典型年三极土壤微生物后处理产品收集了2005-2006年期间南北极地区土壤采样细菌分布分析结果和2015年期间青藏高原地区土壤采样细菌分布分析结果。通过整理归纳汇总得到三极区域土壤微生物后处理数据产品,数据格式为excel,方便用户查看。其中南北极地区样品采集时间为2005年12月13日至2006年12月8日,包含北极3个地区52个样品(Spitsbergen Slijeringa,Spitsbergen Vestpynten,及Alexandra Fjord Highlands),南极5个地区171个样品(Mitchell Peninsula,Casey station main power house, Robinsons Ridge,Herring Island,Browning Peninsula);青藏高原采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统,共计18个采样点位,每个采样点位样品个数为3-5个。采样点降水、气温和干旱度由气象信息估算得到,供读者参考。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用27F(5'-GAGTTTGATCNTGGCTCA-3')和 519R (5'-GTNTTACNGCGGCKGCTG-3')扩增16S rRNA基因片段。扩增后的片段通过454方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。
叶爱中
本数据集为1960-2019年青藏高原逐年的降雨侵蚀力的栅格数据集。利用青藏高原及周围150km范围内129个站点1960-2019年的日降雨资料计算降雨侵蚀力,其中74个站点位于青藏高原内部,55个站点位于外部,计算方法与全国第一次水利普查的算法一致,采用WGS_1984坐标系和Albers投影(中央经线105°E,标准纬线25°N和47°N),然后逐年进行克里金插值生成栅格图,空间分辨率为250m。降雨侵蚀力是土壤侵蚀的主要动力因子,也是CSLE、RUSLE等模型计算的基础因子。整编完善的长时间序列日降雨资料的数据精度高,提高降雨侵蚀力估算的准确性,也有助于进一步精确估算青藏高原土壤侵蚀量。
章文波
本数据集包括祁连山地区2021年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
基于“第二次青藏高原综合科学考察”和”我国土系调查和《中国土系志》编制项目“获取的土壤调查剖面资料,采用预测性数字土壤制图范式,利用地理信息与遥感技术对成土环境进行精细刻画和空间分析,研发自适应深度函数拟合方法,集成先进的集合式机器学习方法,生成了青藏高原地区系列土壤属性(土壤有机碳、PH值、全氮、全磷、全钾、阳离子交换量、砾石含量(>2mm),砂粒、粉粒、粘粒、土壤质地类型、容重、土体厚度等)三维栅格分布图,并量化了不确定性的空间分布,与已有土壤图相比,较好地表征了青藏高原地区土壤属性的空间变异特征。该数据集可为研究青藏高原地区土壤、生态、水文、环境、气候、生物等提供土壤信息支持。
刘峰, 张甘霖
数据集包含了雅鲁藏布江流域148个点位的实测土壤厚度数据,以及40个点位的土壤样品的物理性质及水力特性(粒径、饱和含水量、有机质含量、饱和导水率等)。采样点遍布雅鲁藏布江流域上游仲巴县至下游林芝市之间。土壤厚度数据通过开挖剖面测量得到,其他土壤数据由采集的环刀样品按标准化实验流程测试得到,因此数据精度较高。该数据集提供的雅鲁藏布江流域土壤数据,可以为青藏高原尺度的大范围土壤制图提供参照,提升相关研究的预测精度。
刘金涛
1)青海省湟水流域典型工业园土壤环境质量数据,为区域工业活动导致的土壤污染管控提供基础支撑; 2)数据来源为湟水流域典型区域土壤样品,样品采集后迅速放入-4℃冰箱保存送尽快至实验室,经前处理后完成相关参数的检测; 3)样品采集、转运过程符合规范,实验检测过程遵照相关标准严格执行结果,因土壤环境各因素的变化,该结果仅针对本次调查结果; 4)该数据可用于对区域土壤污染状况、重金属风险评估等内容进行分析;
王凌青
本数据集是基于青藏高原多年冻土分布区1114个样点的土壤调查数据,重点考虑了古气候在估算青藏高原土壤碳储量中的重要作用,在综合了气候(古气候和现代气候条件)、植被、土壤(土层厚度和土壤理化属性等)和地形等因素后,通过机器学习算法重新评估得到的青藏高原3m深度土壤碳储量。结果集表明当前陆地生态系统模型普遍低估了青藏高原冻土碳库大小,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。因此,未来模型模拟土壤碳循环应该将古气候的作用考虑在内。
丁金枝
本数据集包括祁连山地区2020年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对SMAP L3级被动微波36km地表土壤水分产品(SMAP L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, V8)进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo,MUSES LAI/FVC,中国西部逐日1 km全天候地表温度数据集(TRIMS LST-TP;2000-2021)V2,以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
