典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
本数据集为1960-2019年青藏高原逐年的降雨侵蚀力的栅格数据集。利用青藏高原及周围150km范围内129个站点1960-2019年的日降雨资料计算降雨侵蚀力,其中74个站点位于青藏高原内部,55个站点位于外部,计算方法与全国第一次水利普查的算法一致,采用WGS_1984坐标系和Albers投影(中央经线105°E,标准纬线25°N和47°N),然后逐年进行克里金插值生成栅格图,空间分辨率为250m。降雨侵蚀力是土壤侵蚀的主要动力因子,也是CSLE、RUSLE等模型计算的基础因子。整编完善的长时间序列日降雨资料的数据精度高,提高降雨侵蚀力估算的准确性,也有助于进一步精确估算青藏高原土壤侵蚀量。
章文波
本数据集包括祁连山地区2021年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
基于“第二次青藏高原综合科学考察”和”我国土系调查和《中国土系志》编制项目“获取的土壤调查剖面资料,采用预测性数字土壤制图范式,利用地理信息与遥感技术对成土环境进行精细刻画和空间分析,研发自适应深度函数拟合方法,集成先进的集合式机器学习方法,生成了青藏高原地区系列土壤属性(土壤有机碳、PH值、全氮、全磷、全钾、阳离子交换量、砾石含量(>2mm),砂粒、粉粒、粘粒、土壤质地类型、容重、土体厚度等)三维栅格分布图,并量化了不确定性的空间分布,与已有土壤图相比,较好地表征了青藏高原地区土壤属性的空间变异特征。该数据集可为研究青藏高原地区土壤、生态、水文、环境、气候、生物等提供土壤信息支持。
刘峰, 张甘霖
数据集包含了雅鲁藏布江流域148个点位的实测土壤厚度数据,以及40个点位的土壤样品的物理性质及水力特性(粒径、饱和含水量、有机质含量、饱和导水率等)。采样点遍布雅鲁藏布江流域上游仲巴县至下游林芝市之间。土壤厚度数据通过开挖剖面测量得到,其他土壤数据由采集的环刀样品按标准化实验流程测试得到,因此数据精度较高。该数据集提供的雅鲁藏布江流域土壤数据,可以为青藏高原尺度的大范围土壤制图提供参照,提升相关研究的预测精度。
刘金涛
1)青海省湟水流域典型工业园土壤环境质量数据,为区域工业活动导致的土壤污染管控提供基础支撑; 2)数据来源为湟水流域典型区域土壤样品,样品采集后迅速放入-4℃冰箱保存送尽快至实验室,经前处理后完成相关参数的检测; 3)样品采集、转运过程符合规范,实验检测过程遵照相关标准严格执行结果,因土壤环境各因素的变化,该结果仅针对本次调查结果; 4)该数据可用于对区域土壤污染状况、重金属风险评估等内容进行分析;
王凌青
本数据集是基于青藏高原多年冻土分布区1114个样点的土壤调查数据,重点考虑了古气候在估算青藏高原土壤碳储量中的重要作用,在综合了气候(古气候和现代气候条件)、植被、土壤(土层厚度和土壤理化属性等)和地形等因素后,通过机器学习算法重新评估得到的青藏高原3m深度土壤碳储量。结果集表明当前陆地生态系统模型普遍低估了青藏高原冻土碳库大小,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。因此,未来模型模拟土壤碳循环应该将古气候的作用考虑在内。
丁金枝
本数据集包括祁连山地区2020年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
2019-2021年的复杂山区泥石流、堰塞湖沉积物测年数据。数据采集地点为青藏高原东缘、南缘等区域泥石流易发的复杂山区。主要在中国科学院青海盐湖研究所盐湖化学分析测试中心、中国科学院成都山地所分析测试中心等完成实验分析。使用的仪器包括Risø TL/OSL–DA–20全自动释光仪等。建立了典型复杂山区泥石流沉积物年代数据集,定量研究了复杂山区泥石流沉积物的形成年代,确定了复杂山区的古泥石流灾害活动历史。
胡桂胜
"基于青藏高原不同的退化过程,分别将1990和2015的冻土退化、植被退化、盐碱化、沙漠化、土壤侵蚀过程作为主要的退化类型,选择对高原土地退化影响显著的退化过程进行叠加,评估从1990到2015时期内青藏高原土地退化变化趋势。土地退化类型分类:0 - No degradation; 1 - Salinization; 10 - Permafrost degradation; 11 - Salinization and permafrost degradation; 100 - Soil erosion; 101 - Soil erosion and salinization; 110 - Soi erosion and permafrost degradation; 111 - Soi erosion, permafrost degradation and salinization; 1000 - Desertification; 1001 - Desertification and salinization; 1010 - Desertification and permafrost degradation; 1011 - Desertification, permafrost degradation and salinization; 1100 - Desertification and soil erosion; 1101 - Desertification, soil erosion and salinization; 1110 - Desertification, soil erosion and permafrost degradation; 1111 - Desertification, soil erosion, permafrost degradation and salinization; 10000 - Vegetation degradation; 10001 - Vegetation degradation and salinization; 10010 - Vegetation degradation and permafrost degradation; 10011 - Vegetation degradation, permafrost degradation and salinization; 10100 - Vegetation degradation