光合作用是连接碳和水循环的关键过程,卫星检索的日光诱导叶绿素荧光 (SIF) 可以作为光合作用的有价值的代理。Copernicus Sentinel-5P 任务上的TROPOspheric Monitoring Instrument (TROPOMI) 能够显着改进提供高空间和时间分辨率的 SIF 观测,但数据记录的短时间覆盖限制了其在长期研究中的应用。我们使用机器学习在具有高时空分辨率(0.05°,8 天)的晴朗天空条件下重建 2001-2020 年期间的 TROPOMI SIF (RTSIF)。我们的机器学习模型在训练和测试数据集上表现良好(R^2 = 0.907, regression slope = 1.001)。RTSIF 数据集针对 TROPOMI SIF 和基于塔的 SIF 进行了验证,并与其他卫星衍生的 SIF(GOME-2 SIF 和 OCO-2 SIF)进行了比较。 RTSIF 与总初级生产 (GPP) 的比较说明了 RTSIF 在估算碳通量方面的潜力。这个数据集将在评估长期陆地生态系统光合作用和全球碳水通量方面有重要价值。
陈星安, 黄跃飞, 聂冲, 张硕, 王光谦, 陈世鎏, 陈志超
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
南极半岛植被数据来源于时空三级环境大数据平台的南极先锋植被覆盖分类数据,通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱和应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。数据格式为geotiff格式。数据内容是南极半岛典型年典型区植被覆盖度。本研究工作通过对南极半岛典型区典型年植被覆盖度后处理后生成tif栅格格式产品,栅格主体数值为植被盖度。本研究得到的南极半岛典型区植被覆盖度是将南极先锋植物丰度数据产品进行镶嵌,包括南极半岛及周边植物丰度数据产品。通过ArcGIS将南极半岛典型区域包括Adley,北部和南部镶嵌在一起,得到包括2008年、2017年和2018年的光谱角匹配法(SAM)和光谱信息散度法(SID)识别出的6幅植被覆盖度图。
叶爱中
项目基于Landsat_TM30m遥感数据通过人工解译和机器学习算法完成了1990-2015年祁连山地区森林、农田、草地、湿地、聚落城市、荒漠六大类生态系统的空间格局分布信息提取,该套数据可以服务于研究区域生态系统宏观格局演变规律,生态系统服务功能评估,重大生态修复工程规划与效果评估。生态系统宏观格局演变是气候-社会经济耦合驱动的自然过程演变的宏观反应,也是土地利用与土地覆被变化的直接反映,更是区域可持续发展成效评估的重要数据基础。研究可为祁连山地区绿色发展指数评估提供数据基础。
吴锋
该数据集包含了2021年01月01日至2021年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站的物候相机观测数据。其中2021年1月31日至4月14日,由于相机内存问题导致该时段数据缺失。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为2592*1944,本数据集中的物候照片是在每天12:10拍摄的,拍摄时间误差在±10 min。图片命名方式为BSDCJZ BEIJING_IR_Year_Month_Day_Time.
