1)数据内容:本数据集包含从2000-2019年青藏高原地区MODIS长时序地表反射率产品,每期数据共包含13个文件:7个地表反射率文件,3个观测角度文件,2个质量控制文件和1个时间说明文件。2)数据来源及加工方法:主要来自第六版MODIS Terra MOD09A1产品集,青藏高原地区地表反射率产品是通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:sur_refl_qc_500m和sur_refl_state_500m为数据质量文件,其以有效位编码方式存储。4)数据应用成果及前景:在森林、水资源、气候变化等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
青藏高原念青唐古拉山地区高分辨率(5m)冰川高程变化数据集,包括该地区2000‒2013和2000‒2017两个时间段的冰川高程变化数据。具体区域为念青唐古拉山西段的纳木错地区以及东段的岗日嘎布地区,冰川边界参考国际上通用的Randolph Glacier Inventory Version 4.0(RGI 4.0)。冰川高程变化分别由高分辨率资源三号三线阵立体像对数据(ZY-3 TLA)生成的2013年和2017年DEM数据与2000年的SRTM DEM数据通过DEM差分技术得到。其中西段数据有三期:2000‒2013、2013‒2017和2000‒2017;东段数据有一期:2000‒2017。 该数据集空间分辨率为5米,单位为m a^−1,数据格式为GeoTIFF,数据类型为浮点型,投影方式:西段为 UTM 46N,东段为UTM 47N。 该数据与现有的物质平衡实测数据及其它遥感观测的结果具有较好的一致性,但具有更高空间分辨率,可提供更详细的冰川高程变化的空间分布细节,将冰川高程变化乘以冰川的平均密度(通常为850±60 kg m^−3)即可转化为相应时间段内的冰川物质平衡 (单位为:w.e. a^−1),可为该地区冰川高程变化和物质平衡的研究提供数据支撑。
任少亭, 贾立
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
本数据集为祁连山区域2019年日分辨率地表反照率产品,空间分辨率500m。采用耦合地形因子的基于MODIS反射率数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制。MODIS地表反射率数据为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率。经过验证评估,满足反照率应用精度要求,相较于同类产品对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑祁连山地区辐射平衡、环境变化研究。
闻建光, 唐勇, 游冬琴
本数据集为青藏高原区域2016年日分辨率0.02° x0.02°地表反照率产品。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率。经过验证评估,满足反照率应用精度要求,相较于同类产品对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
闻建光, 唐勇, 游冬琴
本数据集包括祁连山区域1982、1985、1990、1995、2000、2005、2010、2015、2017 年度地表短波反照率产品,空间分辨率为0.01°,时间分辨率为月。采用AVHRR长时间系列地表反射率,通过多角度多波段核驱动模型联合月度内多角度红光和近红外波段的AVHRR反射率数据反演核系数,积分得到短波波段的黑空反照率和白空反照率,经过重采样为0.01°空间分辨率。AVHRR地表反射率数据通过官网下载,经过月度累计多角度数据集进行反演,产品具有较好的时空连续性,可用于长时间系列的环境变化监测等。
闻建光, 游冬琴, 唐勇, 吴善龙, 仲波
数据内容:咸海流域耕地数据。 数据来源及加工方法:原始卫星影像来源于美国谷歌地球,为了获得高分辨率下的无云影像,谷歌地球采用拼接方法将不同年份的数据整合到一起,因此下载的影像数据时间跨度为2016-2019年。使用机器识别方法预测出地块边界,将边界转为矢量数据,之后再将结果与谷歌影像叠加,由人工逐个检查修改错误信息,得到咸海流域耕地数据。最终结果采用WGS-1984坐标系。 数据质量:空间分辨率为0.45m×0.45m,准确率达90.32%。 数据应用成果:在气候变化背景下,可与气象要素和植被特征相结合分析土地退化情况;可结合植被特征与采样点分析种植结构,也可以与气象数据和统计数据结合计算水资源利用效率和粮食产量。
刘铁
数据内容:咸海流域2010年-2018年净初级生产力数据。 数据来源及加工方法:结合土地利用、温度、植被指数、降雨量、太阳辐射和蒸散发等数据,借助于CASA模型计算反演得出NPP。 数据质量:空间分辨率为10km×10km,时间分辨率为月,每个文件有12个波段,分别对应当年每个月份的NPP结果,投影坐标为GCS_WGS_1984。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据和生态数据相结合分析土地退化情况。
刘铁
数据内容:咸海流域2015年-2018年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 咸海流域边界说明:咸海流域的边界来源于世界自然基金会的HydroBASINS Version 1,详细信息请参考:https://www.hydrosheds.org/page/hydrobasins 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2015年-2018年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的植被覆盖度(FVC)数据。该数据由MODIS-NDVI数据集(产品编号MOD13A2.006),根据干旱区植被盖度与NDVI之间的经验关系计算得到。该产品时间分辨率为1年,空间分辨率1 km。算法从当年所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值,并进行换算。
