泛第三极20国坡度坡长因子(LS)数据集,基于公开的1弧秒分辨率SRTM数字高程数据(Shuttle Radar Topography Mission, SRTM;http://srtm.csi.cgiar.org),经过去接边、去除伪条纹等和滤波除噪等预处理,利用CSLE模型中的坡度坡长因子算法和本项目研发的坡度坡长因子计算工具(LS_Tool),计算得到7.5弧秒分辨率坡度坡长因子图。泛第三极20国坡度坡长因子数据,是基于CSLE进行土壤侵蚀速率计算的必备数据,同时分析泛第三极20国侵蚀地形特征(如高程、坡度、坡度等宏观分布和微观格局)的基础数据,对于该地区地貌特征、地质灾害特征的分析,也具有参考价值。
杨勤科
1)数据内容包含重点区域20国植被覆盖与生物措施因子B栅格数据,空间分辨率为300米。2)基础数据源为2014~2016年的MODIS MOD13Q1产品,空间分辨率250m,据此计算得到3年平均的24个半月植被覆盖度栅格数据,然后按地类计算土壤流失比例,进一步利用24个半月的降雨侵蚀力进行加权平均,得到植被覆盖与生物措施B因子栅格图。3)MOD13Q1遥感植被数据侧重进行了去云预处理,计算的B因子按地类进行统计并进行合理性分析,最终取得的数据质量良好。4)植被覆盖与生物措施B因子反映了地表土地利用/植被覆盖对土壤侵蚀的影响,对重点区域20国的土壤侵蚀模拟及其空间格局分析具有重要意义。
章文波
1)数据内容包含重点区域20国2015年土壤侵蚀强度栅格数据,空间分辨率为300米。2)基于重点区域20国13000个调查单元数据,采用中国土壤侵蚀预报模型(CSLE),计算降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子以及耕作措施因子。然后按土类进行土壤侵蚀量插值并进一步进行强度分级,得到重点区域20国土壤侵蚀强度图。3)对土壤侵蚀强度数据进行空间格局合理性分析,数据质量良好。4)土壤侵蚀强度数据对理解重点区域20国土壤侵蚀空间格局及开展水土流失治理等具有重要意义。
章文波
于2019年7月至8月在青海省西宁市至格尔木市段、青海省格尔木市至西藏自治区拉萨段、以及格尔木市至西宁段每隔20km在远离人为扰动的地方采集不同土地利用类型的土壤样品,共计土壤样品147个,其中草地83个,沙地48个,农地14个,林地3个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。在各样方内用随机取样法,用土钻(直径8 cm)取0-15 cm的土样,用粗筛筛去与根系脱离的土壤,全氮、全磷、全钾的测定是全样,用的0.15mm的土样,其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH测定:称取过1mm筛的风干土样10g于50ml烧杯中,加入无二氧化碳蒸馏水保持水土比为2.5:1,用PHSJ-4F实验室进行测定。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
于2019年9月~10月在三江源区沿214国道开展野外调查,考察的地质、地貌、气候和植被类型资料,并采集沿线土壤样品,共计土壤样品32个。并于2020年6月~7月在三江源区典型沙化草地、放牧草地和高原鼠兔活动区开展野外调查,其中不同沙化程度土样15个,不同放牧强度土样9个,鼠兔活动区土样12个,共计36个。两次野外调查合计土样68个。数据集内容包括序号、各样点地理位置、土地利用类型、经纬度坐标、海拔、土壤全氮、全磷、全钾含量和土壤pH,数据格式为Excel表。本数据集通过野外采样与室内实验相结合的方法自主测定获得。其中全氮通过半自动凯氏定氮仪测定,全磷采用分光光度计测定,全钾采用火焰光度计测定,pH采用PHSJ-4F实验室pH计测得。此数据可为高寒生态系统修复提供数据支撑和科学依据。
赵广举
地表向下辐射(SDR)包括短波向下辐射(SWDR)和长波向下辐射(LWDR),对能源和气候研究具有重要意义。考虑到东亚-太平洋(EAP)地区缺乏具有高时空分辨率的可靠SDR数据,利用下一代地球静止卫星Himawari-8开发了2016至2020年、时空分辨率为10min/0.05°的短波和长波数据集。SDR产品充分考虑了云、高气溶胶背景和地形效应对SWDR的影响。与云和地球辐射能系统(CERES)、欧洲中期天气预报中心(ECMWF)、下一代再分析(ERA5)和全球陆表特征参量产品(GLASS)等辐射产品对比,新SDR产品不仅分辨率明显更高,而且产品精度也更优。在精度方面,新SWDR的每小时和每日均方根误差分别为104.9和31.5 Wm-2,远小于CERES(分别为121.6和38.6 Wm-2)、ERA5(分别为176.6和39.5 Wm-2)和GLASS(每日36.5 Wm-2)。同时,新LWDR每小时和每日值的RMSE分别为19.6和14.4 Wm-2,与CERES和ERA5相当,在高海拔地区甚至更优。
胡斯勒图, 王天星, 杜艺涵
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
