本数据集包括祁连山地区2021年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区2020年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
孔维栋
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
黑河上游八宝河流域2013-2014年各层(0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) 1km 逐小时土壤温度、湿度和含冰量数据,本数据由SHAW模型模拟产生,并基于地面站点和无线传感器网络观测的土壤温湿度数据进行了验证,结果较好,可用于上游冻土水热过程相关研究。
张艳林
本数据集包括祁连山地区1980、1985、1990、1995和2000年SMAP时间扩展月值0.25°×0.25°地表土壤水分产品。采用随机森林方法,利用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含从2004年到2009年青藏公路沿线6个位置的多年冻土活动层厚度和地表景观观测数据。 数据来源于科技基础性工作专项“青藏高原多年冻土本地调查”,观测方法为土壤温度法,通过布设活动层测温探头,进行多年冻土区活动层厚度的年际变化观测,并对观测数据进行计算整编。
赵林
本数据集包括黑河上游八宝河流域25个WATERNET传感器网络节点自2015年1月至2015年12月的观测数据。4cm和20cm土壤水分/温度是每个节点的基本观测;部分节点还包括10cm土壤水分/温度、地表红外辐射温度观测、雪深和降水观测等观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“2015年黑河上游八宝河WATERNET数据文档20160501.docx”
晋锐, 亢健, 李新, 马明国
本数据集包括黑河上游八宝河流域40个WATERNET传感器网络节点自2013年6月底至今的观测数据。4cm、10cm和20cm土壤水分是每个节点的基本观测;19个节点包含土壤水分和地表红外辐射温度观测;11个节点包含土壤水分、地表红外辐射温度观测、雪深和降水观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“WATERNETNET数据文档20141206.docx”
晋锐, 亢健, 李新, 马明国
一、数据描述 数据内容包含2013年7月~2014年4月流域内融雪水、河水、土壤水的稳定氢氧同位素数据。 二、采样地点 融雪水采样点位于三号区中部,经纬度为99°53′28.004″E,38°13′25.781″N,采集次数为3次; 河水采样点位于葫芦沟流域出口,经纬度99°52′47.7″E,38°16′11″N,采样频率为每周一次; 土壤水采样点位于在红泥沟集水区中下部,采样深度为地下90cm和180cm,经纬度99°52′25.98″E,38°15′36.11″N 。 三、测试方法 采集样品采用L2130-i 超高精度液态水和水汽同位素分析仪进行测试的。
常启昕, 孙自永
一、数据描述: 数据包含了2013年5月~2014年4月葫芦沟小流域融雪水和土壤水中二氧化硅含量值。 二、采样地点: 其中融雪水的采样点位于二号气象站下方600m附近,地面高程3514.45m,经纬度为99°53′20.655″E,38°14′14.987″N。土壤水的采样点位于二号气象站上方300m、下部土壤剖面,经纬度为99°53′31.333″E,38°13′50.637″N。 三、测量方法: 样品二氧化硅含量的测试方法是采用电感耦合等离子体发射光谱仪(ICP-AES)进行测量。利用溶液中Si的值代替二氧化硅。
孙自永, 常启昕
本数据集包括黑河上游八宝河流域40个WATERNET传感器网络节点自2014年1月至今的观测数据。4cm、10cm和20cm土壤水分是每个节点的基本观测;19个节点包含土壤水分和地表红外辐射温度观测;11个节点包含土壤水分、地表红外辐射温度观测、雪深和降水观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“WATERNETNET数据文档20141206.docx”
晋锐, 亢健, 李新, 马明国
2007年10月17日夜间,在阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。阿柔样方2为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在阿柔样方2,采用ML2X土壤水分速测仪获取土壤体积含水量;采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
2007年10月17日夜间,在扁都口样方1和扁都口样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。扁都口样方1和扁都口样方2均为3Grid×3Grid,每个Grid为30m×30m正方形,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在扁都口样方1和扁都口样方2,采用Hydra probe水分仪测得土壤温度、土壤体积含水量(cm^3/cm^3)、土壤盐分(s/m)及土壤电导率(s/m);手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法及正向模型提供基本的地面数据集。
白云洁, 曹永攀, 李新, 王维真, 王旭峰
2008年03月15日,在阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:35BJT。阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。为保证同步效率,仅在每个Grid的角点进行采样测量。 在阿柔样方2采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样方3采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获取土壤体积含水量;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。此外,还在阿柔样方1开展了同步探地雷达观测。本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本地面数据集。
曹永攀, 顾娟, 韩旭军, 晋锐, 李哲, 王维真, 吴月茹, 历华, 于梅艳, 赵金, Patrick Klenk, 袁小龙
2008年5月24日在临泽站开展Envisat ASAR和ALOS PALSAR卫星地面同步观测,进行了土壤水分,地表辐射温度,手工LAI等观测。Envisat ASAR数据已获取,ALOS PALSAR数据未获取。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:34BJT。 1. 土壤水分观测。观测目标:0-5cm的表层土壤。观测仪器: 环刀(体积50cm^3), ML2X土壤水分速测仪。观测样方和观测次数:荒漠东西样带(包含40个子样方,每个子样方角点环刀各1次采样)、荒漠南北样带(包含9个子样方,每个子样方中心点环刀1次采样)、五里墩玉米地9个小样方中点观测,中心的5号样方加密,4个角点也观测(每个观测点环刀1次采样,ML2X土壤水分速测仪3次重复观测预处理数据为土壤体积含水量。数据存储:Excel。 2. 地表辐射温度观测。观测仪器:手持式红外温度计(寒旱所5#,寒旱所6#),仪器均经过定标(请参考手持式热辐射仪定标数据.xls)。观测样方和观测次数:荒漠东西样带(含40个子样方,每个子样方14-30次重复)、荒漠南北样带(含9个子样方,每个子样方12-30次重复)。预处理数据根据根据热红外定标数据(标准源为黑体),将各仪器的实测温度与相应黑体温度进行直线拟合,求得拟合方程,再利用上述拟合的方程,对观测的原始观测数据进行定标处理。数据存储:Excel。 3. 手工测量LAI。观测样方:五里墩农田样方和临泽站内样方。观测项目:LAI,株高,间距。LAI观测方案:(1)利用直尺和三角板,抽样测量和记录叶片长和宽,样方作物总株数,样方大小,计算出作物的平均叶片面积,乘上样方内总株数,得出估算的作物总的叶片面积后,除以样方面积,得到的是观测样方每天的LAI观测平均值;(2)利用LI-3100观测LAI。株高测量方案:用卷尺测量样方内制种玉米的父本和母本的高度。间距测量方案:用卷尺分别测量制种玉米父本和母本的行距,株距和垄距。存储方式:此数据为处理后数据,文件格式为Excel表格。 样方样带的分布和编号信息请参见元数据“黑河综合遥感联合试验:临泽站加密观测区样方样带布置”,样方位置见临泽站加密观测站样方样带坐标.xls。
白艳芬, 丁松爽, 潘小多, 汪洋, 朱仕杰, 李静, 肖志强, 孙进霞
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件