徐晓凡, 谈明洪
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
本数据集包括1985-2018年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的城市建设用地变化的逐年数据。该数据空间分辨率为30m,时间分辨率为一年,源自基于Landsat遥感影像提取的1985-2018年全球人工不透水面(GAIA)变化数据(宫鹏等)。研究者对该数据在1985至2015年间每隔5年的7组数据进行了评估,其平均整体精度超过90%,并且是唯一跨越30年的城市建设用地数据集。
徐晓凡, 谈明洪
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的归一化差值植被指数(NDVI)数据。本数据源自美国地球观测系统(EOS)计划所使用的中分辨率成像光谱仪(MODIS)影像数据,产品编号MOD13A2.006。该产品时间分辨率为16天,空间分辨率1km,产品算法从16天期间的所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值。
徐晓凡, 谈明洪
1)意义:建设用地是人类活动的最高级表现之一。自然资源的消耗与生态环境的变化可以与建设用地的发展紧密的联系起来。本数据反映了中国7个省/直辖市,同时也是城镇化快速推进的重要地区,从1990年到2019年的30m空间分辨率的高精度建设用地演变情况。 2)数据来源:Landsat系列卫星数据;中国区域地面气象要素驱动数据集(1979-2018);SRTM 30m 高程数据 3)加工方法:采用监督分类的方法,利用随机森林算法和傅里叶变换处理特征波段,并基于目视解译的控制点进行分类。 3-1)光谱特征的获取:首先筛选出含运量<20%的Landsat图像,并以3年为单位将这些图像叠加,然后取每个叠加像元的中间值作为目标像进行拼接,得到整个研究区的无云图像。此方法也能较好的去除Landsat7数据的条带影响。 3-2)时间特征的获取:对云量筛选并进行3年叠加的每个像元,遵循最小均方差的拟合原则进行离散傅里叶变换,得到每个像元在时间纬度上的“波峰”,“波谷”和“相位”作为时间特征。 此方法能较好的消除“裸地”对建设用地提取的影响,因为裸地有可能在春夏季节被植被覆盖,其时间特征与建设用地具有较大的差别。 3-3)气象与地形特征的提取:气象特征由中国区域地面气象要素驱动数据集(1979-2018)计算获得:将该数据集按照与Landsat相同的时间间隔进行叠加,并且求得每个像元的平均值作为气象特征(由于缺少2019的气象数据,最后一期的气象特征由2017和2018两年数据计算得到)。地形特征(高程,坡度)采用SRTM-30m数据。 详细方法和代码可见:https://github.com/wangjinzhulala/North_China_Plain_GEE_Organized 4)数据质量:所有年限的总体精度均优于94%。 5)应用前景:区域城市扩张模拟;城市化的环境影响估算;粮食安全和可持续发展量化。
王金柱
采用全球陆表特征参量(叶面积指数LAI)产品,空间分辨率为5 km。该产品使用广义回归神经网络方法,由AVHRR地表反射率数据反演LAI。本研究下载了1981–2017年中亚5国、蒙古国和中国北方每年6-8月的12期LAI数据产品,来源于国家科技基础条件平台——国家地球系统科学数据中心。用ArcGIS软件对这些影像进行裁剪,并计算最大值,由此获得最大LAI的时空数据集。其中,中亚5国包括土库曼斯坦、吉尔吉斯斯坦、哈萨克斯坦、塔吉克斯坦和乌兹别克斯坦;中国北方指中国长江以北地区。
张娜
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
张娜
基于环境敏感区指数(ESAI)方法,计算获得2019年伊朗高原栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明伊朗高原的荒漠化风险数据精度可靠。
许文强
该数据集是青藏高原木里煤矿区2000-2020年地表要素数据,每五年一期,共5期;其中包括四个子图集:地表反照率、植被指数、植被覆盖度及土壤湿度,共40张影像数据(20张原始栅格数据+20张RGB合成数据)。数据集为矩形区域,根据木里煤矿的东南西北的四个界限所划定。其中地表反照率基于Landsat8 和landsat5 遥感卫星,根据梁顺林先生的方法所计算获得的年度平均值;植被指数采用归一化植被指数NDVI,利用最大值合成法制作的年度最大NDVI影像;植被覆盖度是根据年度最大NDVI合成影像,采用像元二分模型计算获得的年度值;土壤湿度是基于TVDI方法,利用土壤湿度实测数据和回归的方法制作的每期8月份的平均土壤体积含水量。数据均为栅格格式,空间分辨率为30米。该数据集对研究青藏高原地表要素的变化有着一定的指导和借鉴意义,同时对研究青藏高原水资源变化提供了一定价值的参考。
刘振伟, 陈少辉
该数据集为2010年和2020年两个时期的土地覆被数据集,空间范围为孟加拉国达卡市,空间分辨率为30m,时间分辨率为年。数据来源于GlobeLand30(全球地理信息公共产品,http://www.globallandcover.com/),经过镶嵌和整编处理获得。源数据的数据精度评价由同济大学和中国科学院空天信息创新研究院牵头完成,数据的总体精度超过83.50%。该数据集可以为相关研究提供高精度的基础地理信息,在资源环境承载状态判别、自然灾害风险评估以及防灾减灾等方面都有重要应用。
杨飞, 殷聪
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