本地表粗糙度数据集来源于滦河流域土壤水分遥感试验中的地面同步观测,分别覆盖(1)70 km×12 km 典型试验区(南北航线)的30个样区以及(2)165 km×5 km复杂试验区(东北—西南航线)的8个样区。数据分别于2018年9月17日、2018年9月18日和2018年9月20日获取,试验测量了每个样区中典型地物的东西(或平行垄)方向和南北(或垂直垄)方向的粗糙度。地表粗糙度以均方根高度和相关长度进行表示,其中均方根高度是垂直方向上粗糙程度的度量,自相关长度作为粗糙程度在水平方向上的度量。本数据集经过土壤表面高度数字化、斜度校正、周期校正、粗糙度计算等步骤处理得到。
郭鹏
典型矿产开发工程区域水环境数据包含青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边水样检测数据集(2019)、青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域周边沉积物及土样检测数据集(2019)。数据第一行为经纬度、元素名称,第二行为元素含量单位,第一列为样点编号。数据获取方式为2019年8月在甘南藏族自治州早子沟金矿、大水金矿、忠曲尾矿库周边相关流域采集的水体、沉积物、土壤样品,水样采用美国热电公司iCAP SQ型电感耦合等离子体质谱仪和海光光学AFS-2202E型原子荧光光谱仪进行检测分析,土壤和沉积物采用IEEXRF荧光光谱仪进行检测分析,主要分析K、Ca、Na等常量元素和Cr\Ni\Cu\Zn等微量元素含量。数据格式为xlsx,数据质量可靠,可应用于青藏高原东北部祁连山成矿带超大型金矿带典型矿产开发区域的水环境综合效应评估。
程昊
中国土壤类型空间分布数据根据全国土壤普查办公室1995年编制并出版的《1:100万中华人民共和国土壤图》数字化生成, 采用了传统的“土壤发生分类”系统,基本制图单元为亚类,共分出12土纲,61个土类,227个亚类。土壤属性数据库记录数达2647条,属性数据项16个,基本覆盖了全国各种类型土壤及其主要属性特征。数据来自中科院资源环境科学与数据中心。根据1:100万中国土壤图数字化生成。比例尺为1:100w
王俪璇
青藏高原土壤温湿度观测网(Tibet-Obs)始建于2008年,包括玛曲、那曲、阿里和狮泉河四个站网,目前已连续运行超过十年,并被NASA的土壤水分主被动卫星SMAP选定为其产品的地面验证点,促进了青藏高原遥感产品和模型模拟的评估和改进。本研究详细梳理了各观测站网的现状及其应用情况,并基于已有观测数据发展了一套长时序(2009-2019)地表土壤湿度(5 cm)观测数据集,主要包含四个站网各站点的15分钟原始观测数据以及玛曲和狮泉河站网的升尺度区域土壤湿度数据。
张佩, 郑东海, 文军, 曾亦键, 王欣, 王作亮, 马耀明, 苏中波
数据集包含2002年至2018年中国陆地土壤水分数据,单位为m³/m³,时间分辨率为月,空间分辨率为0.05°。它由3个被动微波遥感产品制成:日本宇宙航空研究开发机构(JAXA)的 AMSR-E 的 Level 3 土壤水分数据和 AMSR2 的 Level 3 土壤水分数据,以及由法国农业科学研究院(INRA)和法国空间生物圈研究中心(CESBIO)研发的 SMOS 产品的土壤水分数据。为了应对被动微波土壤水分产品空间分辨率低的不足,研究人员基于温度植被干旱指数(TVDI)建立了空间权重分解(SWD)模型,其中,TVDI由中分辨率成像光谱仪(MODIS)的地表温度(LST)MYD11C3数据和归一化植被指数(NDVI)MYD13C2数据计算而来。整体而言,降尺度的土壤水分产品与实地测量结果一致(R >0.78),且均方根误差较低(ubRMSE < 0.05 m³/m³),这表明数据在整个时间序列中具有良好的准确性。数据集可以广泛应用于水文及干旱监测,并且可以作为生态和其他地球物理模型的重要输入参数。
毛克彪
本数据集包含2018年滦河流域土壤水分遥感试验(SMELR)航空飞行试验期间地面同步测量的地表及土壤温湿度数据,用于验证遥感反演的“真值”。数据包括表层0-5 cm的土壤水分(体积含水量,%)、深层(5、10、20、40 cm)土壤水分,表层0-5 cm的土壤温度(℃)、光照和阴影下的土壤温度,光照和阴影下的植被温度。 地面同步采样样方分布于滦河的上游地区(闪电河流域、小滦河流域),采样时间为2018年9月,使用便携式土壤水分仪、外置探头型温度记录仪以及环刀法进行测量,采取样区-样方-样点嵌套的采样方案获取数据。
赵天杰, 姚盼盼, 崔倩, 蒋玲梅, 柴琳娜, 郑超磊, 卢麾, 马建威, 吕海深, 武建军, 赵伟, 杨娜, 李玉霞, 潘金梅, 刘明宇, 魏祖帅, 张子谦, 王建, 杨建卫, 刘晓敬, 刘进, 尹燕旻, 黎一杉, 倪少强, 祝鹏, 洪志明, 王莜译, 刘晨, 杨建华, 田丰, 王伟, 何珏霖, 陈勇强, 徐少博, 程渊, 高思远, 郝震, 易珍言, 王昊宇, 胡新, 彭义峰, 杜晓铮, 胡凤敏, 孙亚勇, 耿德源, 杨纲, 钟浩, 吴松, 郑杰, 杨倍倍, 赵嘉诚, 周倩
