1)数据内容:本数据集包含从2000-2019年青藏高原地区MODIS长时序地表反射率产品,每期数据共包含13个文件:7个地表反射率文件,3个观测角度文件,2个质量控制文件和1个时间说明文件。2)数据来源及加工方法:主要来自第六版MODIS Terra MOD09A1产品集,青藏高原地区地表反射率产品是通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:sur_refl_qc_500m和sur_refl_state_500m为数据质量文件,其以有效位编码方式存储。4)数据应用成果及前景:在森林、水资源、气候变化等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
青藏高原念青唐古拉山地区高分辨率(5m)冰川高程变化数据集,包括该地区2000‒2013和2000‒2017两个时间段的冰川高程变化数据。具体区域为念青唐古拉山西段的纳木错地区以及东段的岗日嘎布地区,冰川边界参考国际上通用的Randolph Glacier Inventory Version 4.0(RGI 4.0)。冰川高程变化分别由高分辨率资源三号三线阵立体像对数据(ZY-3 TLA)生成的2013年和2017年DEM数据与2000年的SRTM DEM数据通过DEM差分技术得到。其中西段数据有三期:2000‒2013、2013‒2017和2000‒2017;东段数据有一期:2000‒2017。 该数据集空间分辨率为5米,单位为m a^−1,数据格式为GeoTIFF,数据类型为浮点型,投影方式:西段为 UTM 46N,东段为UTM 47N。 该数据与现有的物质平衡实测数据及其它遥感观测的结果具有较好的一致性,但具有更高空间分辨率,可提供更详细的冰川高程变化的空间分布细节,将冰川高程变化乘以冰川的平均密度(通常为850±60 kg m^−3)即可转化为相应时间段内的冰川物质平衡 (单位为:w.e. a^−1),可为该地区冰川高程变化和物质平衡的研究提供数据支撑。
任少亭, 贾立
农业灌溉需要消耗大量的可利用淡水资源,是人类对自然水循环过程最直接的扰动,加速了区域水循环的同时伴随着冷却作用。因此,估算灌溉用水对于探索人类活动对自然水循环的影响、量化水资源收支、优化农业水资源管理配置等具有重要意义。然而,目前灌溉用水数据主要是基于调查统计结果,数据空间分布离散且缺乏统一性,无法满足对灌溉用水的时空变化进行估算的需求。全球灌溉农田灌溉用水量遥感估算数据集(2011-2018)是基于卫星土壤湿度、降水、植被指数以及气象资料入辐射与气温等要素,通过土壤水量平衡原理,耦合遥感蒸散发过程模块以及利用基于差分优化的数据-模型融合算法来估算全球灌溉农田实际灌溉用水量。该数据集的灌溉用水估算结果相比传统的离散调查统计数据在不同空间尺度(区域、州/省和国家)上具有较小的偏差,如中国各省2015年农业用水统计结果对比(bias = −3.10 km^3),美国各州2013年调查数据结果对比(bias = −0.42 km^3)以及粮农组织各个国家尺度对比结果(bias = −10.84 km^3)。而且,相较于基于单个降水和土壤水分卫星产品的估算结果,该集合数据显示出更低的不确定性。此外,数据统一采用全球地理经纬度格网,相关元数据存储在对应的NetCDF文件内,空间分辨率约为25公里,时间分辨率为月尺度,时间跨度为2011年−2018年。该数据集将有助于定量评估历史时期农业灌溉用水的时空格局和支撑科学农业用水管理等。
张琨, 李新, 郑东海, 张凌, 朱高峰
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
夜间灯光遥感(以下简称夜光)已经成为反映包括社会经济和能源消耗在内的人类活动的一个越来越重要的指标。现有夜光数据集(如美国国防气象卫星计划(DMSP)和国家极地轨道可见光红外成像辐射计(NPP))在时间范围和数据质量上都很有限。因此我们提出了一种夜间灯光卷积长短期记忆(NTLSTM)网络,并将该网络应用于生长出世界上第一套1984 - 2020年中国的人工夜间灯光数据集(PANDA)。模型与原始图像的模型评估显示,平均均方根误差(RMSE)达到0.73,决定系数(R2)达到0.95,像素级的线性斜率为0.99,表明生成产品的数据质量较高。模型结果可以很好地捕捉到新建成区的时间趋势。社会经济指标(建成区面积、国内生产总值、人口)与PANDA的相关性比现有的所有产品都更好,这表明它在寻找不同阶段夜间灯光变化的不同控制方面有更好的潜力。此外,PANDA描绘了不同的城市扩展类型,在代表道路网络方面胜过其他产品,并在早期提供了潜在的夜光景观。
张立贤, 任浙豪, 陈斌, 宫鹏, 付昊桓, 徐冰
本数据集为青藏高原区域2016年日分辨率0.02° x0.02° BRDF 核驱动模型核系数数据集。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF。相较于同类产品,,该BRDF合成周期最短,且考虑了地形效应,对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑j反射率角度效应订正、或用于与BRDF相关地表参数的高精度估算。
闻建光, 唐勇, 游冬琴