2019-2021年的复杂山区泥石流、堰塞湖沉积物测年数据。数据采集地点为青藏高原东缘、南缘等区域泥石流易发的复杂山区。主要在中国科学院青海盐湖研究所盐湖化学分析测试中心、中国科学院成都山地所分析测试中心等完成实验分析。使用的仪器包括Risø TL/OSL–DA–20全自动释光仪等。建立了典型复杂山区泥石流沉积物年代数据集,定量研究了复杂山区泥石流沉积物的形成年代,确定了复杂山区的古泥石流灾害活动历史。
胡桂胜
"基于青藏高原不同的退化过程,分别将1990和2015的冻土退化、植被退化、盐碱化、沙漠化、土壤侵蚀过程作为主要的退化类型,选择对高原土地退化影响显著的退化过程进行叠加,评估从1990到2015时期内青藏高原土地退化变化趋势。土地退化类型分类:0 - No degradation; 1 - Salinization; 10 - Permafrost degradation; 11 - Salinization and permafrost degradation; 100 - Soil erosion; 101 - Soil erosion and salinization; 110 - Soi erosion and permafrost degradation; 111 - Soi erosion, permafrost degradation and salinization; 1000 - Desertification; 1001 - Desertification and salinization; 1010 - Desertification and permafrost degradation; 1011 - Desertification, permafrost degradation and salinization; 1100 - Desertification and soil erosion; 1101 - Desertification, soil erosion and salinization; 1110 - Desertification, soil erosion and permafrost degradation; 1111 - Desertification, soil erosion, permafrost degradation and salinization; 10000 - Vegetation degradation; 10001 - Vegetation degradation and salinization; 10010 - Vegetation degradation and permafrost degradation; 10011 - Vegetation degradation, permafrost degradation and salinization; 10100 - Vegetation degradation and soil erosion; 10101 - Vegetation degradation, soil erosion and salinization; 10110 - Vegetation degradation, soil erosion and permafrost degradation; 10111 - Vegetation degradation, soil erosion, permafrost degradation and salinization; 11000 - Vegetation degradation and desertification; 11001 - Vegetation degradation, desertification and salinization; 11010 - Vegetation degradation, desertification and permafrost degradation; 11011 - Vegetation degradation, desertification, permafrost degradation and salinization; 11100 - Vegetation degradation, desertification and soil erosion; 11101 - Vegetation degradation, desertification, soil erosion and salinization; 11110 - Vegetation degradation, desertification, soil erosion and permafrost degradation; 11111 - Vegetation degradation, desertification, soil erosion, permafrost degradation and salinization;"
赵广举
降雨侵蚀力是量化青藏高原土壤侵蚀的重要基础数据之一。高精度的降雨侵蚀力数据是了解目前青藏高原水土流失现状,以及制定水土保持措施的关键,同时可以为青藏高原地质灾害防治提供有力参考。本研究基于青藏高原1-min稠密降水观测数据和高精度格点降水资料,经过订正、重构和检验等步骤,构建了一套新的青藏高原1950~2020年逐年降雨侵蚀力数据集。该数据集是目前青藏高原精度最高、时间序列最长的降雨侵蚀力数据集。
陈悦丽