本数据集来源于滦河流域土壤水分遥感试验中的多频多角度地基微波辐射观测试验,试验地点位于内蒙古自治区多伦县 (42.18°N, 116.47°E),数据获取于2017年。数据集共包含三个部分,即亮温数据、土壤数据和植被数据。微波亮温数据由RPG-6CH-DP车载微波辐射计观测得到,涵盖三种农作物 (玉米、莜麦和荞麦),包括三个微波波段 (L, C和X)的水平和垂直极化亮温,观测入射角变化范围为30-65° (2.5°间隔),时间分辨率为0.5小时。土壤数据包含了三种农作物土壤的5层土壤水分和土壤温度 (2.5 cm, 10 cm, 20 cm, 30 cm, 50 cm),采样间隔为10分钟;土壤数据还包括地表粗糙度、降雨量、灌溉标记和土壤质地。植被数据包括叶面积指数、植株高度、植被含水量等。 试验观测时间从2017年7月19日持续到8月30日,其所涵盖的不同农作物的多频多角度微波亮温及土壤和植被等相关配套数据为陆表微波辐射建模与验证、土壤水分反演算法发展和验证提供了重要资料。
赵天杰, 胡路, 李尚楠, 樊东, 王平凯, 耿德源, 施建成
本数据集包含来自闪电河流域土壤温湿度无线传感器网络(以下简称SMN-SDR)的34个站点的土壤水分、土壤温度和降水的原位测量数据。整个观测网络覆盖约10000平方公里(115.5-116.5°E,41.5-42.5°N)。SMN-SDR 所覆盖的闪电河流域地势相对平坦,地表覆盖类型以草地和农田为主。网络中共计包含34个站点,分别设置了100公里(大尺度)、50公里(中尺度)和10公里(小尺度)三种采样尺度。站点观测使用Decagon 5TM 土壤水分传感器,每个站点统一按照五个测量深度(分别为3、5、10、20和50厘米)进行测量,其中有20个站点配备了HOBO雨量计。测量数据稳定后定期针对每个站点的每一层土壤采集土壤样品,分析重量/体积含水量、容重和土壤质地等,以对原始测量数据进行校准。数据采样间隔为10分钟(2019年6月之前)或15分钟(2019年6月之后)。 闪电河流域土壤温湿度无线传感器网络将为卫星反演和模型模拟的土壤水分产品真实性检验提供长期的地面参考数据。
赵天杰, 姬大彬, 蒋玲梅, 崔倩, 陈德清, 郑景耀, 张子谦, 胡路, 施建成
该数据集包含位于小滦河流域布设29个土壤温湿仪器观测点,观测时间在2018年8月28日-2019年2月28日之间,时间间隔30 min。观测深度为5 cm和10cm共2层。观测点位分布在被动微波像元尺度(如SMAP、SMOS、AMSR2和FY-3)和主动微波卫星像元尺度(如Sentinel-1)内。主微波像元和被动微波像元的观测面积分别为0.1°×0.1° 和 0.25°×0.25°。主动微波像元中有12个位点(称A(主动)),被动微波像元中有17个位点(称P(被动))。
蒋玲梅
本数据集包含来自闪电河流域土壤温湿度无线传感器网络(以下简称SMN-SDR)的34个站点的土壤水分、土壤温度和降水的原位测量数据。整个观测网络覆盖约10000平方公里(115.5-116.5°E,41.5-42.5°N)。SMN-SDR 所覆盖的闪电河流域地势相对平坦,地表覆盖类型以草地和农田为主。网络中共计包含34个站点,分别设置了100公里(大尺度)、50公里(中尺度)和10公里(小尺度)三种采样尺度。站点观测使用Decagon 5TM 土壤水分传感器,每个站点统一按照五个测量深度(分别为3、5、10、20和50厘米)进行测量,其中有20个站点配备了HOBO雨量计。测量数据稳定后定期针对每个站点的每一层土壤采集土壤样品,分析重量/体积含水量、容重和土壤质地等,以对原始测量数据进行校准。数据采样间隔为10分钟(2019年6月之前)或15分钟(2019年6月之后)。 闪电河流域土壤温湿度无线传感器网络将为卫星反演和模型模拟的土壤水分产品真实性检验提供长期的地面参考数据。
赵天杰, 姬大彬, 蒋玲梅, 崔倩, 陈德清, 郑景耀, 张子谦, 胡路, 施建成
本数据集包括祁连山地区2019年日值0.05°×0.05°地表土壤水分产品。采用耦合小波分析的随机森林优化降尺度模型(RF-OWCM),通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与降尺度模型的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(TRIMS LST-TP),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
该数据集包含了2020年1月1日至2020年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2020年1月1日至2020年12月31日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2020年1月1日至2020年12月31日的青海湖流域水文气象观测网温性草原气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