本数据集为祁连山区域2019年日分辨率地表反照率产品,空间分辨率500m。采用耦合地形因子的基于MODIS反射率数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制。MODIS地表反射率数据为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率。经过验证评估,满足反照率应用精度要求,相较于同类产品对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑祁连山地区辐射平衡、环境变化研究。
闻建光, 唐勇, 游冬琴
本数据集为青藏高原区域2016年日分辨率0.02° x0.02°地表反照率产品。采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据及AHI天顶反射率数据集为官方网站下载,经过配准、大气校正等处理,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率。经过验证评估,满足反照率应用精度要求,相较于同类产品对快速变化地表特征的捕捉更具有优势,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
闻建光, 唐勇, 游冬琴
本数据集包括祁连山区域1982、1985、1990、1995、2000、2005、2010、2015、2017 年度地表短波反照率产品,空间分辨率为0.01°,时间分辨率为月。采用AVHRR长时间系列地表反射率,通过多角度多波段核驱动模型联合月度内多角度红光和近红外波段的AVHRR反射率数据反演核系数,积分得到短波波段的黑空反照率和白空反照率,经过重采样为0.01°空间分辨率。AVHRR地表反射率数据通过官网下载,经过月度累计多角度数据集进行反演,产品具有较好的时空连续性,可用于长时间系列的环境变化监测等。
闻建光, 游冬琴, 唐勇, 吴善龙, 仲波
数据内容:咸海流域耕地数据。 数据来源及加工方法:原始卫星影像来源于美国谷歌地球,为了获得高分辨率下的无云影像,谷歌地球采用拼接方法将不同年份的数据整合到一起,因此下载的影像数据时间跨度为2016-2019年。使用机器识别方法预测出地块边界,将边界转为矢量数据,之后再将结果与谷歌影像叠加,由人工逐个检查修改错误信息,得到咸海流域耕地数据。最终结果采用WGS-1984坐标系。 数据质量:空间分辨率为0.45m×0.45m,准确率达90.32%。 数据应用成果:在气候变化背景下,可与气象要素和植被特征相结合分析土地退化情况;可结合植被特征与采样点分析种植结构,也可以与气象数据和统计数据结合计算水资源利用效率和粮食产量。
刘铁
数据内容:咸海流域2010年-2018年净初级生产力数据。 数据来源及加工方法:结合土地利用、温度、植被指数、降雨量、太阳辐射和蒸散发等数据,借助于CASA模型计算反演得出NPP。 数据质量:空间分辨率为10km×10km,时间分辨率为月,每个文件有12个波段,分别对应当年每个月份的NPP结果,投影坐标为GCS_WGS_1984。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据和生态数据相结合分析土地退化情况。
刘铁
数据内容:咸海流域2015年-2018年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 咸海流域边界说明:咸海流域的边界来源于世界自然基金会的HydroBASINS Version 1,详细信息请参考:https://www.hydrosheds.org/page/hydrobasins 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2015年-2018年叶面积指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD15A2产品第二波段作为叶面积指数数据,乘以比例因子0.1。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天叶面积指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的植被覆盖度(FVC)数据。该数据由MODIS-NDVI数据集(产品编号MOD13A2.006),根据干旱区植被盖度与NDVI之间的经验关系计算得到。该产品时间分辨率为1年,空间分辨率1 km。算法从当年所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值,并进行换算。
徐晓凡, 谈明洪
本数据采用Chen et al. 2017 JHM研究的方法,利用MYD11C3.006和MOD11C3.006两种产品计算得到全天空的地表温度结果,具体计算程序见本数据集的Global_monthly_LST.m。数据格式为*.mat, Global_monthly_LST.m程序给出了实例如何读取该数据。该数据空间分辨率为0.05度,网格中心的经纬度信息分别保存在latitude.mat和Lonitud.mat,由于内陆湖泊、水体的发射率反演的问题,本数据将所有内陆湖泊和水体的地表温度给了NaN值,具体采用的mask见mask.mat文件。经过与全球156个站点观测的LST的验证,总体RMSE为2.69k,mean bias为0.4K,在干旱和半干旱地区的RMSE为2.62K, mean bias为0.94.K.