于2019年7月至8月在青海省西宁市至格尔木市段、青海省格尔木市至西藏自治区拉萨段、以及格尔木市至西宁段每隔20km在远离人为扰动的地方采集不同土地利用类型的土壤样品,共计土壤样品147个,其中草地83个,沙地48个,农地14个,林地3个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。在各样方内用随机取样法,用土钻(直径8 cm)取0-15 cm的土样,用粗筛筛去与根系脱离的土壤,全氮、全磷、全钾的测定是全样,用的0.15mm的土样,其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH测定:称取过1mm筛的风干土样10g于50ml烧杯中,加入无二氧化碳蒸馏水保持水土比为2.5:1,用PHSJ-4F实验室进行测定。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
于2019年9月~10月在三江源区沿214国道开展野外调查,考察的地质、地貌、气候和植被类型资料,并采集沿线土壤样品,共计土壤样品32个。并于2020年6月~7月在三江源区典型沙化草地、放牧草地和高原鼠兔活动区开展野外调查,其中不同沙化程度土样15个,不同放牧强度土样9个,鼠兔活动区土样12个,共计36个。两次野外调查合计土样68个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH采用PHSJ-4F实验室pH计测得。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
典型矿产开发工程区域水环境数据包含青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边水样检测数据集(2019)、青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边沉积物及土样检测数据集(2019)。数据第一行为经纬度、元素名称,第二行为元素含量单位,第一列为样点编号。数据获取方式为2019年8月在甘南藏族自治州早子沟金矿、大水金矿、忠曲尾矿库周边相关流域采集的水体、沉积物、土壤样品,水样采用美国热电公司iCAP SQ型电感耦合等离子体质谱仪和海光光学AFS-2202E型原子荧光光谱仪进行检测分析,土壤和沉积物采用IEEXRF荧光光谱仪进行检测分析,主要分析K、Ca、Na等常量元素和Cr\Ni\Cu\Zn等微量元素含量。数据格式为xlsx,数据质量可靠,可应用于青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域的水环境综合效应评估。
程昊
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含2019-2021年青藏高原多条科考线路土壤样品的生物性质数据,包括采集人、采集时间、采集地点、经纬度、海拔、植被类型、取样深度、磷酸酶活性、微生物呼吸、氮转化特征、功能基因丰度以及真菌、细菌、原生生物多样性等信息。各项土壤性质的分析参考《土壤环境质量监测技术规范》的要求,通过室内化验分析获得的一手数据,数据质量通过测定空白样品、重复样品和标准样品进行统一控制。该数据集可用于气候变化和人类活动影响下土壤质量和功能评价。
张丽梅
本数据集内容属于2019年在青藏高原中西部地区(西藏阿里地区、日喀则地区、那曲地区以及新疆喀什地区与和田地区)采集的土壤样点数据,数据内容包括样点编号、坐标(经纬度)、土壤类型(土纲、亚纲、土类)。土壤类型以中国土壤系统分类标准命名。数据主要来源于野外采样观察土壤剖面及周边景观后得出来的土壤类型,用GPS定位获取各个点位的坐标。由于疫情影响,2019年所采的样品理化属性分析滞后,部分土壤类型可能需要后续根据所测得的理化属性对诊断层进行更进一步的判断,然后对土壤类型进行更新。点位分布与青藏高原中西部地区,基本描述了青藏高原中西部地区土壤类型的分布情况,本数据集为后续研究及其他课题的研究提供了基础的土壤背景数据。
宋效东
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集为基于SMAP时间扩展方法生产的青藏高原地区0.25°×0.25°地表土壤水分产品。即采用随机森林方法,利用被动微波亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。其中,1980、1985、1990、1995和2000年为逐月产品,使用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据。2002年6月20日至2018年12月30日为逐日产品,使用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据。 参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
青藏高原野外观测研究平台是开展青藏高原科学观测和研究的前沿阵地。基于高原地表过程与环境变化的陆面-边界层立体综合观测为青藏高原地气相互作用机理及其影响研究提供了大量的珍贵数据。本数据集综合了珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站、那曲高寒气候环境观测研究站、纳木错多圈层综合观测研究站、阿里荒漠环境综合观测研究站、慕士塔格西风带环境综合观测研究站2005-2016年逐小时大气、土壤和涡动观测数据。包含了由多层风速风向、气温、湿度以及气压、降水组成的梯度观测数据,辐射四分量数据,多层土壤温湿度和土壤热通量观测数据以及感热通量、潜热通量和二氧化碳通量组成的湍流数据。这些数据能广泛的应用于青藏高原气象要素特征分析、遥感产品评估和遥感反演算法的发展、数值模拟的评估和发展等研究中。
马耀明
