光合作用是连接碳和水循环的关键过程,卫星检索的日光诱导叶绿素荧光 (SIF) 可以作为光合作用的有价值的代理。Copernicus Sentinel-5P 任务上的TROPOspheric Monitoring Instrument (TROPOMI) 能够显着改进提供高空间和时间分辨率的 SIF 观测,但数据记录的短时间覆盖限制了其在长期研究中的应用。我们使用机器学习在具有高时空分辨率(0.05°,8 天)的晴朗天空条件下重建 2001-2020 年期间的 TROPOMI SIF (RTSIF)。我们的机器学习模型在训练和测试数据集上表现良好(R^2 = 0.907, regression slope = 1.001)。RTSIF 数据集针对 TROPOMI SIF 和基于塔的 SIF 进行了验证,并与其他卫星衍生的 SIF(GOME-2 SIF 和 OCO-2 SIF)进行了比较。 RTSIF 与总初级生产 (GPP) 的比较说明了 RTSIF 在估算碳通量方面的潜力。这个数据集将在评估长期陆地生态系统光合作用和全球碳水通量方面有重要价值。
陈星安, 黄跃飞, 聂冲, 张硕, 王光谦, 陈世鎏, 陈志超
南极半岛植被数据来源于时空三级环境大数据平台的南极先锋植被覆盖分类数据,通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱和应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。数据格式为geotiff格式。数据内容是南极半岛典型年典型区植被覆盖度。本研究工作通过对南极半岛典型区典型年植被覆盖度后处理后生成tif栅格格式产品,栅格主体数值为植被盖度。本研究得到的南极半岛典型区植被覆盖度是将南极先锋植物丰度数据产品进行镶嵌,包括南极半岛及周边植物丰度数据产品。通过ArcGIS将南极半岛典型区域包括Adley,北部和南部镶嵌在一起,得到包括2008年、2017年和2018年的光谱角匹配法(SAM)和光谱信息散度法(SID)识别出的6幅植被覆盖度图。
叶爱中
该数据集包含了2021年01月01日至2021年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站的物候相机观测数据。其中2021年1月31日至4月14日,由于相机内存问题导致该时段数据缺失。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为2592*1944,本数据集中的物候照片是在每天12:10拍摄的,拍摄时间误差在±10 min。图片命名方式为BSDCJZ BEIJING_IR_Year_Month_Day_Time.
李小雁
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
1)数据内容:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集,数据包括祁连山典型小流域不同深度苔藓层体积密度、土壤大孔隙度和土壤石砾体积密度数据;2)数据来源及加工方法:在祁连山典型小流域采集苔藓层和苔藓覆盖下深度为30 cm的原状土柱,利用工业X射线三维显微镜对苔藓层和原状土柱进行扫描;3)数据质量描述:苔藓层分辨率40 μm,原状土柱分辨率68 μm;4)数据应用成果及前景:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集对于祁连山区的生态恢复、水资源管理和利用均有着重要意义,可为阐述祁连山的水源涵养功能及机理提供基础数据和理论支撑。
胡霞
该数据集包含了2021年7月22日至2021年9月5日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度分别为(100.374°E, 38.855°N)、(100.371° E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设4个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并5天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 车涛, 屈永华, 徐自为, 谭俊磊
该数据集包含2021年5月2日至12月26日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 任志国
