青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。采用了CMIP6提供的13个模型4种情景输出的降水与气温数据,对未来降水与气温数据进行后处理,后处理后的降水与气温驱动水文模型,模拟出2046-2065年水循环过程,给出全青藏高原空间0.1度日尺度径流未来可能时空分布。
叶爱中
采用三个不同的数据源,包括1920年代的民国初期地图、1960年代的数字化地形图和1970-2020年的Landsat MSS/TM/ETM+/OLI影像。1920年代民国初期地图进行了扫描、几何校正和地理参考校正。1960年代使用1:250 000的地形图。所有地图都是以Albers等圆锥投影法进行地理参照,均方根(RMS)误差小于1.5个像元。针对早期地图,选择目视解译和手工数字化来对湖泊边界进行矢量化。从1990年开始,对Landsat影像采用半自动的水体分类方法来区分水体和非水体信息,然后提取湖泊边界,并通过与原始Landsat图像的比较进行目视检查和人工编辑。
张国庆, 冉有华
该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
植被调查数据是研究生态系统结构与功能必不可少的数据。青藏高原地区蕴含广袤的草地生态系统,主要包括高寒草甸、高寒草地、以及高寒荒漠化的草地。由于独特的地理位置以及高海拔缺氧的环境条件,在藏北高原的群落调查数据较为稀少。本数据集包括2019年藏北样带上47个采样点的的地上生物量和盖度数据,采样时间为7-8月。样方大小为50cm×50cm,烘干后称取植物干重。本数据集可用于生产力的空间分析与模型的校准工作。
张扬建, 朱军涛
本数据集为过去40年黄河源和祁连山区水量平衡(降水、蒸散发、径流、土壤液态含水量)、能量平衡(短波辐射、感热、潜热和表层土壤温度)数据集。初始数据源为ERA5-Land月平均数据,通过时间聚合累积/平均到年尺度。数据的时间范围为1981-2020年,空间范围为88.5°E – 104.5°E、32°N - 43°N,空间分辨率0.1°。数据集可进一步用于黄河源区与祁连山区生态-水文过程相关研究,为“山水林田湖草”系统优化调配提供科学依据。
郑东海
本数据集为过去20年间(2001-2020)青藏高原生长季NDVI与植被物候数据集,数据来源为MODIS(MOD13A2)产品,空间分辨率为1km。数据集内容包括:2001-2020年每年生长季(5-9月)平均NDVI、生长季开始日期(SOS)、生长季结束日期(EOS)与生长季长度(DOS)。提取物候采用了两种方法:动态阈值方法和双对数函数法。数据格式为TIFF格式,投影为Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area。
王泰华, 杨大文
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
森林碳密度是量化区域碳储量及其变化的重要参数,然而现有研究存在分辨率粗且不确定大的问题。为此,研究基于地面调查数据,结合星载激光雷达(GEDI)和Landsat图像,利用深度学习自动挖掘了多维度图像特征,绘制了30米空间分辨率中国东北地区的森林地上碳密度。结果与野外实测数据具有较好的一致性(R2=0.84 RMSE=6.28 ),研究提供的结果将为区域碳动态监测提供基准数据。 碳密度数据单位MgC ha-1
王晓昳, 汪涛, 吕冠廷
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
本数据集包括2000-2018年青藏高原植被生长季开始日期、结束日期多年平均空间分布格局,1982-1999年和2000-2020年青藏高原植被生长季开始日期、结束日期的时间变化趋势。该数据集以AVHRR NDVI、MODIS NDVI、EVI为基础,通过四个步骤最小化植被指数时间序列的偏差和噪声。首先,去除无植被覆盖、低植被覆盖或季节性较弱的植被对应的像元;其次,将冬季(12月至3月初)受积雪、冰或两者污染的植被指数替换为冬季未受污染的高质量的植被指数的平均值;其他季节由云和气溶胶引起的植被指数负偏差通过Savitzky-Golay方法进行校准;最后,使用双逻辑斯蒂或改良后的双逻辑斯蒂函数拟合年植被指数时间序列。基于阈值和拐点的方法,逐像元提取青藏高原植被生长季开始日期、结束日期。数据的空间分辨率为250m和1/12°。数据质量可靠。
沈妙根
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: Distributed Time—Variant Gain Hydrological Model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上,实际蒸发模拟同气象局公开的站点观测基本一致。模型模拟出1998-2017年水循环过程,经过验证之后,给出全青藏高原空间0.01度日尺度实际蒸发(包含土壤蒸发和植物蒸腾)时空分布。
叶爱中
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
《2015年第三极部分湖泊水体细菌后处理产品和常规水质参数》数据集收集了2015年期间青藏高原地区部分湖泊水体采样细菌分析结果和常规水质参数。通过整理归纳汇总得到2015年第三极部分湖泊水体细菌后处理产品,数据格式为excel,方便用户查看。样品由计慕侃老师采集于2015年7月1日至7月15日,包含28个湖泊(巴木错,白马纳木错,班戈错(盐湖), 班公错,崩错,别若则错,错鄂(申扎),错鄂(那曲),达瓦错,当穹错,当惹雍错,洞错,鄂雅错,公珠错,果根错,甲热布错,玛旁雍错,纳木错,聂尔错(盐湖),诺尔玛错,朋彦错(盐湖),蓬错,枪勇错,色林错,吴如错,物玛错,扎日南木错,扎西错),共计138个样品。其中湖泊水体细菌DNA提取方法如下:湖水过滤到0.45膜上,然后通过MO BIO PowerSoil DNA试剂盒提取DNA。16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。测序方式为Illumina MiSeq PE250,原始数据通过Mothur软件分析,包括quality filtering, chimera removal,序列分类依据Silva109数据库,古菌、真核和未知来源序列已被移除。OTU以97%相似度分类,然后移除仅在数据库中出现一次的序列。常规水质检测参数包括:溶解氧、电导率、溶解性总固体、盐度、氧化还原电位、不挥发有机碳、总氮等。其中,溶解氧采用电极极谱法;电导率采用电导率仪;盐度采用盐度计;溶解性总固体采用TDS测试仪;氧化还原电位采用ORP在线分析仪;不挥发有机碳采用TOC分析仪;总氮采用分光光度法分别得到水质参数结果供参考。
叶爱中
典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
该数据集为青藏高原主要农作物青稞和小麦的产量历史数据,包括要素为播种面积和产量,涵盖年份包括1988年-2018年,涵盖区域包括青藏高原范围内部分州市及区县。数据来源于《西藏统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《甘肃统计年鉴》、《云南统计年鉴》及阿坝藏族羌族自治州和甘孜藏族自治州农牧局,精度同数据摘取的统计年鉴。青稞和小麦是青藏高原主要的农作物,该数据集对于研究青藏高原粮食安全、农业生产等方面具有重要价值。
潘志芬
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件