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由四个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络,以及帕里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:逐时 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度统计值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su, 阳坤
本数据集包括青藏高原南部(西藏地区)土壤总汞的浓度和空间分布信息。本项目共在西藏采集表层土壤样品239个,采用湿法消解和原子荧光法测定其总汞含量,方法检出限为1.8 ng/g。使用标准土壤(GB GSS-2)作为实验参考物质,获得的实验回收率为84-103%,该数据质量经过了严格控制。该数据集将作为青藏高原土壤汞污染状况及背景值的参考数据集,同时可用于评估南亚跨境污染物传输对青藏高原影响的基础数据。
王小萍
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施受到了极大的瓶颈阻碍。鉴于土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。 青藏高原2010年土壤质地数据集裁切自世界土壤库。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
Food and Agriculture Organization of the United Nations(FAO)
采用WRF模式制备的青藏高原近地表大气驱动和地表状态数据集,时间范围:2000-2010,空间范围:25-40 ºN,75-105 ºE,时间分辨率:逐时,空间分辨率:10 km,格点数为150*300。 总计有33个变量,其中包含的近地表大气变量11个: 地面上2m高度的温度、 地面上2m高度的比湿、地面气压、地面上10m风场的纬向分量、地面上10m风场的经向分量、固体降水比例、累积的积云对流降水、累积的格点降水、地表处的向下短波辐射通量、地表处的向下长波辐射通量、累计的潜在蒸发。 包含的地表状态变量有19个:各层土壤温度、各层土壤湿度、 各层土壤液态水含量、雪相态改变的热通量、土壤底部温度、地表径流、地下径流、植被比例、地面热通量、雪水当量、实际雪厚、雪密度、冠层中的水、地表温度、反照率、背景反照率、更低边界处的土壤温度、地表面处向上的热量通量(感热通量)、地表面处向上的水量通量(感热通量)。 其他变量3个:经度、纬度和行星边界层高度。
潘小多
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
本数据集是建立在青藏高原基础上的高原土壤水分和土壤温度观测数据,用于量化粗分辨率卫星和土壤水分和土壤温度模型产物的不确定性。青藏高原土壤温湿度观测数据(Tibet-Obs)由三个区域尺度的原位参考网络组成,包括寒冷半干旱气候的那曲网络,寒冷潮湿气候的玛曲网络和寒冷干旱的阿里网络。这些网络提供了对青藏高原不同气候和地表水文气象条件的代表性覆盖。 - 时间分辨率:15分钟 - 空间分辨率:点测量 - 测量精度:土壤水分,0.00001;土壤温度,0.1℃;数据集尺寸:标称深度为5,10,20,40和80厘米的土壤水分和温度测量值 - 单位:土壤水分,cm ^ 3 cm ^ -3; 土壤温度, ℃
Bob Su
数据集综合了纳木错多圈层综合观测研究站、珠穆朗玛大气与环境综合观测研究站、藏东南高山环境综合观测研究站的大气、水文和土壤的长期监测数据。数据有三种分辨率,包括0.1秒、10分钟、30分钟、24小时不等。 野外的大气边界层塔(PBL)所使用的温湿度和气压传感器由芬兰的Vaisala公司生产,风速风向传感器由美国的MetOne公司生产,辐射传感器由美国的APPLEY公司和日本的EKO公司生产,气体分析仪由美国的Licor公司生产,土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编,满足国家气象局和世界气象组织(WMO)的气象观测规范。 数据集加工方法为原始数据经过质量控制后形成时间连续序列,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。
马耀明
青藏高原东缘贡嘎山森林生态系统试验站观测的气象、土壤、植被等数据,时间主要是从2005-2008年。 气象数据:气温、气压、相对湿度、露点温度、水气压、地温、土壤温度(5cm、10cm、20cm、40cm)、10分钟平均风、10分钟最大风速、降水、总辐射、净辐射 乔木层生物观测数据:胸径、树高、生活型 灌木层生物观测数据:株数、高度、盖度、生活型、地上生物量、地下生物量 草本层生物观测数据:株(丛)数、平均高度、盖度、生活型、地上生物量、地下生物量 叶面积指数:乔木层叶面积指数、灌木层叶面积指数、草木层叶面积指数 土壤有机质及养分:土壤有机质、全氮、全磷、全钾、硝态氮、铵态氮、速效氮(碱解氮)、有效磷、速效钾、缓效钾、水溶液提pH值 土壤含水量:深度、含水量
王小丹
该数据集包括藏东南站2007年到2019年12月,土壤温度,湿度和碳通量的日平均数据。 数据采集地点为中国科学院藏东南高山环境综合观测研究站大气环境观测场地,经度:94°44'18";纬度:29°45'56";海拔:3326米。 观测仪器型号 土壤温度: Campbell Co 107; 土壤湿度:Campbell Co CS616; 碳通量采集器型号:C3000,采集时间: 10秒钟; 严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表,剔除了一些明显误差数据,缺失数据用空格。 2013年土壤热通量值停止观测。2015年由于台站探头损坏,土壤温度和湿度只有前两个月数据,探头16年4月修复。