本数据集包含了青藏高原南部雅鲁藏布江中上游地区119个表土的磁学、粒度、元素、色度和有机碳同位素等5类数据;5个风成沉积剖面的年代、磁学、粒度、元素和色度等5类数据;36个风成沉积物的年代学数据;46个不同沉积物的物源数据;21个不同沉积物的Sr-Nd同位素数据;磁化率使用Bartington MS2型磁化率仪测定,无磁滞剩磁使用LDA-5型交变退磁仪和JR-6A旋转磁力仪测定,等温剩磁使用ASCIM-10-30型脉冲强磁仪和JR-6A旋转磁力仪测定;粒度使用Malvern Mastersizer 2000激光粒度仪测定;元素使用X-射线荧光光谱仪测定;色度使用CM-700d分光光度计测定;有机碳同位素使用元素分析仪-稳定同位素比率质谱仪(EA-IRMS)测定;光释光年代使用Risø TL/OSL DA-20C/D型释光分析仪测定,碳十四年代和Sr-Nd同位素的测定方法详见科考报告正文。该数据集信息丰富,真实可靠,为认识青藏高原南部雅江流域地表粉尘理化性质、物源及古粉尘长时间尺度演化历史提供了重要数据参考。资助项目:第二次青藏高原综合科学考察研究任务六专题2“粉尘气溶胶及其气候环境效应”(2019QZKK0602)。
夏敦胜, 杨胜利, 杨军怀, 王树源, 凌智永, 王飞
该数据集主要包括黑河流域中上游土壤重金属数据。主要通过2020年8月开展的黑河流域野外实地考察获得,共计49个土壤样点。样点土壤样品带回实验室进行初步分类并去除杂质,将土壤样品自然风干,然后混合均匀,并使用球磨仪进行研磨获得研磨样,再过筛成为检测样品。取样品在ST-60型全自动消解仪中加热消解,定容后利用ICP-AES光谱仪测定重金属元素含量,包括Cd、Zn、Cu、Ni、Cr、As和Pb,单位为mg/kg,其中Cd检出限为0.0002,Zn检出限为0.001,Cu检出限为0.001,Ni检出限为0.001,Cr检出限为0.001,As检出限为0.003,Pb检出限为0.003。本数据集质量可靠,可供分析青藏高原城镇化地区土壤重金属元素的分布规律。
田玉强, 方醒醒
本数据集包括2013年全国盐田分布数据。这些数据通过Landsat卫星遥感影像人工解译提取盐湖图斑,矢量化处理后形成。主要包含盐田名称(YT)、盐性编号(YXBH)、所在省份(SF)等信息。数据集共有39条记录,56.00KB。数据集文件名及数据表标志名对应如下:盐田名称 YT、盐性编号 YXBH、所在省份 SF。采用WGS-84坐标系为空间基准,精度为1:30万,粒度以县级行政区为最小单元,以省级行政区为最大单元。
陈亮, 王建萍
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
该数据集包含位于西藏自治区昌都市江达县岗托镇矮拉山附近(98°29′16″E, 31°36′36″N)冻融滑坡及融冻泥流浅层地温、水分及现场气象要素监测数据,基于Hobo温度、水分及小型气象站通过现场监测获得。观测时间在2019年8月31日-2020年7月14日之间。通过一个完整冻融周期的现场监测,下载现场传感器自动获取的地温、水分及气象要素监测数据,通过一定的质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。地温、水分观测时间间隔4小时,地温的观测深度为10cm, 20cm, 40cm, 60cm,80cm,100cm,150cm及200cm,共8层,水分的观测深度为20cm,50cm,100cm及200cm共4层。气象观测要素主要包括气温、降雨量、风速、风向及太阳辐射等,观测的时间间隔为30分钟(注:太阳辐射传感器最大量程为1276.8 W/m2,实际太阳辐射值大于最大量程时显示为1276.9 W/m2;风速传感器的最小启动风速为0.5m/s,当实际风速小于启动风速时,显示值为0。因此该数据无法体现超太阳常数现象和低于0.5m/s的风速)。质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。经过矫正的最终数据以excel文件存储。获取的现场数据经多人复查审核,数据完整性和准确度达到95%以上。监测数据可为后期开展藏东南地区冻融滑坡和融冻泥流相关研究工作提供必要的数据支撑。
牛富俊
四川省和西藏自治区典型小流域土壤养分数据集(2020)包含了采集的四川省和西藏自治区典型小流域的土壤养分实验实测数据。数据集来源于第二次青藏高原综合科学考察在四川省和西藏自治区部分小流域对草地、耕地、林地的野外调查,在采样点采集不同深度的土壤样品,后将土壤样品带回实验室通过相关的土壤理化实验记录了详细的土壤参数(包括有机碳、ph值、水分含量等),能够为小流域区溯源土壤水蚀、了解土壤环境和进行相关研究提供重要的参考。
苏正安
本数据集包含2019-2021年青藏高原多条科考线路土壤样品的生物性质数据,包括采集人、采集时间、采集地点、经纬度、海拔、植被类型、取样深度、磷酸酶活性、微生物呼吸、氮转化特征、功能基因丰度以及真菌、细菌、原生生物多样性等信息。各项土壤性质的分析参考《土壤环境质量监测技术规范》的要求,通过室内化验分析获得的一手数据,数据质量通过测定空白样品、重复样品和标准样品进行统一控制。该数据集可用于气候变化和人类活动影响下土壤质量和功能评价。