and soil erosion; 10101 - Vegetation degradation, soil erosion and salinization; 10110 - Vegetation degradation, soil erosion and permafrost degradation; 10111 - Vegetation degradation, soil erosion, permafrost degradation and salinization; 11000 - Vegetation degradation and desertification; 11001 - Vegetation degradation, desertification and salinization; 11010 - Vegetation degradation, desertification and permafrost degradation; 11011 - Vegetation degradation, desertification, permafrost degradation and salinization; 11100 - Vegetation degradation, desertification and soil erosion; 11101 - Vegetation degradation, desertification, soil erosion and salinization; 11110 - Vegetation degradation, desertification, soil erosion and permafrost degradation; 11111 - Vegetation degradation, desertification, soil erosion, permafrost degradation and salinization;"
赵广举
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
于2019年7月至8月在青海省西宁市至格尔木市段、青海省格尔木市至西藏自治区拉萨段、以及格尔木市至西宁段每隔20km在远离人为扰动的地方采集不同土地利用类型的土壤样品,共计土壤样品147个,其中草地83个,沙地48个,农地14个,林地3个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。在各样方内用随机取样法,用土钻(直径8 cm)取0-15 cm的土样,用粗筛筛去与根系脱离的土壤,全氮、全磷、全钾的测定是全样,用的0.15mm的土样,其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH测定:称取过1mm筛的风干土样10g于50ml烧杯中,加入无二氧化碳蒸馏水保持水土比为2.5:1,用PHSJ-4F实验室进行测定。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
于2019年9月~10月在三江源区沿214国道开展野外调查,考察的地质、地貌、气候和植被类型资料,并采集沿线土壤样品,共计土壤样品32个。并于2020年6月~7月在三江源区典型沙化草地、放牧草地和高原鼠兔活动区开展野外调查,其中不同沙化程度土样15个,不同放牧强度土样9个,鼠兔活动区土样12个,共计36个。两次野外调查合计土样68个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH采用PHSJ-4F实验室pH计测得。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
典型矿产开发工程区域水环境数据包含青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边水样检测数据集(2019)、青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边沉积物及土样检测数据集(2019)。数据第一行为经纬度、元素名称,第二行为元素含量单位,第一列为样点编号。数据获取方式为2019年8月在甘南藏族自治州早子沟金矿、大水金矿、忠曲尾矿库周边相关流域采集的水体、沉积物、土壤样品,水样采用美国热电公司iCAP SQ型电感耦合等离子体质谱仪和海光光学AFS-2202E型原子荧光光谱仪进行检测分析,土壤和沉积物采用IEEXRF荧光光谱仪进行检测分析,主要分析K、Ca、Na等常量元素和Cr\Ni\Cu\Zn等微量元素含量。数据格式为xlsx,数据质量可靠,可应用于青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域的水环境综合效应评估。
程昊
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含2019-2021年青藏高原多条科考线路土壤样品的生物性质数据,包括采集人、采集时间、采集地点、经纬度、海拔、植被类型、取样深度、磷酸酶活性、微生物呼吸、氮转化特征、功能基因丰度以及真菌、细菌、原生生物多样性等信息。各项土壤性质的分析参考《土壤环境质量监测技术规范》的要求,通过室内化验分析获得的一手数据,数据质量通过测定空白样品、重复样品和标准样品进行统一控制。该数据集可用于气候变化和人类活动影响下土壤质量和功能评价。
张丽梅
本数据集内容属于2019年在青藏高原中西部地区(西藏阿里地区、日喀则地区、那曲地区以及新疆喀什地区与和田地区)采集的土壤样点数据,数据内容包括样点编号、坐标(经纬度)、土壤类型(土纲、亚纲、土类)。土壤类型以中国土壤系统分类标准命名。数据主要来源于野外采样观察土壤剖面及周边景观后得出来的土壤类型,用GPS定位获取各个点位的坐标。由于疫情影响,2019年所采的样品理化属性分析滞后,部分土壤类型可能需要后续根据所测得的理化属性对诊断层进行更进一步的判断,然后对土壤类型进行更新。点位分布与青藏高原中西部地区,基本描述了青藏高原中西部地区土壤类型的分布情况,本数据集为后续研究及其他课题的研究提供了基础的土壤背景数据。
宋效东
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件