罗伦
本数据集包含自1982年至2006年基于生态学模式与遥感数据计算青藏高原植被净初级生产力(Net Primary Productivity,NPP)的结果。 基于遥感Advanced Very High Resolution Radiometer(AVHRR)数据和Carnegie-Ames-Stanford Approach(CASA)模型生成的青藏高原生态系统NPP(1982-2006),基于第二次土壤普查数据生成的土壤碳含量,以及基于High Resolution Biosphere Model(HRBM)模型生成的生物量碳数据。 青藏高原森林生态系统NPP(1982-2006年): npp_forest82.e00,npp_forest83.e00,npp_forest84.e00,npp_forest85.e00,npp_forest86.e00, npp_forest87.e00,npp_forest88.e00,npp_forest89.e00,npp_forest90.e00,npp_forest91.e00, npp_forest92.e00,npp_forest93.e00,npp_forest94.e00,npp_forest95.e00,npp_forest96.e00, npp_forest97.e00,npp_forest98.e00,npp_forest99.e00,npp_forest00.e00,npp_forest01.e00, npp_forest02.e00,npp_forest03.e00,npp_forest04.e00,npp_forest05.e00,npp_forest06.e00 青藏高原草地生态系统NPP(1982-2006年): npp_grass82.e00,npp_grass83.e00,npp_grass84.e00,npp_grass85.e00,npp_grass86.e00, npp_grass87.e00,npp_grass88.e00,npp_grass89.e00,npp_grass90.e00,npp_grass91.e00, npp_grass92.e00,npp_grass93.e00,npp_grass94.e00,npp_grass95.e00,npp_grass96.e00, npp_grass97.e00,npp_grass98.e00,npp_grass99.e00,npp_grass00.e00,npp_grass01.e00, npp_grass02.e00,npp_grass03.e00,npp_grass04.e00,npp_grass05.e00,npp_grass06.e00 青藏高原生物量碳、土壤碳: Biomass.e00,Socd.e00 土壤碳含量数据(Socd)是参考全国第二次土壤普查的数据与《中国1:100万土壤图》按土壤亚类插值生成。 NPP数据来自CASA模型与AVHRR数据模拟生成: Potter CS, Randerson JT, Field CB et al. Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 1993, 7: 811–841. 生物量碳数据来自HRBM模型模拟生成: McGuire AD, Sitch S, et al. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles, 2001, 15 (1), 183-206. 原始资料主要是遥感数据和野外观测数据。精度较好;生产过程中与野外实测数据进行的验证和调参,是模拟结果尽量与野外实测数据保持在可接受的误差范围内;NPP数据与野外实测数据的验证结果表明,误差保持在15%的范围内。 空间分辨率0.05度×0.05度(经度×纬度)。
周才平
本数据集包含沉错化石硅藻,沉错电导率重建,纳木错化石硅藻,纳木错电导率重建。可用于研究青藏高原湖泊现生硅藻种属组成特征及古环境定量重建。硅藻资料根据样品鉴定统计而得出,水环境资料由仪器测量得到;重建的电导率由硅藻-盐度转换函数计算得出。本数据集由实验室测量获取,由仪器或者实验完成后直接得到数据在各个环节严格按照相关操作规程进行样品和数据采集和分析。 本数据集共有6个子表: 子表1为湖泊环境,共有18个字段,分别为湖泊名称、编号、湖泊序号、纬度、经度、水深、海拔和各水环境指标; 子表2为表层沉积物硅藻,共有4个字段,分别为湖泊序号,硅藻缩写,硅藻名称和其含量; 子表3为沉错化石硅藻,有6个字段,分别为样品编号、分析编号和深度,硅藻缩写,硅藻名称和其含量; 子表4为沉错电导率重建,有3个字段,分别为深度、年龄、硅藻重建的电导率。 子表5为纳木错化石硅藻,有5个字段,前两个字段分别为深度和年龄,以后所有字段为不同种属硅藻的含量; 子表6为纳木错电导率重建,有3个字段,分别为深度、年龄、硅藻重建的电导率。 各子表中硅藻含量量纲为百分含量%,样品深度、水深、年龄、经度、纬度、海拔、离子含量、电导率的单位分别为:cm、m、AD、°东经、°北纬、m、mg/L、μS/cm。 硅藻样品采自青藏高原共约90个湖泊,经度范围为84.528-102.360°E,纬度范围为28.148-38.897°N;海拔:2797-5180m。
羊向东