陈学龙, Bob Su, 马耀明
本数据集包括1985-2018年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的城市建设用地变化的逐年数据。该数据空间分辨率为30m,时间分辨率为一年,源自基于Landsat遥感影像提取的1985-2018年全球人工不透水面(GAIA)变化数据(宫鹏等)。研究者对该数据在1985至2015年间每隔5年的7组数据进行了评估,其平均整体精度超过90%,并且是唯一跨越30年的城市建设用地数据集。
徐晓凡, 谈明洪
本数据集包括2010、2015和2020年间,中亚地区五国(哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)的归一化差值植被指数(NDVI)数据。本数据源自美国地球观测系统(EOS)计划所使用的中分辨率成像光谱仪(MODIS)影像数据,产品编号MOD13A2.006。该产品时间分辨率为16天,空间分辨率1km,产品算法从16天期间的所有观测数据中,以低云、低探测角度和最高NDVI值为标准,选择最佳的可用像元值。
徐晓凡, 谈明洪
1)意义:建设用地是人类活动的最高级表现之一。自然资源的消耗与生态环境的变化可以与建设用地的发展紧密的联系起来。本数据反映了中国7个省/直辖市,同时也是城镇化快速推进的重要地区,从1990年到2019年的30m空间分辨率的高精度建设用地演变情况。 2)数据来源:Landsat系列卫星数据;中国区域地面气象要素驱动数据集(1979-2018);SRTM 30m 高程数据 3)加工方法:采用监督分类的方法,利用随机森林算法和傅里叶变换处理特征波段,并基于目视解译的控制点进行分类。 3-1)光谱特征的获取:首先筛选出含运量<20%的Landsat图像,并以3年为单位将这些图像叠加,然后取每个叠加像元的中间值作为目标像进行拼接,得到整个研究区的无云图像。此方法也能较好的去除Landsat7数据的条带影响。 3-2)时间特征的获取:对云量筛选并进行3年叠加的每个像元,遵循最小均方差的拟合原则进行离散傅里叶变换,得到每个像元在时间纬度上的“波峰”,“波谷”和“相位”作为时间特征。 此方法能较好的消除“裸地”对建设用地提取的影响,因为裸地有可能在春夏季节被植被覆盖,其时间特征与建设用地具有较大的差别。 3-3)气象与地形特征的提取:气象特征由中国区域地面气象要素驱动数据集(1979-2018)计算获得:将该数据集按照与Landsat相同的时间间隔进行叠加,并且求得每个像元的平均值作为气象特征(由于缺少2019的气象数据,最后一期的气象特征由2017和2018两年数据计算得到)。地形特征(高程,坡度)采用SRTM-30m数据。 详细方法和代码可见:https://github.com/wangjinzhulala/North_China_Plain_GEE_Organized 4)数据质量:所有年限的总体精度均优于94%。 5)应用前景:区域城市扩张模拟;城市化的环境影响估算;粮食安全和可持续发展量化。
王金柱
采用全球陆表特征参量(叶面积指数LAI)产品,空间分辨率为5 km。该产品使用广义回归神经网络方法,由AVHRR地表反射率数据反演LAI。本研究下载了1981–2017年中亚5国、蒙古国和中国北方每年6-8月的12期LAI数据产品,来源于国家科技基础条件平台——国家地球系统科学数据中心。用ArcGIS软件对这些影像进行裁剪,并计算最大值,由此获得最大LAI的时空数据集。其中,中亚5国包括土库曼斯坦、吉尔吉斯斯坦、哈萨克斯坦、塔吉克斯坦和乌兹别克斯坦;中国北方指中国长江以北地区。
张娜
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
张娜
基于环境敏感区指数(ESAI)方法,计算获得2019年伊朗高原栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明伊朗高原的荒漠化风险数据精度可靠。
许文强