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 张阳
森林是陆地上重要的生态系统,约占陆地总面的三分之一,在调节气候,为物种提供栖息地和维持全球生态系统平衡等方面发挥着重要作用。而树冠覆盖度的动态变化会影响森林生态系统的结构、组成和功能。利用长时间序列的Landsat数据,基于机器学习方法获得了1990-2020年尺度的30m空间分辨率的树冠覆盖度数据。利用年尺度的树冠覆盖度数据,生成了1990-2020年东喜马拉雅树冠覆盖度变化速率数据集。结果显示,该地区平均树冠覆盖度从40.67%(1990年)增加到43.43%(2020年),增加了2.76%,表明该地区森林在过去几十年里有所改善。
王春玲, 王建邦, 何卓昱, 冯敏
青藏高原及其周边高山地区孕育了高度的植物多样性,其成分来源复杂,既是现代高山植物的分布中心,也与其它地区的植物有着千丝万缕的联系。生长在这一地区的植物具有适应高原环境的独特基因资源,但受限于技术的发展,对这一地区植物的基因资源挖掘和利用仍然处于起步阶段。通过对龙胆科植物卵萼花锚和大花花锚开展比较基因组学研究,可解析植物交配系统进化的基因组效应,发掘与自交相关的关键基因,探讨植物混合交配系统的维持机制。本次数据汇交的内容主要为:卵萼花锚和大花花锚的基因组原始数据,包含卵萼花锚和大花花锚的三代Pacbio测序数据以及卵萼花锚和大花花锚的二代illumina测序数据。
段元文
森林变化(包含森林损失和恢复)是受自然和人类活动影响的复杂生态过程,对全球物质循环和能量流动具有重要的影响。基于长时间序列树冠覆盖度(tree-canopy cover, TCC)数据,采用双时相类概率模型对森林变化进行检测,得到1986-2018年中国东北天然林保护工程区森林变化数据集(空间分辨率为30米,时间分辨率为1年)。使用分层随机采样方法在保护区范围内选取1000样点并进行目视解译,对森林变化提取结果进行精度评价,结果显示森林损失(Producer’s accuracy = 85.21%;User’s accuracy = 84.26%)和森林恢复(Producer’s accuracy = 87.74%;User’s accuracy = 88.31%)精度均较高,可以有效反映保护区森林变化状态。
王建邦, 何卓昱, 王春玲, 冯敏, 庞勇, 余涛, 李新
植被初级生产力(Net Primary Production, NPP)数据集,源数据来自MODIS产品(MOD17A3H),经过数据格式转换、投影、重采样等预处理。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影,单位为kg C/m2/year,空间范围为整个青藏高原。数据空间分辨率为500米,时间分辨率为每5年,时间范围是2001到2020年。青藏高原NPP整体呈现从西北向东南逐渐增加的趋势。
朱军涛
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
碳氮磷硫钾等是生态系统重要的基本生命元素,揭示其区域变异与空间格局对人类活动的影响及其未来生态系统可持续发展具有重要作用。青藏高原具有独特的高寒植被类型以及丰富的垂直带地貌和地表覆盖类型,其地表元素(碳氮磷硫钾)的生物地理格局是驱动高寒生态系统碳氮水循环过程耦合和相关机制的重要表现形式。本数据集聚焦青藏高原东南缘和横断山区复杂生态系统中地表物质(植物叶-枝-干-根和凋落物)的分配模式和空间变异,以期为区域模型模拟和生态管理提供数据支撑。
李明旭
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
制图范围:张镱锂等2002版青藏高原范围。 数据源:1980年代青藏高原植被图,气候、地形、地貌、土壤数据等。 制图方法:复原植被图是反映未受人类经济活动破坏以前的原始植被分布状况的植被图。由于缺乏青藏高原早期植被分布图,在本项目组编制的1980年代青藏高原植被图的基础上,通过以下方法编制近似复原植被图。采用1980年代青藏高原植被图,使用1980年的WorldClim19个生物气候数据,分析生物气候数据与自然植被的关系,确定各类自然植被分布所对应的气候数据变化范围。对于1980年代植被图中的人工植被,使用最早的1960年的WorldClim19个生物气候数据,根据人工植被分布区的气候数据,以及上面得到的植被分布与气候关系,判断对应的自然植被,将该区人工植被替换为自然植被。在此基础上,进一步考虑植被分布地带性规律及其与地形、地貌、土壤的关系,依据人工植被周边残存的自然植被、周边地带性植被,对前面的判断结果进行分析,交叉验证人工植被替换结果的准确性,并进行适当修正。对于1980年代植被图中的自然植被,如针叶林、阔叶林、灌丛、荒漠、草原、草甸等则保持不变。综合以上分析结果,获得近似复原植被图。植被分类单位与1980年代青藏高原植被图相同。基于制图使用数据精度,本图出图比例尺最大为1:50万。