青藏高原混合土壤水分数据产品是利用了遥感观测、原位测量和模型模拟技术。原位土壤水分(SM)观测结合了青藏高原气候带的分类,用于在高原尺度上产生原位测量的SM气候学。使用产生的青藏高原尺度原位SM气候学来缩放模型模拟的SM数据,其随后用于缩放SM卫星观测。然后通过应用三重配置和最小二乘法来客观地混合气候学尺度的卫星和模型模拟的SM。最终的混合SM可以复制不同气候区的SM动力学,从亚湿润地区到青藏高原的半干旱和干旱地区。 - 时间分辨率:天,从01/05/2008开始 - 空间分辨率:0.25°×0.25° - 数据集尺寸:61×121×975 - 单位:cm^3 cm^-3 数据质量开放评估。
Yijian Zeng
本数据集包括青海果洛军牧场草甸碳通量站观测的生物量调查数据。时间范围为2005-2009年。 碳通量数据观测方法:采用涡度相关观测仪器,均为自动记录;生物量观测方法:收获法,置于60度烘箱中48小时承重。碳通量数据均为仪器自动记录,并进行了人工检查。 严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表,数据观测过程中,仪器的操作、观测对象的选择等严格按照专业要求进行,可以用在植物叶片光合参数模拟和生产力估算中。 1) 果洛草甸生态系统生物观测数据 : 日期, 站点编号, 植被类型 , 样地编号 , 地上生物量(g/m²) , 地下生物量(g/m²) , 总生物量(g/m²) 2) 果洛草甸生态系统碳通量观测数据: 站点编号, 日期 , 植被类型 , 土壤类型, 水汽通量(w/m²) , 碳通量(mg/m²·S) 数据精度良好,为定点观测数据。
赵新全
青藏高原东北部德令哈、天峻和乌兰的树轮宽度和重建的降水量、土壤水分条件数据序列以及德令哈地区过去3500年树轮的定年数据。本数据集由实验室测量获取,由仪器或者实验完成后直接得到数据。在各个环节严格按照相关操作规程进行样品和数据采集。 本数据集共有3个子表: 子表1为德令哈天峻乌兰轮宽,共有4个字段,其中每三个字段代表一个站点的数据,分别为站点编号,公元年份,样本量和宽度指数; 子表2为降水量和土壤水分重建,有5个字段,分别为公元、降水量、土壤相对湿度、植物生长需水量和实际蒸发量;其代表的实际含义分别为: ppt: 德令哈上一年7月至当年6月降水量; rsm_56:德令哈56月土壤相对湿度; accdef:上一年7月至当年6月植物生长需水量; ae16:1月-6月实际蒸发量; 子表3为3500年轮宽指数,共有3个字段,分别为年份、轮宽指数和样本量;其中年份中负号代表公元前; 各子表中轮宽指数无量纲,蒸发量、降水量、植物生长需水量单位均为mm,样本量单位为个。
王君波, 邵雪梅
本数据集包括当雄沼泽草甸碳通量站观测的碳通量数据和土壤水分数据。时间范围为2009-2010年,碳通量数据的时间分辨率为4小时,记录凌晨00:00到20:00的数据;土壤水分数据的时间分辨率为1天。 数据均采用涡度相关观测仪器自动记录,并进行了人工检查。严格按照仪器操作规范进行观测和数据采集,数据观测过程中,仪器的操作、观测对象的选择等严格按照专业要求进行。 数据采集地点中国科学院拉萨农业生态试验站当雄湿地碳通量观测站,经度,91°07’;纬度,30°50’;海拔:4333m。 数据集可以用在植物叶片光合参数模拟和生产力估算中,用于研究湿地生态系统水碳过程及其对气候变化的响应。
石培礼
数据集综合了藏北高原大气、水文和土壤的多站点长期监测项目,包含了藏北高原青藏公路/铁路沿线9个站点(D66,NewD66,沱沱河,D105,D110,安多,MS3478/NPAM,那曲布交,MS3608)多层或单层大气基本要素(风、温、湿、压和降雨/雪等),地面辐射各分量及多层土壤温、湿和热流等观测资料。 数据集通过架设在野外的自动气象站(AWS)、大气边界层塔(PBL)所获得的监测数据组成。所使用的温湿度和气压传感器由芬兰的Vaisala公司生产;风速风向传感器由美国的MetOne公司生产;辐射传感器由美国的APPLEY公司和日本的EKO公司生产;气体分析仪由美国的Licor公司生产;土壤含水量、超声风速仪和数据采集器等由美国的CAMPBELL公司生产。定期(每年2-3次)由专业人员对观测系统进行维护,对传感器进行标定和更换,对采集的数据进行下载和整编。 数据集加工方法为原始数据经过质量控制后形成时间连续序列。满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,质量控制包括剔除曳点数据和传感器出现故障造成的系统误差。 数据包含如下观测指标: 空气温度,单位:℃,精度:0.05℃; 空气相对湿度,单位:%,精度:2%; 风速,单位:m/s,精度:0.1m/s; 气压,单位:hPa,精度:0.5hPa; 风向,单位:°,精度:4°; 降水,单位:mm,精度:0.05mm; 辐射,单位:W/m²,精度:5%; 土壤热流,单位:W/m²,精度:2%; 土壤温度,单位:℃,精度:0.2℃; 土壤体积含水量,单位:v/v%,精度:2%。
胡泽勇
本数据集主要包括藏东南高山环境综合观测研究站色季拉山高山林线观测场2005-2008年观测的气象数据和土壤水分数据。 藏东南山地林线观测数据集,包含:1)气象数据集 ;2)土壤水分数据。其中:气象数据集内容包括:风速、气温(1,3m)、相对湿度(1,3m)、土壤热通量(-5,-20,-60cm)、土壤温度(-5,-20,-60cm)、气压、总辐射、净辐射、光合有效辐射、红光辐射(660,730nm)、大气长波辐射、地面长波辐射、地表温度、降水量、雪厚;土壤水分数据包括:植被类型、土壤含水量(-5,-20,-60cm)。 各观测指标所使用的仪器情况: 气温:气温传感器( Air Temperature Probe),产自台湾,型号为TRH-S。 相对湿度:型号为TRH-S,产自台湾。 风速:风速仪(Anemoscope), 产自台湾,型号为03102。 