李小雁
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
水库是重要的水利工程设施,在农业灌溉和市政用水的储存和输送中发挥着关键作用,但这一作用会受到水库蒸发的影响。但由于全球长期且连续的水库地理信息的可获取性受限,因而估算全球水库蒸发损失仍有一定困难。目前,两个最新的水库数据集,即全球水库表面数据集(Global Reservoir Surface Area Dataset)和全球水库和大坝数据库(Global Reservoir and Dam Database),为解决这一困难提供了机会。我们使用这两个数据集估算了1985年至2016年全球7242个大型水库的月水库蒸发量。其中,蒸发率采用三套气象产品数据分别进行计算( (1) TerraClimate; (2) ERA5; (3) Princeton Global Forcings),水面面积采用全球水库表面数据集(Global Reservoir Surface Area Dataset)。
田巍, 刘小莽, 王恺文, 白鹏, 刘昌明
中国区域表层7cm土壤湿度月值数据。时间范围包括历史时期1850-2014,未来时期2015-2100(未来时期包含四个不同共享社会经济路径:SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5)。空间分辨率0.25°。 该数据是基于深度学习方法,以ERA5-Land 表层7cm土壤湿度数据为参考,融合降尺度25个CMIP6模式的表层土壤湿度数据。在气候变化背景下,数据可用于干旱和植被相关分析。
冯冬含
该数据集包含了2021年1月1日至2021年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。但是由于2021年青海省于研究站点鱼雷发射基地进行翻修,打造鱼雷发射基地的红色旅游区。该站点所有仪器于2021年5月30日全部拆除,准备于2022年7月重新安装。因此该站点2021年实际获得数据为2021年1月1日至2021年5月29日数据。2021年5月30日到12月31日数据缺失。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于冬季湖水结冰故将水温探头收回,故2021.1.1-2021.5.31期间无水温数据记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月9日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日的青海湖流域水文气象观测网温性草原气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
本数据集为2021年的祁连山区域的人类活动参数,包括祁连山区域2021年的30m耕地产品和祁连山区域2021年的30m建设用地分布产品。该产品来源于祁连山区域2021年30m的土地覆盖分类产品。该产品以2020年的土地覆盖分类产品为基础,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用变化检测的思想和方法生产得到,总体精度优于85%。该产品是1985-2020年土地覆盖分类产品的延续。1985-2020年的土地覆盖分类产品也可在本网站下载得到。其中,1985-2015年的土地利用产品为5年1期,2015-2021年的土地利用产品为1年1期。
杨爱霞, 仲波
本数据集提供青海湖沙柳河流域上游千户里小流域阴坡、阳坡和流域出水口三处位置2019年1月至2021年12月份的逐日土壤温湿度观测数据。千户里小流域地理坐标位于(37°25′N,100°15′E),海拔介于3565-3716m之间。该数据集的观测指标包括土壤含水量(SWC)和土壤温度(ST)。阴坡和阳坡土壤温湿度数据由ECH2O和5层5TE传感器观测,阴阳坡5层传感器安装深度分别为10 cm, 30 cm, 50 cm, 80 cm, 110 cm和10 cm, 30 cm, 60 cm, 90 cm, 120 cm。流域出口土壤温湿度数据由Trime监测及10层PICO32传感器观测,传感器布设深度分别为5 cm, 10 cm, 20 cm, 40 cm, 80 cm, 100 cm, 120 cm, 140 cm, 160 cm, 180 cm。该数据集可用于青海湖流域典型小流域土壤水文过程的定量分析并为模型模拟提供校验数据。
李小雁