张丽梅
本数据集内容属于2019年在青藏高原中西部地区(西藏阿里地区、日喀则地区、那曲地区以及新疆喀什地区与和田地区)采集的土壤样点数据,数据内容包括样点编号、坐标(经纬度)、土壤类型(土纲、亚纲、土类)。土壤类型以中国土壤系统分类标准命名。数据主要来源于野外采样观察土壤剖面及周边景观后得出来的土壤类型,用GPS定位获取各个点位的坐标。由于疫情影响,2019年所采的样品理化属性分析滞后,部分土壤类型可能需要后续根据所测得的理化属性对诊断层进行更进一步的判断,然后对土壤类型进行更新。点位分布与青藏高原中西部地区,基本描述了青藏高原中西部地区土壤类型的分布情况,本数据集为后续研究及其他课题的研究提供了基础的土壤背景数据。
宋效东
祁连山北坡-河西走廊干旱荒漠区土壤微生物多样性数据集(2019-2020),共包括90个采样点的90个表层(0-20 cm)土壤样本的细菌和真菌多样性信息。本数据集的土壤样品来源于2019年祁连山北坡-河西走廊干旱荒漠区综合土壤调查,土壤样品进行基于Illumina MiSeq PE300平台,分别用338F/806R和817F/1196R通用引物来扩增细菌16S rRNA V3-V4区和真菌18S rRNA V5-V7可变区,扩增得到的原始数据均经过抽平及严格检查,保证了数据的可靠性。该数据集对于提高荒漠区土壤生产力、实现土壤资源可持续利用等均具有十分重要的意义。
王旭洋
西藏拉鲁湿地国家自然保护区,总面积6.2平方公里,平均海拔3645米,是典型的青藏高原湿地,属于芦苇泥炭沼泽。该数据集为西藏拉鲁湿地六个不同位点采集土壤表层(0-10cm)样品测定的土壤基本理化指标数据,数据集包括以下土壤理化性质:土壤pH值,土壤水分含量,土壤有机碳,土壤总磷含量,可利用磷含量,土壤总钾含量,土壤可利用钾含量,土壤总氮含量,土壤铵态氮和土壤硝态氮含量;数据可应用于拉鲁湿地土壤质量评价等相关科学研究当中。
闫钟清
本数据集来源于书籍: 《南迦巴瓦峰地区自然地理与自然资源》,该书籍的指导为任美锷,主编为彭补拙、杨逸畴,指导单位为中国科学院地理研究所。本书是南迦巴瓦峰《登山科学考察丛书》之一,是对南迦巴瓦峰及雅鲁藏布江下游大拐弯这个科学上空白地区进行自然地理研究的全面总结。 由于南峰地区的河流多是水流湍急,因此,蒸发浓缩作用微弱。另外,在湿润的南峰地区广泛分布着发育在片麻岩上的土壤,其淋溶作用强烈,土体中可溶盐贫乏,多显酸性反应。为了便于对天然水中一些阴、阳离子的含量进行分析,测定了南峰地区在不同海拔发育于片麻岩母质上的不同类型土壤中部分阴离子,结果列于表3。 土壤中元素的含量和分布不但受成土母质的影响,还与有机质和土壤中物理化学组成的性质有关,现将发育在本区土壤类型中部分土壤的元素含量及物理化学组成列于表8。从表8可以看出,某些元素与有机质及颗粒度等物理化学组成有关。南峰地区降水充沛,植物覆盖率大,生物及化学作用增强,在土壤有机质的积累和粘粒的形成方面与其高度有明显的关系,即海拔愈低,生物和化学风化愈强烈。同时与珠峰地区相比,化学风化也有所增强,这就造成了本区土壤中除Na,Mg,K外,其它元素都接近于世界土壤元素含量的主要原因。 土壤中的元素含量与成土母质和土壤类型有密切的关系,现将主要土壤类型和成土母质中的元素测得值,取其算术平均值,并求标准偏差,列于表9。从表9可以看出,不同母质发育的土壤中,元素含量有一定的差异,不同类型的土壤中元素含量也有相当大的差别。说明土壤中的元素含量与成土母质和土壤类型有密切的关系。这主要与元素本身的化学性质及元素在成土过程中的地球化学性质有关。 用PI XE法分析了南峰地区号营地、大本营、派区等点大气气溶胶样品,现将测得值列于表10,以探讨其输送、扩散、转化和富集规律,尽快地开展清洁区大气背景值的研究,追踪污染物质的来源。有机氯化合物如DDT、666,PCB,由于性质稳定,在环境中可以受到各种自然因素的影响而作长距离的迁移,为了解南峰地区是否也受到这类有机氯化合物的污染,我们首次用痕量分析方法,分析了水、土壤、动植物等样品中有机氯化合物的含量,以达到了解南峰地区生物背景状况的目的(表11、12、13),南峰地区水体、土壤、某些植物和禽蛋中 DDT,666含量很低一般仅为10-8数量级。收集的人发和牛毛样品中其他元素等含量水平未见异常。 南峰及北京地区部分生物样品中无机物含量列于表14。
彭补拙, 杨逸畴
为了更好地说明山地自然带的景观特征,以及组成要素之间的物质交换和地球化学上的内在联系,阐明各元素及其化合物在自然景观中的迁移转化规律。我们对每一自然带景观中的岩石、风化壳(土壤母质)、土壤中元素含量进行了化学分析,并计算大量元素、微量元素的迁移系数,求出该景观风化壳、土壤的元素迁移系列。在景观的表生作用带内不活泼的元素(或弱迁移的),有铝和钛等,在进行大量元素与微量元素迁移能力计算时,分别用铝和钛作为基准,计算各个元素的淋出量、淋出率(%)及迁移系数。
彭补拙, 杨逸畴