气压:气压仪(Barometric Pressure sensor),产自台湾,型号为BP0611A。 大气长波辐射:大气长波辐射仪(pyrgeometer),产自荷Kipp & Zonen公司,型号为CG3。 地面长波辐射:地面长波辐射仪(pyrgeometer),产自荷兰Kipp & Zonen公司,型号为CG3。 总辐射:总辐射仪(Pyranometer),产自荷兰Kipp & Zonen公司,型号为CM3。 净辐射:净辐射仪(Net Radiometer), 产自荷兰Kipp & Zonen公司,型号为NR-Lite。 光合有效辐射:有效光合辐射仪(PAR-Sensor),产自产自荷兰Kipp & Zonen公司,型号为MS-PAR。 红外辐射:红外辐射仪(Infrared radiation sensor) ,产自英国Skye公司,型号为SKY110。 雨量:雨量筒(Rain Gauge), 产自台湾,型号为7852M。 雪厚:超声波雪厚仪(ultrasonic snow depth sensor),产自美国,型号为260-700。 土壤温度:土壤温度传感器(Soil temperature probe), 产自美国Onset公司,型号为12-Bit。 土壤热通量:土壤热通量板(Soil heat flux plate),产自荷兰Hukseflux公司,型号为HFP01。 土壤含水量:土壤水分传感器(Soil moisture sensor),产自美国Onset公司,型号为S-SMA-M003。 严格按照仪器操作规范进行观测和数据采集, 每项观测仪器在安装前都经过了供应商严格的调试并校正,从而确保了观测数据的准确性。在加工生成数据表时,剔除了一些明显误差数据。
刘新圣, 罗天祥
本数据集包含从2013年1月1日到2016年12月31日慕士塔格西风带环境综合观测研究站观测的不同深度土壤温度、湿度日值。 数据为观测仪器数字化自动采集,数据集加工方法为原始数据经过质量控制后形成连续时间序列。严格按照仪器操作规范进行观测和数据采集,剔除曳点数据和传感器出现故障造成的系统误差。 本数据表共有12个字段 字段1:站点编号 数据类型:字符型(50) 字段2:时间 数据类型:日期型 字段3~7:土壤温度(不同深度) 数据类型:双精度浮点型 单位: ℃ 字段8~12:土壤湿度(不同深度) 数据类型:双精度浮点型 单位:%
徐柏青
青藏高原土壤细菌多样性数据集提供了青藏高原土壤表层(0-2厘米)微生物分布特征。样品采集时间为2015年7月1日至7月15日,包含草甸,草原,荒漠3种生态系统。土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室。土壤DNA通过MO BIO PowerSoil DNA试剂盒提取。土壤表层样品采集后用液氮保存,运回悉尼实验室,通过FastPrep DNA试剂盒提取。提取后的DNA样品使用515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')扩增16S rRNA基因片段。扩增后的片段通过Illumina Miseq PE250方式测序,原始数据通过Mothur软件分析。首先去除测序质量不佳序列,之后进行排序并去除嵌合体序列。之后计算序列之间相似度,相似度在97%以上的序列聚类为一个OTU,并定义OTU代表序列。OTU代表序列通过与Silva数据库进行比对,在可靠性大于>80%的情况下鉴定到属一级水平。本数据系统的比较了青藏高原微生物的多样性,对研究微生物在青藏高原的分布具有重大意义。
计慕侃
我国西部干旱环境的演变规律与发展趋势项目属于国家自然科学基金“中国西部环境与生态科学”重大研究计划,负责人为中国科学院地球环境研究所安芷生院士,项目运行时间为2002.1-2004.12。 该项目汇交的数据包括: 1、西部干旱区历史与变率数据: 1) Chinese Loess Plateau Mass Accumulation Rate Data(3600-0 KYrBP) :字段包括Age,MAR(Mass Accumulation Rate).(txt文档) 2) Chinese Loess Plateau Grain Size and Magnetic Susceptibility Data(3600-0 KYrBP) :字段包括Age,Stacked Mean Grain Size,Stacked magnetic,susceptibility.( txt文档) 2、陕西耀县塬区12KaBP以来不同黄土层孢粉含量数据(excel表格):包括0-397厘米共67层黄土样品的27个科属孢粉含量分布. 3、10Be记录数据(表格) 79.67- 0.09 kyr BP不同厚度黄土的10Be浓度、磁化率及容重数据. 4、青藏高原隆升对东亚季风轨道尺度变率调制的模拟室数据: ah0-sum.nc nc文档、 hh0-sum.nc nc文档、 jfh0-sum.nc nc文档、 kdh0-sum.nc nc文档、lfh0-sum.nc nc文档、mask.nc nc文档、phis.nc nc文档
安芷生