周继华, 郑元润, 宋长青, 程昌秀, 高培超, 沈石, 叶思菁
1980年代青藏高原植被图制图说明: 制图范围:张镱锂等2021版青藏高原范围。 数据源:1980-1988年Landsat 4-5 TM 影像(空间分辨率约30米)、野外调查数据、1:100万植被图、Google Earth影像、气候、地形、地貌、土壤、土地覆盖数据等。 制图方法:(1)初步图斑分割,采用面向对象的方法初步分割遥感影像,形成初步制图斑块;(2)目视解译,综合野外调查数据、1:100万植被图、Google Earth影像、气候、地形、地貌、土壤、土地覆盖数据等,对初步制图斑块进行目视解译制图;(3)交叉验证,使用地形图、1:100万植被图、土地利用图进行逻辑验证;(4)图例系统,采用《中华人民共和国植被图 (1:1, 000, 000),2007》的分类标准、图例单位和系统,包括植被型组、植被型2个单位,制图区域共有植被型组11个,植被型46个,无植被地段10个;(5)植被图整饰,采用图斑和数字相结合的方法,表示不同植被类型和制图单位;(6)基于制图使用数据精度,本图出图比例尺最大为1:50万。
周继华, 郑元润, 宋长青, 程昌秀, 高培超, 沈石, 叶思菁
碳氮磷硫钾等是生态系统重要的基本生命元素,揭示其区域变异与空间格局对人类活动的影响及其未来生态系统可持续发展具有重要作用。青藏高原具有独特的高寒植被类型以及丰富的垂直带地貌和地表覆盖类型,其地表元素(碳氮磷硫钾)的生物地理格局是驱动高寒生态系统碳氮水循环过程耦合和相关机制的重要表现形式。本数据集聚焦青藏高原水塔区和喜马拉雅山区复杂生态系统中地表物质(植物叶-枝-干-根和凋落物)的分配模式和空间变异,以期为区域模型模拟和生态管理提供数据支撑。
李明旭
青藏高原及周边地区孕灾、致灾、承灾数据集包含了地貌数据、归一化植被指数数据、年均气温与降雨数据、承灾价值等级数据,覆盖656万平方公里的范围。该数据集主要是为了进行灾害、风险评价而准备。由于覆盖范围巨大,地貌数据采用了150m空间分辨率,其他数据采用了1000m空间分辨率。地貌、植被指数、气温降雨数据主要通过加工开源数据生产,承灾价值等级数据为叠加计算生产,综合考虑了人口数据、夜间灯光指数、建筑物、地表覆被类型。
唐晨晓
本数据集是基于青藏高原多年冻土分布区1114个样点的土壤调查数据,重点考虑了古气候在估算青藏高原土壤碳储量中的重要作用,在综合了气候(古气候和现代气候条件)、植被、土壤(土层厚度和土壤理化属性等)和地形等因素后,通过机器学习算法重新评估得到的青藏高原3m深度土壤碳储量。结果集表明当前陆地生态系统模型普遍低估了青藏高原冻土碳库大小,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。因此,未来模型模拟土壤碳循环应该将古气候的作用考虑在内。
丁金枝
本数据集整理和收集了青藏高原及周边地区500米空间分辨率的地表植被类型数据,数据源来自于美国地质调查局(USGS)官网(https://lpdaac.usgs.gov/products/mod12q1v006/),此数据是是MODIS三级数据的土地利用与覆被产品,空间分辨率为500m。通过使用Terra和Aqua反射率数据的监督分类得到的。通过将平滑样条应用于天底双向反射率分布函数(BRDF)-调整后的反射(NBAR)时间序列,第6版MCD1201产品开发出新的缺口填充光谱时间特征。而且,第6版产品还使用了隐马尔可夫模型(HMM),可减少类别标签中的虚假变化。该数据集中包含了17个主要土地覆盖类型,根据国际地圈生物圈计划(IGBP),其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。其分别为:1-常绿针叶林;2-常绿阔叶林;3-落叶针叶林;4-落叶阔叶林;5-混交林;6-稠密灌丛;7-稀疏灌丛;8-木本稀树草原;9-稀树草原;10-草地;11-永久湿地;12-农用地;13-城市和建筑区;14-农用地/自然植被拼接;15-雪和冰;16-裸地;17-水。