陆地实际蒸散发(ETa)是陆地生态系统的重要组成部分,它连接着水文、能量和碳循环。然而,准确监测和理解青藏高原(TP)实际蒸散发(ETa)的时空变化仍然非常困难。在此,利用MOD16-STM模型,在土壤属性、气象条件和遥感数据集的支持下,对青藏高原多年(2000-2018年)月度ETa进行了估算。估算出的ETa与9个通量塔的测量结果相关性非常好,均方根误差(平均RMSE=13.48 mm/月)和平均偏差(平均MB=2.85 mm/月)较低,相关系数(R=0.88)和一致性指数(IOA=0.92)较高。2000年至2018年,整个TP和东部TP(Lon>90°E)的空间平均ETa显著增加,增速分别为1.34 mm/年(P<0.05)和2.84 mm/年(P<0.05),而西部TP(Lon<90°E)未发现明显趋势。ETa及其组分的空间分布不均匀,从东南向西北TP递减。东部ETa呈显著上升趋势,西南部ETa全年呈显著下降趋势,尤其是冬春两季。土壤蒸发(Es)占总ETa的84%以上,其时间趋势的空间分布与年平均ETa相似。春季和夏季的ETa变化幅度和速率最大。陆表ETa的多年平均年值(面积2444.18×10^3 km2)为376.91±13.13 mm/年,相当于976.52±35.7 km3/年。整个TP(包括所有高原湖泊,面积2539.49×10^3 km2)的年平均蒸发水量约为1028.22±37.8 km3/年。新的ETa数据集有助于研究土地覆被变化对水文的影响,有助于对整个TP的水资源管理。
马耀明, 陈学龙, 袁令
本数据集包括6个数据文件,分别是:(1)高寒草甸海拔梯度土壤温度和水分数据_西藏当雄(2019-2020),该数据是2019-2020年西藏当雄高寒草甸海拔4400m,4500m,4650m,4800m,4950m,5100m不同土壤深度(5cm和20cm)的温度和含水量的逐小时观测数据。(2)色季拉山林线气象环境数据_西藏林芝(2019),该数据是2019年西藏林芝色季拉山林线(包括阴坡林外、阴坡林内、阳坡林外、阳坡林内)的逐小时气象环境(包括风速、距离地表1m气温、距离地表1m相对湿度、距离地表3m气温、距离地表3m相对湿度、大气压、总辐射、净辐射、光合有效辐射、660nm红光辐射、730nm红外辐射、地表温度、大气长波辐射、地表长波辐射、地下5cm\20cm\60cm热通量、地下5cm\20cm\60cm土壤温度和湿度、雨量、雪厚)逐小时观测数据,其中由于高原地区设备电力故障,导致部分观测数据缺失,已在数据中说明。(3)主要气象站点的植被NDVI_青藏高原(2020),包括青藏高原25个气象站点附近的植被NDVI调查数据和计算平均值。(4)土地利用调查数据集_川藏铁路沿线(2019),包括川藏铁路沿线35个调查点的土地利用调查数据,包括调查时间、地点、经纬度、海拔、坡度坡向、主要植被类型和优势物种。(5)叶面积指数调查数据_川藏铁路沿线(2019),包括川藏铁路沿线主要植被类型的叶面积指数调查数据和计算平均值,使用Sunscan冠层分析仪和LAI-2200测量。(6)土壤温湿度调查数据_川藏铁路沿线(2019),包括川藏铁路沿线34个调查点:地点、经纬度、海拔、土壤表面温度、土壤30cm处湿度,数据记录为每个调查点3次重复测量。该数据集可用于青藏高原植被环境变化规律分析研究。
周广胜, 吕晓敏, 罗天祥, 杜军, 王玉辉, 周怀林
该数据集包含了3类数据,分别是:(1)2020年青藏高原热熔塌陷区土壤理化指标和碳氮、植物碳氮和微生物碳氮数据。这些数据为评估青藏高原碳氮循环过程提供了重要参考。该数据主要是通过2020年在青海刚察考察时实地观测获得。获得的植物和土壤样品带回实验室后进行初步分类、去除杂质,再放入65°C的烘箱中烘干至恒重。测量土壤和植物中的碳氮组分。共获得了4个典型样点的40个样方。该数据可用于揭示土壤和植物碳氮组分的空间变化规律,理解碳氮组分在土壤-植物-微生物体系中的分配情况。 (2)2019年青藏高原草原水平样带土壤营养成分的数据。该数据主要是通过2019年的样带考察时实地打土钻获得。样方土壤样品带回实验室进行初步分类、去根、筛去杂碎石头等杂质。将土壤样品自然风干,然后混合均匀平均分成两份(每份100g左右),一份用2mm土壤筛过筛获得过筛样,另一份使用球磨仪进行土样研磨获得研磨样。包含的内容要素有:壤全C、N、P、K、Fe、Mn 、Cu、Zn、Ca、Na 和全Mg的含量;土壤速效P、K、Fe、Mn、Cu、Zn、Ca、Na 和Mg的含量。土壤全C、全N的测定:对研磨样进行包样,然后采用CHNOS元素分析仪(Vario EL III,GmbH, Hanau, Germany)测定全C、全N的含量。土壤全量元素测定:使用压片机对研磨样进行压片,然后采用X射线荧光光谱仪(XRF, PANalytical Axios mAX, Almelo, The Netherlands)测定样品的全P、K、Fe、Mn 、Cu、Zn、Ca、Na 和全Mg的含量。土壤速效态元素测定:对过筛样进行浸提处理,提取滤液通过电感耦合等离子体发射光谱仪(iCAP 6300, Thermo Electron Corporation, Waltham, MA, USA)测定速效P、K、Fe、Mn、Cu、Zn、Ca、Na 和Mg的含量。