    2018-02-15 2709 查看详情

  • 南北极冰盖微波辐射计和散射计数据(1978-2015)

    微波辐射计数据集为SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)亮温数据,覆盖时间从1978年到2015年,空间分辨率为25 km,南极数据每个文件由316*332的栅格组成,北极冻融数据每个文件由304*448的栅格组成;微波散射计数据集为QScat(2000-2009)和ASCAT(2009-2015)后向散射系数据,覆盖时间从2000年到2015年,空间分辨率为4.45km.南极数据每个文件由1940*1940的栅格组成,北极数据每个文件由810*680的栅格组成。时间分辨率为逐日,覆盖范围为南北极冰盖。

    2018-02-15 3479 查看详情

  • 南极Amery冰架流速场数据集V1.0(2003-2013)

    利用2003-2013年11景的Modis1B数据(NSIDC网站发布的冰架Modis1B数据),采用亚像元互相关方法提取南极Amery冰架表面流速,应用COSI-Corr软件提取冰架流速,获取近十年的年均流速时间序列,由于研究区域内缺乏实地观测,因此利用稳定区域的偏移量值评估冰流结果的精度,冰流误差约为±50m/year。冰流场数据覆盖时间从2003年到2013年,时间分辨率为逐年,覆盖范围为Amery区域,空间分辨率为500m。每年的冰流场数据存放一个Geotiff文件。 数据的详细情况见Amery冰流场-数据说明。

    2018-02-15 3911 查看详情

  • 南极冰盖表面高程数据(2003-2009)

    南极冰盖高程数据采用雷达高度计数据(Envisat RA-2)和激光雷达数据(ICESat/GLAS)制成。为提高ICESat/GLAS数据的精度,采用了五种不同的质量控制指标对GLAS数据进行处理,滤除了8.36%的不合格数据。这五种质量控制指标分别针对卫星定位误差、大气前向散射、饱和度及云的影响。同时,对Envisat RA-2数据进行干湿对流层纠正、电离层纠正、固体潮汐纠正和极潮纠正。针对两种不同的测高数据,提出了一种基于Envisat RA-2和GLAS数据光斑脚印几何相交的高程相对纠正方法,即通过分析GLAS脚印点与Envisat RA-2数据中心点重叠的点对,建立这些相交点对的高度差(GLAS-RA-2)与表征地形起伏的粗糙度之间的相关关系,对具有稳定相关关系的点对进行Envisat RA-2数据的相对纠正。通过分析南极冰盖不同区域的测高点密度,确定最终DEM的分辨率为1000 m。考虑到南极普里兹湾和内陆地区的差异性,将南极冰盖分为16个区,利用半方差分析确定最佳插值模型和参数,采用克吕金插值方法生成了1000 m分辨率的南极冰盖高程数据。利用两种机载激光雷达数据和我国多次南极科考实测的GPS数据对新的南极DEM进行了验证。结果显示,新的DEM与实测数据的差值范围为3.21—27.84 m,其误差分布与坡度密切关系。

    2018-02-14 4445 查看详情

  • 南北极细菌分布特征(V1.0)(2005-2006)

    南北极细菌分布数据集提供了南北极细菌分布特征。样品采集时间为13/12/2005至8/12/2006,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord_Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house,Robinsons Ridge,Herring Island,Browning Peninsula)。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F (5'-GAGTTTGATCNTGGCTCA-3' and 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。本数据系统的比较了南极东部以及北极微生物的多样性,对研究微生物在南北极的分布具有重大意义。

    2018-02-13 2834 查看详情

  • 南极地表覆盖图(1999-2003)

    全南极高分辨率遥感影像镶嵌图利用美国陆地卫星7号于1999-2003年间拍摄的1073幅影像以及覆盖南纬82.5度以南的中分辨率MODIS影像(拍摄于2005年)处理合成得到。基于该镶嵌图,结合南极科研需求,采用计算机自动解译和人工辅助相结合的方法,将南极洲地表覆盖划分为6大类:蓝冰、裂隙、裸岩、水体、冰碛、粒雪。经统计得到上述各类的面积和所占比例分别为:225207.29平方千米(1.651%),7153.36平方千米(0.052%),72958.04平方千米(0.535%),189.43平方千米(0.001%),310.76平方千米(0.003%),13337392.66平方千米(97.758%)。该地图为近似真彩色合成的卫星影像图,各地表覆盖类型采用不同的色块表示。该图主要为极地各学科科学研究、地理教育及科普等提供参考。

    2018-02-13 3119 查看详情

  • 南北极冰盖冻融数据集(1978-2015)

    南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。

    2018-02-13 3515 查看详情