邱海军
该数据集包含2021年1月9日至2021年12月31日疏勒河流域兰州大学寒旱区科学观测网络瓜州站的物候相机观测数据,观测点的经纬度是95.673E,41.405N,海拔2014m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。该站点物候相机于2021年8月10日调整过拍摄角度。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日柴达木盆地哈尔腾河流域兰州大学寒旱区科学观测网络苏干湖站的物候相机观测数据,观测点的经纬度是94.125°E,38.992N,海拔2798m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。该站点物候相机于2021年8月12日调整过拍摄角度。
赵长明, 张仁懿
该数据集包含2021年2月1日至2021年9月15日黑河流域兰州大学寒旱区科学观测网络寺大隆站的物候相机观测数据,观测点的经纬度是99.926E,38.428N,海拔3146m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年3月1日至2021年12月31日石羊河流域兰州大学寒旱区科学观测网络民勤站的物候相机观测数据,观测点的经纬度是103.668E,39.208N,海拔1020m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日大通河流域兰州大学寒旱区科学观测网络连城站的物候相机观测数据,观测点的经纬度是102.737E,36.692N,海拔2903m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
该数据集包含2021年1月1日至2021年12月31日石羊河流域兰州大学寒旱区科学观测网络西营河站的物候相机观测数据,观测点的经纬度是101.855E,37.561N,海拔3616m。该数据使用北京师范大学自主研发的软件包进行处理。该物候相机采用向下的方式采集数据,拍摄数据分辨率为2592*1944,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)。
赵长明, 张仁懿
通过不同层次的旅游点、旅游线和旅游区的考察,形成景点、景区、廊道和重要的旅游交通节点、旅游村、旅游城镇等的旅游资源、旅游服务和旅游设施等的照片、视频数据,记录旅游发展状况,发现旅游发展中的问题,并形成相应的世界旅游目的地建设的思路;数据来源为无人机、行车记录仪和摄像机、手机、GPS,并按照景区、数据类别分成不同文件夹;数据资料经过多次核对,确保真实无误;本数据可为青藏高原世界旅游目的地建设提供可追溯的依据。
时珊珊
本数据库包含西南高山峡谷21世纪以来的报道和调查的约800种大型真菌的1,487条分布记录,涉及4省39县,分别是青海(10条记录)、四川(949条记录)、西藏(448条记录)和云南(80条记录)。数据资料主要来自项目长期野外工作的积累及国内著名植物相关网站,如横断山生物多样性数据库。数据集包括本地区大型真菌的物种名、属名、科名、目名、纲名,以及分布省和分布县信息。本数据初步摸清了西南高山峡谷区域大型真菌的多样性现状及其分布,为大型真菌保护、规划以及大型真菌资源的可持续利用提供了坚实的数据基础。
孙航
本数据库为西南高山峡谷种子植物物种名录及其分布数据集,包含本区域近8,300种植物的1977年至2018年的34,696条分布记录。本数据库的物种分布信息主要获取自野外第一手数据及国内著名植物相关网站,如横断山维管植物。此数据主要涉及本地区植物的物种名、科属名、经纬度、海拔及其生境等信息。此数据可用于探讨西南高山峡谷的植物区系、区划,亦为西南地区乃至东亚地区的植物多样性、生态系统等研究奠定了坚实基础。
孙航
本数据是研究团队采用新方法定量重建获得的末次冰盛期以来青藏高原不同样点的植被变化数据。首先收集、整理青藏高原及其周边17个植被带1802条现代孢粉数据作为训练集,采用随机森林算法建立基于孢粉数据重建青藏高原植被的模型,该模型预测现代孢粉样点的植被时,与实际植被对比,显示出较高的一致性(>76%)。与传统的生物群区化法相比,新建立的随机森林模型基于孢粉数据预测青藏高原现代植被的准确性更高。随后,将新建立的随机森林模型用于青藏高原51条孢粉化石序列的古植被重建。用贝叶斯方法重新建立各孢粉化石序列的深度-年代模型,并用线性插值方法获取500年间隔的孢粉化石数据。最终用随机森林模型重建出青藏高原22000年以来500年间隔的植被时空格局变化。本数据可以为理解过去高寒植被的变化过程和机制提供依据,为研究过去气候变化对青藏高原植被的影响提供证据,为气候模拟提供边界条件。