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
本数据集以 4 种比例的燕麦草与祁连山高寒草甸天然牧草混合日粮,研究了夏季不同比例的燕麦草与天然牧草混合饲喂对放牧藏羊消化代谢的影响。包含放牧藏羊的干物质(dry matter, DM)、有机物质(organic matter, OM)、粗蛋白(crude protein, CP)、粗脂肪(ether extract, EE)、中性洗涤纤维(neutral detergent fiber, NDF)、酸性洗涤纤维(acid detergent fiber, ADF)采食量和消化率。通过对数据的分析,夏季全天然牧草可以满足藏羊的生长代谢,且不宜对其饲喂燕麦草。
彭泽晨
1985年祁连山国家公园土地利用类型的数据集是基于中科院中国土地利用现状遥感监测数据集,经过裁剪、拼接等操作得到的矢量数据集。2000-2020年的3个数据集是基于GlobeLand30全球30米地表覆盖数据,经过掩膜提取等操作得到的30m分辨率的栅格数据集。所有数据集的土地利用类型包括耕地、森林、灌木林、草地、湿地、水体、苔原、人造表面、裸地、冰川和永久积雪这10个一级类型。数据产品可以检测大多数人类活动所引起的地表覆盖变化,在实际应用中具有十分重要的意义,可以用此数据分析祁连山区域历史的土地利用类型,并结合当前的土地利用类型数据,分析祁连山区域土地利用类型的变化。
年雁云
1)数据内容:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集,数据包括祁连山典型小流域不同深度苔藓层体积密度、土壤大孔隙度和土壤石砾体积密度数据;2)数据来源及加工方法:在祁连山典型小流域采集苔藓层和苔藓覆盖下深度为30 cm的原状土柱,利用工业X射线三维显微镜对苔藓层和原状土柱进行扫描;3)数据质量描述:苔藓层分辨率40 μm,原状土柱分辨率68 μm;4)数据应用成果及前景:祁连山典型小流域植被-土壤-岩石三维空间结构CT扫描数据集对于祁连山区的生态恢复、水资源管理和利用均有着重要意义,可为阐述祁连山的水源涵养功能及机理提供基础数据和理论支撑。
胡霞
本数据为泥石流风险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的危险性和易损性分析结果;根据联合国人道主义事业部(1992)给出的风险表达式:风险(Risk)=危险性(Hazard)×易损性(Vulnerability),对研究区的泥石流灾害进行风险分析。本数据可用于对中巴经济走廊泥石流灾害风险进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
本数据为泥石流易损性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的,栅格值表示易损区划:1表示低易损区,2表示较低易损区,3表示中易损区,4表示较高易损区,5表示高易损区。本数据可用于对中巴经济走廊重大泥石流灾害易损性进行评估,可以为泥石流风险性评估提供数据基础,了解重大泥石流对道路、房屋等基础设施损害程度的程度强弱关系,为当地政府部门防灾减灾、预测预报、乡村振兴等决策提供科学指导。
苏凤环
本数据为泥石流危险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的。泥石流样本数据是通过遥感解译、现场核对等方式获得的泥石流灾害详细情况数据,构建危险性评价体系,利用信息量法对研究区泥石流危险进行评价,然后采用自然断点法进行危险性区的划分。本数据可用于对重大泥石流灾害危险性进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
地表长波下行辐射(LWDR)作为地球能量平衡系统的关键分量,对生态和气候变化研究具有重要意义。随着遥感估算精度的不断提高和再分析资料时空分辨率与精度的提升,遥感和再分析数据融合将是进一步提高地表辐射等关键参量可信度和时空连续性的新途径。考虑到当前多源LWDR数据在时空分辨率和局部区域精度的差异,研究结合全球范围内的站点实测数据,将遥感观测数据(CERES)与再分析数据ERA5、GLDAS进行时空融合,研制了2000-2020年、覆盖全球、时空分辨率为1h/0.25°的高精度地表长波下行辐射数据集。新研制的LWDR数据集,与站点实测数据在陆地表面验证的相关系数 (R)、平均偏差误差 (BIAS) 和均方根误差 (RMSE) 分别为 0.97、-0.95 Wm-2 和 22.38 Wm-2 ;在海洋表面分别为 0.99、-0.88 Wm-2 和 10.96 Wm-2,特别指出的是,相比于已有数据,新数据集在中低纬度和复杂地形区表现出更好的精度和稳定性。