1) 数据内容 本数据集包含澜沧江-湄公河流域流向、汇流累积和矢量河网信息。 2) 数据来源及加工方法 本数据集采用了遥感蚀刻方法(Remote Sensing Stream Burning, Wang et. al, 2021),融合了高精度高程模型MERIT-DEM和哨兵2号光学影像。 3) 数据质量描述 经验证,本数据集具备较高的空间精度(Wang et. al, 2021)。<br /> 4) 数据应用成果及前景 本数据集提供了基础的河流网络及其汇流信息,可用于水文模型、陆面过程模型、地球系统模式等模拟用途,也可以用于制图和空间统计分析。
王子丰
本数据集是黑河流域2010-2016年逐日100米地表蒸散发遥感产品。基于多源遥感数据(MODIS、Landsat TM/ETM+数据等)和近地面气象要素数据(中国区域地面气象要素驱动数据集,CMFD),依据地表能量平衡理论,对地表能量平衡系统(SEBS)模型通过全局敏感性分析确定模型的敏感变量,继而优化模型的这些变量参数化方案,以便提高蒸散发遥感模型估算精度。同时,结合遥感图像数据的时空融合方法,最终获取了黑河流域空间全覆盖和较高时空分辨率(100米,逐日)地表蒸散发数据。利用黑河野外地面站点观测数据和黑河流域区域尺度地表蒸散发相对真值数据集(ETMap)进行验证,估算结果与站点观测数据以及ETMap的时空分布格局均具有较好的一致性。本数据集可直接为黑河流域,特别是上游林地和草地、中下游绿洲农田和荒漠植被的耗水规律研究与流域水资源的科学管理提供数据支撑。
马燕飞, 刘绍民
瓜达尔深水港位于巴基斯坦俾路支省西南部瓜德尔城南部,在巴基斯坦靠近伊朗一侧,东距卡拉奇约460km,西距巴基斯坦伊朗边境约120km,南临印度洋的阿拉伯海,向西则是霍尔木兹海峡和红海,与阿曼首都马斯喀特(Muscat)遥遥相对,是一个极具战略地位的海港。 本数据包含瓜达尔港区及其周围区域2014-2015年共343景Landsat8数据在各个30米格网内的中值,数据共包含12个波段,空间分辨率为30米,其中热红外波段为100米重采样至30米分辨率。
吴骅
遥感影像是指记录各种地物电磁波大小的胶片或照片,主要分为航空像片和卫星相片。仰光深水港地区1-5m遥感数据集来自于高分二号卫星,最高分辨率为1m,最低分辨率为5m,总共包括7个区域的影像。每一个区域都有4幅影像,分别是5m级和1m级的波段合成影像。5m级的影像的精度已经能够满足大部分研究用途的需要,且数据量更小;1m级的影像的精度更高,可以用于合成、验证等用途,但是数据量较5m级的数据更大。在实际使用时,可以根据研究者自己的需要,选择5m级或1m级的影像。
葛咏, 李强子, 李毅
汉班托塔地区的米级分辨率的遥感影像数据是由不同卫星的数据融合拼接而成,选择了2018年-2019年2年时间期间,分辨率在0.5米-1米之间的多光谱遥感影像,筛选时间相近的无云数据,按照研究区裁剪、拼接形成结果数据集。数据主要覆盖汉班托塔港口区域,数据的空间分辨率约为0.6米左右。数据主要用于研究去高精度的承灾体要素提取,例如港口设施、道路等。提取的专题要素将作为风暴潮灾害暴露度和脆弱性分析的基础数据。
董文
汉班托塔地区的5米分辨率的DEM数据是由资源三号卫星获取的立体像对数据加工处理得到。资源三号卫星搭载了四台光学相机,包括一台地面分辨率2.1m的正视全色 TDI CCD相机、地面分辨率3.5m的前视和后视全色 TDI CCD相机、一台地面分辨率5.8m的正视多光谱相机。其中前正后视全色相机,推扫成像形成三线阵立体像对,可用于DEM提取。通过对2018年至2019年间的资源三号过境信息及数据进行检索,选择了汉班托塔地区无云的立体像对数据进行DEM提取,主要包括定义地面控制点、连接点、设置DEM 提取参数和结果编辑等步骤。
董文
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由GIMMS NDVI 3gv1.0数据、中国植被图、太阳总辐射值及温湿度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA模型的输入变量,基于参数化模型实现对青藏高原1990-2015年8km分辨率的陆地植被净初级生产力估算。
王晓峰
建成区(Built-up Area)可以反映一定时间阶段城市建设用地规模、形态和实际使用情况,为分析研究用地现状,合理利用建成区的土地和规划城市建设发展用地提供基础。基于1999~2003年和2013~2014年覆盖34个关键节点的卫星影像,采用有监督和无监督的数据分类过程,将数据驱动和知识驱动合理地结合起来生产得到2000年和2014年的关键节点区域建成区分布数据。初步试验证实,该建成区信息质量优于其他通过对地观测数据自动处理提取的全球信息数据。数据的Balanced Accuracy 为0.83,遗漏误差为0.22。数据为TIFF格式的栅格数据,包含0,1,2,3,4五个唯一值,其中0表示nodata,1表示水面,2表示没有建成区的土地,3表示2014年的建成区,4表示2000年的建成区。
周璞, 凌峰
青藏高原城镇分布和城镇化指标数据集主要包括青藏高原所有城镇土地的空间分布数据(2019年)和不同尺度的城镇化水平指标(2018年)。城镇分布数据集主要基于“1:25万全国基础地理数据库-2015版”的居民地地名(点)和居民地(面)数据,并结合2019年前后的Google Earth影像,通过目视解译的方法获得。城镇化指标包括利用珞珈一号夜间灯光数据计算出的全域、省级、流域、地级和县级尺度复合灯光指数(Compound night light index, CNLI)。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
何春阳, 刘志锋, 王一航
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