秦锋, 赵艳, 曹现勇
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。藏东南1KM植被指数(NDVI)空间分布数据集是在MODIS(https://ladsweb.modaps.eosdis.nasa.gov/)16天1KM地表反射率数据(MOD13)基础上,采用最大值合成法生成的2000年以来的月度植被指数数据集。该数据集有效反映了藏东南地区在空间和时间尺度上的植被覆盖分布和变化状况,对植被变化状况监测、植被资源合理利用和其它生态环境相关领域的研究有十分重要的参考意义。月度NDVI数据为每月NDVI数据数值的最大值,数据获取时间为2000年2月—2018年12月。下载的数据为GRID格式,空间分辨率为1km。
王浩
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
2018-2021年高山冰缘带植物功能性状分解数据库是项目组于2018-2021年对青藏高原冰缘带科学考察的系列成果之一。数据库包含青藏高原冰缘带植物物种名录,及野外实测和依据《中国植物志》、《西藏植物志》、《云南植物志》、《青海植物志》、《横断山区维管植物》等资料收集的植物根、茎、叶、花、果等关键性状信息。数据为研究高山冰缘带的功能多样性、物种适应性、高山生态系统对气候变化的响应等研究提供了重要的基础数据。
孙航
青藏高原植物群落样方调查数据集(2019)由第二次青藏科考任务三专题六的科考队于2019年8月野外调查完成,空间跨度为:北纬36.02°- 38.07°,东经91.45°- 100.84°。数据集覆盖了森林、灌丛、草地、荒漠和农田等植被类型,共48个样地。数据集由四部分组成,包括样地信息、乔木层样方、灌木层样方和草本层样方。其中乔木层数据2条,灌木层数据63条,草本层数据101条。调查条目包括物种组成,物种分盖度,物种平均高度,灌丛平均冠幅和群落总盖度。
黄永梅, 霍佳璇, 任梁
利用野外调查和文献调研收集到的青海沙蜥(Phrynocephalus vlangalii)分布点,结合五个来自于WorldClim数据库的气候因子,分别将当前(1960-1990年)和未来(2061-2080年)的气候数据输入训练好的物种分布模型,对当前和未来的适宜栖息地进行预测。预测结果表明,在青海沙蜥在气候变化下将会丧失大量原有栖息地,针对青海沙蜥的保护措施应重点关注青藏高原东缘,柴达木盆地北部和东部这些地区。模型也预测在气候变化后,新的适宜栖息地将在原本不适宜青海沙蜥生存的地区出现。然而,由于爬行动物的扩散能力非常有限(文献记录的最大年扩散距离不足500m),新出现的适宜栖息地不一定能被青海沙蜥利用。同时,通过野外工作收集三个海拔种群青海沙蜥的生理、生活史、行为及形态数据并结合微气候数据,利用机制生态位模型预测了气候变化在当前适宜分布区对青海沙蜥造成的生理后果。模型预测的结果表明,无论在SSP245还是SSP585气候变化情景下,青海沙蜥的活动时间在当前适宜分布区的大部分范围(> 93%)内都会增加,热安全阈在当前适宜分布区的所有地点都会减少。高海拔种群的活动时间增幅小于低海拔种群,而其热安全阈减少的幅度却大于低海拔种群。研究结果揭示了气候变化可能对分布在高海拔地区的蜥蜴种群造成更大影响。
曾治高
于2020年8月~9月在西藏自治区的河湖源区开展规范的野外调查,共调查样点25个,75个样方。数据集包括样点编号、样方号、经纬度、海拔、样方的地上生物量、物种数和盖度,数据格式为Excel表。调查样方面积为100cm*100cm,每个样点(site)有3个样方,命名为Plot1、Plot2、Plot3。数据全为实地采集和测量数据,野外调查按照植被调查规范确保数据质量完好。该数据集为合理利用草地资源提供理论依据,并为综合评估典型土地利用变化的环境效应提供数据支撑。
汪霞