共获得了13个样带样点。39个样方,每个样方获得三个土壤层次(即0~10,10~20,20~30cm的土壤层次)。因此,每个样方的每个土壤营养元素共有117个数据(C、N、P、Mn、Zn等);该该数据是此此科考获得的直接获得的实地土壤样品,风干过筛研磨后通过相关分析仪(上述)按相应测试规范测定,质量可靠,可供分析不同区域土壤碳氮含量或密度的分布规律、评估土壤养分状况、生态系统的可持续性等,特别是可供降水变化驱动的碳氮循环研究及其建模使用,具有较为广泛的使用价值和应用前景。 (3)2019年青藏高原草原水平样带植被生产力数据。该数据主要是通过2019年的样带考察时实地观测获得。获得样方植物样品后带回实验室进行初步分类、去除碎石等杂质,再放入65°C的烘箱中烘干至恒重。根据其样方生物量换算为生态系统碳循环关键要素--植被生产力(NPP)。共获得了13个样带样点,39个样方的观测数据。数据的内容要素包含地上、地上生物量及NPP。单位为克每平方米;该数据是此此科考获得的实地观测资料,质量可靠,可供分析不同区域植被生产力的分布规律、植被覆盖、生态系统的碳储量评估等,特别是供降水变化驱动的碳循环研究及其建模使用,具有较为广泛的使用价值和应用前景。
许振柱, 杨元合, 张峰
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
孔维栋
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
过去50年,在全球气候变化的大背景下,随着人口增加和经济发展,欧亚草地已发生了较严重的退化。土壤理化性质作为草原质量评估的重要指标,其时空格局分布与变化都能直观反映草原退化情况,有效评估草原质量对沿线国家的可持续性发展和中国“一带一路”战略的推进都具有重要的意义。在以往研究中,土壤属性指标的时空分布表达在精度和准确性上均存在着可提升的空间。随着地理信息系统、全球定位系统、各类传感器等工具及土壤制图技术的日益强大,数字土壤制图逐渐成为一种高效表达土壤空间分布的方法。本研究以土壤景观学和空间自相关理论为基础,融合多源样点数据与环境协变量数据,使用机器学习模型,分别预测2000年前后欧亚大陆温性草地1km分辨率表层土壤属性空间分布。为了解决土壤样点据标准化的问题,使用等面积样条函数将不同剖面土层属性拟合至表层20cm土壤属性,采用土壤颗粒分布参数模型将不同土壤质地分类标准统一转换为美国制。为了解决土壤样点数不足的问题,使用伪专家观测点补充欠采样区土壤有机质和含砂量样点;采用逐步回归结合支持向量机模型,并通过计算阈值筛选有效土壤容重模拟样点。针对地形气候条件复杂的特征,结合多源遥感数据,应用NGBoost模型挖掘基于样点的土壤属性与环境景观因子(地形、气候、植被、土壤类型等)及空间位置之间的关系,分别预测研究区内1980-1999年和2000-2019年的土壤有机质、含砂量与容重,并给出对应指标的不确定性空间分布。模拟的土壤属性指标的空间分布趋势总体符合实际情况。模拟值与实测值较为吻合,线性关系显著,2000年前土壤有机质含量、容重和含砂量R²分别为0.64、0.35和0.44,RMSE分别为0.25、0.07和13.94;2000年后R²分别为0.79、0.77和0.86,RMSE分别为0.2、0.13和6.61。研究结果表明,本方法能有效反演欧亚大陆温性草地的土壤理化性质,为评估该地区草原退化与构建草原质量评价体系提供基础。
李振宇, 张娜
土壤水分是水循环中核心变量之一,虽然其变化量很小,但对于一次降水过程来说,土壤水分直接决定着降水转化为蒸发、径流及地下水的比例,这对于精细模拟水文过程各分量的时空动态及准确估计黑河上游来水量极其重要。本数据集包括黑河上游八宝河流域40个无线传感器网络节点自2013年7月至2017年12月的观测数据。每个节点都有4cm和20cm土壤水分观测;部分节点还包括10cm深度观测。数据观测频率为1小时。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 具体数据详细介绍请参考附件信息:黑河上游八宝河流域生态水文无线传感器网络土壤水分观测说明文档。
晋锐, 亢健
“一带一路”泛第三极关键节点区域土壤类型与属性数据(Soil mapping and attribution dataset of all nodes area in pan-third pole)是泛第三极关键节点区域反映土壤资源、土壤肥力、土壤环境、土壤生物等土壤数据库的重要信息,为泛第三极关键节点区域有关天气过程、干旱和水文监测方面提供了极其有价值的参考。本数据的基底数据以从粮农组织土壤门户所属的世界土壤数据库(HWSD v1.2)权威性公开数据为主要数据,若干由世界土壤数据中心ISRIC所出版的ISRIC土壤数据和其他收集的项目数据等补充数据为数据来源,筛选并获得了预期31个泛第三极关键节点区域土壤的完整信息的分布。最终得到了泛第三极关键节点区域土壤类型与属性数据。本数据集作为所有土壤数据的研究基础,为项目提供了土壤区划基底数据。数据具有栅格可视化和属性表格直观化的特点,可通过多项途径查看。栅格可视化数据提供了土壤类型及分布的大致数据,属性信息涵盖在表格中,包含了详细的土壤参数(包括有机碳、pH值、蓄水量、土壤深度、土壤的阳离子交换能力和粘土含量、总可交换养分、石灰和石膏含量、钠交换率、盐度、结构等级和粒度等)。