王天星, 王世遥
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
该数据集包含了2021年7月22日至2021年9月5日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.376° E, 38.853° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度分别为(100.374°E, 38.855°N)、(100.371° E, 38.854°N)、(100.369°E, 38.854°N)。每个样方内布设4个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并5天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 车涛, 屈永华, 徐自为, 谭俊磊
该数据集包含2021年5月2日至12月26日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 任志国
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集为相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 谭俊磊, 任志国
该数据集包含2021年1月1日至12月31日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
刘绍民, 屈永华, 车涛, 徐自为, 张阳
森林是陆地上重要的生态系统,约占陆地总面的三分之一,在调节气候,为物种提供栖息地和维持全球生态系统平衡等方面发挥着重要作用。而树冠覆盖度的动态变化会影响森林生态系统的结构、组成和功能。利用长时间序列的Landsat数据,基于机器学习方法获得了1990-2020年尺度的30m空间分辨率的树冠覆盖度数据。利用年尺度的树冠覆盖度数据,生成了1990-2020年东喜马拉雅树冠覆盖度变化速率数据集。结果显示,该地区平均树冠覆盖度从40.67%(1990年)增加到43.43%(2020年),增加了2.76%,表明该地区森林在过去几十年里有所改善。
王春玲, 王建邦, 何卓昱, 冯敏
本数据为基于树木年轮资料重建的阿姆河上游支流贡特河Khorog水文站1495-2018年年平均径流量数据。中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题、水能与生态研究所合作开展树轮水文研究取得的数据,该数据可以用于中亚山区水资源评估等科学研究和水利工程等服务。 资料时段:1495年至2018年。 资料要素:平均径流量(m3/s) 站点位置:37°43″N, 71°30″E,2070m
尚华明
数据内容:Nukus灌区2021年1月至2021年12月地下水水温数据,单位为0.1℃。 数据来源及加工方法:本数据来源于Nukus灌区地下水自动监测站采集。 数据质量描述:本数据为站点数据,时间分辨率为3小时。 数据应用成果及前景:结合其他气象水文参数可进一步查明和研究水文地质条件,特别是地下水的补给、径流、排泄条件,掌握地下水动态规律,为地下水资源评价、科学管理及环境地质问题的研究和防治提供科学依据。
刘铁
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
青藏高原及其周边高山地区孕育了高度的植物多样性,其成分来源复杂,既是现代高山植物的分布中心,也与其它地区的植物有着千丝万缕的联系。生长在这一地区的植物具有适应高原环境的独特基因资源,但受限于技术的发展,对这一地区植物的基因资源挖掘和利用仍然处于起步阶段。通过对龙胆科植物卵萼花锚和大花花锚开展比较基因组学研究,可解析植物交配系统进化的基因组效应,发掘与自交相关的关键基因,探讨植物混合交配系统的维持机制。本次数据汇交的内容主要为:卵萼花锚和大花花锚的基因组原始数据,包含卵萼花锚和大花花锚的三代Pacbio测序数据以及卵萼花锚和大花花锚的二代illumina测序数据。
段元文