本数据集记录了沙化土地植被恢复重建技术模拟区(宁夏/中卫/沙坡头)2021.01-2021.12的气象要素以及不同深度土壤三参数数据,以及为探明咸海高矿化度咸水用于植被建设的可行性,课题成员于2020-2021年在新疆塔里木河下游农二师31团2连、甘泉堡、克拉玛依、轮台、图木舒克等盐碱地开展咸水灌溉种植盐地碱蓬试验,用以研究不同植物在高矿化度咸水灌溉下的表型特征。收集到的数据包括土壤含水量、电导率、土壤盐分等土壤理化性质以及耐盐植物生理等数据。
李新荣, 何明珠, 赵振勇
数据采集于海北高寒草甸生态系统研究站样地(101°19′E,37°36′N,海拔3250m),位于青藏高原东北隅祁连山北支冷龙岭东段,高寒草甸是该地区主要的植被类型。数据记录了高山植物冠层上方光照、空气温湿度以及风温风速数据。通过LI-190R 光合有效辐射传感器(LI-COR,Lincoln NE,USA)和LR8515数据采集器(Hioki E. E. Co., Nagano, Japan)记录高山植物冠层上方辐射强度,记录间隔为每秒一次。用S580-EX温湿度记录仪(深圳华图)以及万向风速记录仪(北京天建华仪)记录空气温湿度以及风温风速的日动态,记录间隔为每三秒一次。记录时间为从北京时间7月13日10点至8月17日21点,由于每日需要使用USB存储时间以及更换电池,所以每日有3-5min的数据缺失,缺失的时间段不固定。目前该数据暂未发表。通过研究该数据可以进一步探讨高山植物叶片所处的微环境以及可能的对叶片生理反应的影响。
唐艳鸿, 郑天宇
该数据集包含了2020年青藏高原草原水平及垂直样带土壤和植被碳氮含量。土壤中碳(C)、氮(N)元素作为植物生长发育所需的重要营养元素,其含量高低及其化学计量特征不仅可以反映植物制造同化产物的能力和养分利用效率,还能判断影响植物生长发育的限制性元素。其中,C:N是判定叶片光合作用固碳能力的重要依据,因此分析高原地区水平及垂直样带上土壤及植物的碳氮含量,对生态环境建设具有重要意义。该数据主要是通过2020年的样带考察时实地观测获得(此后在实验室内进行分析测定)。获得样方植物样品后利用中科院植物所分析中心元素分析仪及总碳/总氮分析仪测试。其中,土壤有机碳及总氮为三个重复取样所得平均数。共获得了8个样点不同草地类型水平样带样点的土壤碳氮含量及22个水平样带样方、5个垂直样带样方的植被叶片碳氮含量。
许振柱
数据集包括4个数据文件,分别是(1)土地利用数据集_祁连山-阿尔金综合区(2021),包括祁连山-阿尔金综合区31个点的土地利用调查数据,包括调查时间、地点、经纬度、海拔、坡度坡向、主要植被类型和优势物种;(2)优势物种叶绿素含量数据集_祁连山-阿尔金综合区(2021),包括祁连山-阿尔金综合区31个调查点优势物种的叶绿素含量,每株植物选择5片叶,分别测定叶片上部、中部和下部的叶绿素含量;(3)叶面积调查数据_祁连山-阿尔金综合区(2021),包括祁连山-阿尔金综合区31个调查点主要植被类型的叶面积指数调查数据和计算求得的平均值,使用Sunscan冠层分析仪进行测量;(4)土壤温湿度数据集_祁连山-阿尔金综合区(2021),包括祁连山-阿尔金综合区31个调查点的经纬度、海拔、土壤表面温度、土壤30cm处湿度,数据记录为每个调查点3次重复测量。该数据集可用于青藏高原植被环境变化规律分析研究。
周广胜, 周怀林, 王玉辉
本数据集是2017年8月-9月于阿里地区采集的典型地物光谱测量数据。高光谱数据使用ASD便携式地物光谱仪FieldSpec 4测量。进行光谱测量时基本为光线稳定的晴天,测量时记录了云量情况。测量前使用白板进行校准;并使用GPS记录经纬度坐标;记录了测量的植被类型;同时测量了周围土壤的光谱数据。地物光谱仪记录的DN值为.asd格式文件,可使用ViewSpecPro软件读取,并利用EXCEL结合白板数据转换为反射率。光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
刘林山, 张炳华
本数据为“泛第三极环境变化与绿色丝绸之路建设”专项数据中的生态供给NPP数据集。该数据集基于植被光合作用模型(Vegetation Photosynthesis Model,VPM)模型遥感反演生成,其中,VPM (Vegetation Photosynthesis Model) 模型是一个基于卫星遥感数据和通量观测数据发展起来的光能利用率模型,模型的主要遥感驱动数据是EVI(Enhanced Vegetation Index)与LSWI(Land Surface Water Index)时间序列数据。NPP数据集的时间尺度为2000-2015年,空间分辨率为500 m,空间范围为“一带一路”沿线国家。该数据集表现出良好的模拟能力,可用于“一带一路”地区及其中个别国家的生态供给量、生态承载力等的准确估算,以及陆地生态系统碳循环的时空动态研究。