GAME/ Tibet 项目于1997 年夏季在安多(Amdo) 站作过短期预试验观测( PIOP) 。1998 年5~9 月, 安排了连续5 个加强观测期( IOP) , 每个IOP 约一个月。中、日、韩三国80 余名科学工作者分批赴青藏高原,进行了艰苦而卓有成效的工作。 各项观测试验计划顺利完成。并且从1998 年9 月加强观测结束后,5 个自动气象站(AWS) 、1 个自动气象综合观测站( PAM) 、1 个边界层塔及辐射综合观测站(Amdo) 及9 个土壤温度和湿度观测站一直连续观测至今, 取得了连续8 年零6 个月(从1997 年6 月开始) 极其珍贵的资料。 试验区设在藏北那曲地区的一个150 km ×200 km 的区域内(图1),同时在青藏公路沿线的D66,沱沱河和唐古拉山口(D105) 也建立了观测点。包括高原草甸、高原湖泊、荒漠化草原等不同下垫面上, 设置了以下观测站(点):(1) 两个包括大气和土壤的多学科综合观测站:安多(Amdo) 和那曲(NaquFx) 。这两个站含有多分量辐射观测系统、梯度观测塔、湍流通量直测系统、土壤温湿度梯度观测、无线电探空以及作为卫星资料地面真值利用的地面土壤湿度观测网和多角度光谱仪观测等;(2) 6 个自动气象站(D66 、沱沱河、D105 、D110 、Naqu 和MS3608) 。每个测站都有风、温、湿、压、辐射、地表温度、土壤温湿度和降水等观测;(3) 设在那曲北和南各约80 km 处的PAM( Portable Automated Meso - net) 站(MS3478和MS3637) 有类似于上述两个综合观测站(Amdo和NaquFx) 的主要项目, 同时有风、温、湿的湍流观测;(4) 9 个土壤温度和湿度观测点(D66 、沱沱河、D110 、WADD、NODA、Amdo 、MS3478、MS3478和MS3637) , 每个测站都包含有6 层土壤温度和9 层土壤湿度测量;(5) 一个设在那曲以南的三维多普勒雷达站和邻近(约100 km) 区域内的7 个加密雨量站( Precipitation gauge) , 辐射观测系统主要研究高原云与降水系统, 并作为TRMM 卫星一个地面真值站。 GAME-Tibet项目力求通过不同空间尺度的加强观测试验和长期监测,深入了解青藏高原的地气相互作用以及对亚洲季风系统的影响。 GAME/ Tibet 项目2000 年结束后, 已加入GEWEX(全球能量和水循环试验) 与CL IVAR (气候变化和预测) 两个大型国际计划联合组织的“全球协调加强观测计划(CEOP) ”, 开始执行“全球协调加强观测计划(CEOP) 亚澳季风之青藏高原试验研究”(CAMP/ Tibet ) 数据内容分为Prephase Observation Preriod (POP)1997年和IOP1998年 一、POP1997年数据内容: 1、Precipitation Guage Network (PGN) 2、Radiosonde Observation at Naqu 3、Analysis of Stable Isotope for Water Cycle Studies 4、Doppler radar observation 5、Large-Scale Hydrological Cycle in Tibet (Link to Numaguchi's home page) 6、Portable Automated Mesonet (PAM) [Japanese] 7、Ground Truth Data Collection(GTDC) for Satellite Remote Sensing 8、Tanggula AWS ( D105 station in Tibet ) 9、Syamboche AWS (GEN/GAME AWS in Nepal) 二、IOP1998年数据内容: 1、Anduo (1)PBL Tower 、(2)Radiation 、(3)Turbulence SMTMS 2、D66 (1)AWS (2)SMTMS (3)GTDC(4)Precipitation 3、Toutouhe (1)AWS(2)SMTMS(3)GTDC 4、D110 (1)AWS (2)SMTMS (3)GTDC(4)SMTMS 5、MS3608 (1)AWS (2)SMTMS (3)Precipitation 6、D105 (1)Precipitation (2)GTDC 7、MS3478(NPAM) (1)PAM (2)Precipitation 8、 MS3637 (1)PAM (2)SMTMS (3)Precipitation 9、NODAA (1)SMTMS (2)Precipitation 10、WADD (1)SMTMS (2)Precipitation (3)Barometricmd 11、AQB (1)Precipitation 12、Dienpa( RS2 ) (1)Precipitation 13、Zuri (1)Precipitation(2)Barometricmd 14、Juze (1)Precipitation 15、Naqu hydrological station (1)Precipitation 16、MSofNaqu(1)Barometricmd 16、Naquradarsite (1)Radarsystem(2)Precipitation 17、Syangboche[Nepal](1)AWS 18、Shiqu-anhe(1)AWS(2)GTDC 19、Seqin-Xiang(1)Barometricmd 20、NODA(1)Barometricmd(2)Precipitation(3)SMTMS 21、NaquHY(1)Barometricmd(2)Precipitation 22、NaquFx(BJ)(1)GTDC(2)PBLmd(3)Precipitation 23、MS3543(1)Precipitation 24、MNofAmdo(1)Barometricmd 25、Mardi(1)Runoff 26、Gaize(1)AWS(2)GTDC(3)Sonde
马耀明
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件