尚成, 凌峰
本数据集记录了阿姆河流域karakul地区荒漠土地2019.9-2020.9的气象要素数据,以及为探明咸海高矿化度咸水用于植被建设的可行性,课题成员于2020年6月在新疆塔里木河下游农二师31团2连开展咸水灌溉种植盐地碱蓬试验和在巴州33团沙漠边缘区进行了高矿化度水(18.94g/L)滴灌种子繁殖造林试验,用以研究不同植物在高矿化度咸水灌溉下的表型特征。收集到的数据包括土壤含水量、电导率、土壤盐分等土壤理化性质以及耐盐植物生理等数据。
李新荣, 何明珠, 赵振勇
稳定连续的长时序地表土壤水分数据集对于全球环境和气候变化监测等都非常重要。SMAP等卫星搭载的L波段辐射计能提供目前最优精度的全球地表土壤水分观测,但其数据记录的短时间限制了其在长期研究中的应用;而AMSR-E和AMSR2系列传感器能提供长时序多频段辐射计观测(C、X和K波段)。本数据集是一个20年(2002/07/27~2022/08/31)的全球连续一致的地表土壤水分数据集,分辨率为日尺度的36 km,采用EASE-Grid2投影坐标系,数据单位为m3/m3。数据集采用Yao et al.(2017)发展的土壤水分神经网络反演算法,将SMAP的优势传递到AMSR-E/2,以目前卫星最优精度的SMAP标准土壤水分产品为训练目标,以AMSR-E/2的亮温为输入,最终输出长时序土壤水分数据。该数据集能够重现SMAP土壤水分的时空分布,精度与SMAP土壤水分产品相当;同时该数据集精度优于AMSR-E和AMSR2的官方土壤水分产品,通过全球14个密集观测站网的地面观测验证表明,其土壤水分精度为5%左右。该全球长时序数据集目前时间覆盖20年,随着AMSR2的持续在轨观测以及即将发射的后继AMSR3任务,该数据集是可延长的,为气候极端事件、趋势分析和年代际变化的长时序研究提供支持。
姚盼盼, 卢麾
本数据集为基于SMAP时间扩展方法生产的青藏高原地区0.25°×0.25°地表土壤水分产品。即采用随机森林方法,利用被动微波亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。其中,1980、1985、1990、1995和2000年为逐月产品,使用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据。2002年6月20日至2018年12月30日为逐日产品,使用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据。 参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
该数据集包含了2018年10月23日至2019年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726''E,北纬 36° 35' 27.337''N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.1.1-10.12由于由于采集器的问题,除四分量外的气象数据均无记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
该数据集包含了2019年4月26日至2019年12月31日的青海湖流域水文气象观测网温性草原芨芨草站气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场南部,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2019年4月28日至2019年12月31日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67"N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2018年9月3日至2019年12月31日青海湖流域地表过程综合观测网高寒草甸草原混合超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤pH数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
黑河上游八宝河流域2013-2014年各层(0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) 1km 逐小时土壤温度、湿度和含冰量数据,本数据由SHAW模型模拟产生,并基于地面站点和无线传感器网络观测的土壤温湿度数据进行了验证,结果较好,可用于上游冻土水热过程相关研究。
张艳林
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件