森林变化(包含森林损失和恢复)是受自然和人类活动影响的复杂生态过程,对全球物质循环和能量流动具有重要的影响。基于长时间序列树冠覆盖度(tree-canopy cover, TCC)数据,采用双时相类概率模型对森林变化进行检测,得到1986-2018年中国东北天然林保护工程区森林变化数据集(空间分辨率为30米,时间分辨率为1年)。使用分层随机采样方法在保护区范围内选取1000样点并进行目视解译,对森林变化提取结果进行精度评价,结果显示森林损失(Producer’s accuracy = 85.21%;User’s accuracy = 84.26%)和森林恢复(Producer’s accuracy = 87.74%;User’s accuracy = 88.31%)精度均较高,可以有效反映保护区森林变化状态。
王建邦, 何卓昱, 王春玲, 冯敏, 庞勇, 余涛, 李新
该小区位于青藏高原日喀则市,属于青藏高原侵蚀较为严重的区域,同时,该区也有较大面积的低覆盖植被区域,因此布设了该小区。坡面径流小区基本条件为:30度坡度,10米坡长、5米,植被覆盖度较差,用全自动径流泥沙仪器进行径流过程与含沙量过程的监测,仪器监测分辨率可随径流过程变化,水位涨落快时的时间分辨率高。该小区的监测结果可为青藏高原土壤侵蚀提供基础数据,用于了解青藏高原的土壤侵蚀状况和土壤侵蚀规律。本小区于2020年建设,2021年开始观测。
符素华
本数据集为1960-2019年青藏高原逐年的降雨侵蚀力的栅格数据集。利用青藏高原及周围150km范围内129个站点1960-2019年的日降雨资料计算降雨侵蚀力,其中74个站点位于青藏高原内部,55个站点位于外部,计算方法与全国第一次水利普查的算法一致,采用WGS_1984坐标系和Albers投影(中央经线105°E,标准纬线25°N和47°N),然后逐年进行克里金插值生成栅格图,空间分辨率为250m。降雨侵蚀力是土壤侵蚀的主要动力因子,也是CSLE、RUSLE等模型计算的基础因子。整编完善的长时间序列日降雨资料的数据精度高,提高降雨侵蚀力估算的准确性,也有助于进一步精确估算青藏高原土壤侵蚀量。
章文波
《中国数字山地图》的数据从宏观尺度刻画中国山地空间格局和复杂形态特征,其中包含我国山地分布、山地分类、形态要素与山地面积比例等信息,是山地区划、山地成因分类及资源环境关联分析的基础数据。 山地承载着巨大的自然资源供给、生态服务与调节功能,在我国生态文明建设和社会经济发展中有着重要的地位和作用。前期,中国科学院、水利部成都山地灾害与环境研究所的李爱农研究员等,在中国山地空间范围定量界定、山地起伏度计算尺度分析及地形自适应算法、山地综合制图等研究的基础上,形成了“中国数字山地图”数据集,具体包括: (1)中国山地空间范围数据,(2)中国山地类型数据,(3)山脉数据(山脉走向、等级与山脊形态),(4)山峰数据,(5)山地面积按一级行政区统计表,(6)中国地势等高面数据,(7)山地形成类型分区数据,(8)中国山地分区数据,(9)主要山峰列表。山地空间界定范围与分类的原始DEM空间分辨率约90m,数据边界已套合中高分辨遥感影像做必要的修订,与山地地形晕渲图有良好的空间一致性;山脉走向与山地散列要素的制图综合精度为1∶100万,为定性的辅助数据。该数据集将山地从地貌制图中单独列出,具有更高的空间分辨率和针对性,可为山地环境及山地灾害地带性研究、山区国土空间分析等提供可靠的本底数据,服务于我国面向山区的宏观决策。
南希, 李爱农, 邓伟
该数据集产品包含1990-2020年每5年1期的青藏高原地上生物量和植被覆盖度数据产品,即1990年、1995年、2000年、2005年、2010年、2015年和2020年共7期。青藏高原地上生物量是根据不同的土地覆被类型,分别建立草地、森林等的地上生物量反演模型形成的地上生物量遥感反演产品;青藏高原植被覆盖度是采用像元二分法模型形成的植被覆盖度遥感反演产品。其中2000-2020年5期青藏高原地上生物量和植被覆盖度是基于MODIS卫星遥感数据进行遥感反演,空间分辨率为250米;1990和1995年2期青藏高原地上生物量和植被覆盖度是基于NOAA AVHRR卫星遥感数据进行遥感反演,经重采样后空间分辨率为250米。该数据集可为揭示青藏高原土地覆被量与质的时空格局,支持生态系统、生态资产与生态安全评估提供基础数据。
吴炳方
数据文件为7z压缩包格式,可用7-Zip软件解压打开,文件共计三个,分别是文件1、青藏高原草地退化分级的文字版,文件类型为word,文件2、名称为图,共有七张图,图片类型为png,图片名称为2010-2019年青藏高原(草丛、草地、草甸、草原、高山植被、荒漠、沼泽)生长季平均NDVI变化趋势率。文件3、命名为数据的文件夹,内容为图片,共有7种图,名称同上,每种图有五种文件类型,分别是hdr、tif、xml、ovr、png.