胡云锋
1) 数据内容:该数据是对青藏高原林芝地区立定遗址文化层堆积剖面进行研究产生的古DNA数据,包括4个层位10个堆积物古DNA样本的HiseqX宏基因组预测序数据。可以用来初步分析林芝立定遗址堆积物古DNA记录的物种组成的历时性变化,揭示当地古代农业发展的历程。 2) 数据来源及加工方法:课题组自有数据,利用Pair-end建库测序方法和illumina HiseqX测序平台检测获取。 3) 数据质量:20.3MB数据量,Q30>85%。 4) 数据应用成果及前景:数据用于探索遗址堆积物古DNA在揭示青藏高原古代农业发展历程中的研究潜力。
杨晓燕
1) 数据内容(包含的要素及意义):数据包含气温(℃)、降水(mm)、相对湿度(%)和风速(m/s)和辐射(W/m2)四个指标的日值。 2) 数据来源及加工方法:气温、相对湿度、辐射和风速为日均值,降水为日累计值;数据采集地点为色季拉山东坡林线附近:29°39′25.2″N,94°42′25.62″E,4390m;下垫面为自然草地;采集器型号:Campbell Co CR1000,采集间隔时长:10分钟。数字化自动采集数据。气温和相对湿度仪器探头为HMP155A;风速传感器为05103;降水为TE525MM;辐射为Li200X。 3) 数据质量描述:气温、相对湿度和风速原始数据为10分钟一个的平均值,降水为10分钟的累积值;分别通过算术平均或求和得到日平均气温、相对湿度、降水量和风速。由于传感器限制,冬季降水量可能有一定的误差。 4) 数据应用成果及前景:此数据是已有数据《色季拉山气象数据(2007-2017)》和《中科院藏东南站色季拉山东坡林线基本气象数据(2018)》的更新,数据时间尺度跨度大,方便大气物理、生态、大气环境等方面的科学家或研究生使用。每年会不定期更新此数据。
罗伦
冠层微细立体结构三维观测仪(CanoMIS)示范数据集包含了CanoMIS在张掖大满站、祁连山生态站、沈阳清原站、北京市区等采集的玉米、向日葵、云松、千金榆、水曲柳、胡桃楸、桃树、鸡树条等代表性植物标准枝数据。CanoMIS安装到云台上,架设到地面或者生态观测塔上,通过操作终端计算机访问CanoMIS,对感兴趣标准枝进行原位采样,获取无背景干扰的标准枝二维强度图像和距离图像(三维图像),解决了传统成像技术易受背景干扰和丢失距离信息难以量化的问题,为标准枝原位分析提供了新的技术手段。
王新伟
数据采集地点包括甘肃祁连山森林站和党寨林场(2020年8月),东北虎豹国家森林公园西北沟及东侧(2020年10月)。数据采集要素有树种、胸径(cm)、树芯质量(g)、树芯长度(cm)、生材密度(g/cm^3) 。对树木1.3米处用生长锥进行了钻芯取样,树芯质量由电子天平测量得到,树芯长度由游标卡尺测量得到,树木生材密度数据通过测量计算得到。活立木密度观测仪收发天线放置在树木两侧,输入树种、胸径后每棵树采集5次数据,分别对每棵树5次测量结果进行平均后保存测量结果。
吴方明
叶面积指数,是生态系统的一个重要结构参数,用来反映植物叶面数量、冠层结构变化、植物群落生命活力及其环境效应,为植物冠层表面物质和能量交换的描述提供结构化的定量信息,并在生态系统碳积累、植被生产力和土壤、植物、大气间相互作用的能量平衡,植被遥感等方面起重要作用。数据来源于项目自主研发的分布式叶面积指数仪(基于半球图像),定时、定点、自下向上拍摄林冠的半球图像,并通过无线网络上传。本数据采集为原始的半球图像,需进一步处理才可计算叶面积指数,可使用Hemiview等软件处理。
苏宏新
通过设计高精度位移传感器和温度补偿算法,研制了一种能在野外高频率、高精度自动记录DBH的记录仪,并通过云平台实时评估树木生长动态。数据集是应用研发的树木径向生长自动观测仪在甘肃祁连山站、北京森林站进行野外测试和示范收集的数据,数据表包括人工测量对照值、不同站点不同树号采集Vi(位移)、Ri(树木周长)和Ci(树木直径)的测量值。通过计算获得树木胸径变化动态,推进我国植被生态监测的自动化、智能化水平和自主创新,服务于国家生态系统监测网络,服务于国家“两屏三带”生态安全屏障建设以及对脆弱生态区的大范围、全天候、立体化监测需求,对推进我国生态文明建设具有重要支撑作用。
张琳, 高立瑶, 吴冬秀
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件