该数据集是基于GIMMS AVHRR传感器计算的LAI 3g,表征植被的绿度。数据来源于Chen et al. (2019),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。本数据将原本的半月尺度数据集成至月数据,加工方法为将一个月的两期LAI取最大值,尽可能达到去除噪声的效果。该数据集是使用最为广泛的LAI数据之一,常被用作评定植被绿度的时间和空间格局,具有实际意义和理论价值。
陈驰
该数据集是基于GIMMS AVHRR传感器计算的NDVI 3g,是通过红外和近红外通道的反射率计算而得的产品,表征植被的绿度。源数据范围为全球,本数据集选取了青藏高原区域。本数据将原本的半月尺度数据集成至月数据,加工方法为将一个月的两期NDVI取最大值,在最大值滤波的处理下,尽可能达到去除噪声的效果。该数据集是使用最为广泛的NDVI数据之一,常被用作评定植被绿度的时间和空间格局,具有实际意义和理论价值。
刘焱序
The Water body dataset for the North American high latitudes(WBD-NAHL) data is important for hydrology research, matter and energy cycle research. The inland water inventory included water bodies of tundra and boreal forest in North America. The water extent was extracted from Sentinel-2 A/B multi-spectral with assistant of JRC yearly permanent water. Both water index and random forest methods were used to detect water. The water index extracted the loose water extent. Random forest extracted the more accurate water extent. And area, perimeter and shape index (SI) were provided in this dataset. The overall accuracy is 98%. It was established that about 6.5 million water bodies presented in tundra and boreal forest in North America, among witch 6 million small water bodies less than 0.1 km2 (90% of total water bodies) were included. And the inventory covered 801,445 km2 inland water, the average size, perimeter and SI of which were 0.12 km2, 1.01 km and 1.43.
冯敏, Yijie Sui
本数据集包括祁连山地区2018年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
本数据集为青藏高原地区2005、2010、2015、2017、2018年逐日0.01°×0.01°地表土壤水分产品。采用多元统计回归模型,通过对“青藏高原地区SMAP时间扩展0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.01°×0.01°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集为基于SMAP时间扩展方法生产的青藏高原地区0.25°×0.25°地表土壤水分产品。即采用随机森林方法,利用被动微波亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。其中,1980、1985、1990、1995和2000年为逐月产品,使用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据。2002年6月20日至2018年12月30日为逐日产品,使用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据。 参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
地表反照率是地表能量平衡的重要参量之一。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感地表反照率数据。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.049。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
周纪, 刘绍民, 董惟琛
本数据集包括黑河流域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
归一化植被指数在研究植被长势、地物分类方面有重要作用。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过pix4D mapper进行拼接,并由pix4D mapper自动进行拼接后影像的植被指数计算。最后将pix4D mapper拼接的单航次影像利用ArcGIS镶嵌得到整个飞行区域影像。
周纪, 刘绍民, 金子纯
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
本数据集包括祁连山区域2019年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件