周华坤
植被初级生产力(Net Primary Production, NPP)数据集,源数据来自MODIS产品(MOD17A3H),经过数据格式转换、投影、重采样等预处理。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影,单位为kg C/m2/year,空间范围为整个青藏高原。数据空间分辨率为500米,时间分辨率为每5年,时间范围是2001到2020年。青藏高原NPP整体呈现从西北向东南逐渐增加的趋势。
朱军涛
土地覆盖是指地球表面当前所具有的自然和人为影响所形成的覆盖物,是地球表面的自然状态,如森林、草场、农田、土壤、冰川、湖泊、沼泽湿地及道路等。土地覆盖(Land Cover)数据集,源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001至2020年,每年提供一幅图像。土地覆盖产品的分类采用国际地圈生物圈计划(IGBP, International Geosphere Biosphere Programme)定义的17类,包括11类自然植被分类,3类土地利用和土地镶嵌,3类无植生土地分类。
朱军涛
归一化植被指数(Normalized Difference Vegetation Index, NDVI)数据集源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理流程。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001-2020年,每年提供一幅图像。NDVI产品有红光和近红外两个波段反射率计算得到,能够用于检测植被生长状态、植被覆盖度等。-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。
朱军涛
本数据集包括祁连山地区2021年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
本数据为祁连山地区2021年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2021年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2021年的大致分布,可用于流域水资源定量估计研究。
李佳
基于“第二次青藏高原综合科学考察”和”我国土系调查和《中国土系志》编制项目“获取的土壤调查剖面资料,采用预测性数字土壤制图范式,利用地理信息与遥感技术对成土环境进行精细刻画和空间分析,研发自适应深度函数拟合方法,集成先进的集合式机器学习方法,生成了青藏高原地区系列土壤属性(土壤有机碳、PH值、全氮、全磷、全钾、阳离子交换量、砾石含量(>2mm),砂粒、粉粒、粘粒、土壤质地类型、容重、土体厚度等)三维栅格分布图,并量化了不确定性的空间分布,与已有土壤图相比,较好地表征了青藏高原地区土壤属性的空间变异特征。该数据集可为研究青藏高原地区土壤、生态、水文、环境、气候、生物等提供土壤信息支持。
刘峰, 张甘霖
碳氮磷硫钾等是生态系统重要的基本生命元素,揭示其区域变异与空间格局对人类活动的影响及其未来生态系统可持续发展具有重要作用。青藏高原具有独特的高寒植被类型以及丰富的垂直带地貌和地表覆盖类型,其地表元素(碳氮磷硫钾)的生物地理格局是驱动高寒生态系统碳氮水循环过程耦合和相关机制的重要表现形式。本数据集聚焦青藏高原东南缘和横断山区复杂生态系统中地表物质(植物叶-枝-干-根和凋落物)的分配模式和空间变异,以期为区域模型模拟和生态管理提供数据支撑。
李明旭
为探究雅鲁藏布江上游干支流的无机水化学特征,于2020 年8 月在雅鲁藏布江上游河源和河流段采集干支流水样。现场用100ml聚乙烯(PE)塑料瓶采集河水并使用多参水质监测仪(YSI-EX02,USA)原位测定采样点的pH值(±0.2)、溶解氧(DO)(±1%)等基本理化参数,并用0.025mol/L的HCl滴定HCO3-浓度。在实验室内采用离子色谱仪(盛瀚CIC-D160型,中国)分析测定Na+、K+、Ca2+、Mg2+、SO42-、NO3-、Cl-离子浓度。采用Gibbs模型、相关性分析、主成分分析等方法,分析了雅江上游干支流主要离子浓度变化、河水水化学组成特征,并对离子来源进行了解析,旨在揭示青藏高原冰川融水径流的无机水化学特征,并为高原地区典型河流的水源解析及变化趋势预估提供基础支撑。
牛凤霞
该数据集包含了2021年1月1日至2021年12月31日黑河流域地表过程综合观测网上游阿柔超级站宇宙射线观测系统数据。站点位于内蒙古额济纳旗四道桥,下垫面是柽柳。观测点的经纬度是101.1374° E, 42.0012° N,海拔873 m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 车涛, 朱忠礼, 徐自为, 任志国, 谭俊磊, 张阳
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件