该数据集是青藏高原木里煤矿区2000-2020年地表要素数据,每五年一期,共5期;其中包括四个子图集:地表反照率、植被指数、植被覆盖度及土壤湿度,共40张影像数据(20张原始栅格数据+20张RGB合成数据)。数据集为矩形区域,根据木里煤矿的东南西北的四个界限所划定。其中地表反照率基于Landsat8 和landsat5 遥感卫星,根据梁顺林先生的方法所计算获得的年度平均值;植被指数采用归一化植被指数NDVI,利用最大值合成法制作的年度最大NDVI影像;植被覆盖度是根据年度最大NDVI合成影像,采用像元二分模型计算获得的年度值;土壤湿度是基于TVDI方法,利用土壤湿度实测数据和回归的方法制作的每期8月份的平均土壤体积含水量。数据均为栅格格式,空间分辨率为30米。该数据集对研究青藏高原地表要素的变化有着一定的指导和借鉴意义,同时对研究青藏高原水资源变化提供了一定价值的参考。
刘振伟, 陈少辉
该数据集为2010年和2020年两个时期的土地覆被数据集,空间范围为孟加拉国达卡市,空间分辨率为30m,时间分辨率为年。数据来源于GlobeLand30(全球地理信息公共产品,http://www.globallandcover.com/),经过镶嵌和整编处理获得。源数据的数据精度评价由同济大学和中国科学院空天信息创新研究院牵头完成,数据的总体精度超过83.50%。该数据集可以为相关研究提供高精度的基础地理信息,在资源环境承载状态判别、自然灾害风险评估以及防灾减灾等方面都有重要应用。
杨飞, 殷聪
该数据集依据中分辨率长时间序列遥感影像Landsat,通过影像融合、遥感解译、数据反演等多种方式获得青藏高原1990/1995/2002/2005/2010/2015六期生态系统类型情况分布图,作出25年(1990-2015)青藏高原生态本底图,空间参考系统为Krasovsky_1940_Albers,空间分辨率为1000m。青藏高原各类生态系统面积统计表明,1990-2015年间,林地、草地面积略有减少,城镇用地、农村居民点及其他建设用地面积增加,河流、湖泊等水体面积增加,永久性冰川积雪面积减少。该图集可用于青藏高原生态工程的规划、设计及管理,并可作为生态系统现状的基准,用于阐明青藏高原重大生态工程建设的时空格局,揭示青藏高原生态系统格局和功能的变化规律和区域差异。
赵慧, 王小丹
1) 数据内容 本数据集包含澜沧江-湄公河流域流向、汇流累积和矢量河网信息。 2) 数据来源及加工方法 本数据集采用了遥感蚀刻方法(Remote Sensing Stream Burning, Wang et. al, 2021),融合了高精度高程模型MERIT-DEM和哨兵2号光学影像。 3) 数据质量描述 经验证,本数据集具备较高的空间精度(Wang et. al, 2021)。<br /> 4) 数据应用成果及前景 本数据集提供了基础的河流网络及其汇流信息,可用于水文模型、陆面过程模型、地球系统模式等模拟用途,也可以用于制图和空间统计分析。
王子丰
本数据集是黑河流域2010-2016年逐日100米地表蒸散发遥感产品。基于多源遥感数据(MODIS、Landsat TM/ETM+数据等)和近地面气象要素数据(中国区域地面气象要素驱动数据集,CMFD),依据地表能量平衡理论,对地表能量平衡系统(SEBS)模型通过全局敏感性分析确定模型的敏感变量,继而优化模型的这些变量参数化方案,以便提高蒸散发遥感模型估算精度。同时,结合遥感图像数据的时空融合方法,最终获取了黑河流域空间全覆盖和较高时空分辨率(100米,逐日)地表蒸散发数据。利用黑河野外地面站点观测数据和黑河流域区域尺度地表蒸散发相对真值数据集(ETMap)进行验证,估算结果与站点观测数据以及ETMap的时空分布格局均具有较好的一致性。本数据集可直接为黑河流域,特别是上游林地和草地、中下游绿洲农田和荒漠植被的耗水规律研究与流域水资源的科学管理提供数据支撑。
马燕飞, 刘绍民
瓜达尔深水港位于巴基斯坦俾路支省西南部瓜德尔城南部,在巴基斯坦靠近伊朗一侧,东距卡拉奇约460km,西距巴基斯坦伊朗边境约120km,南临印度洋的阿拉伯海,向西则是霍尔木兹海峡和红海,与阿曼首都马斯喀特(Muscat)遥遥相对,是一个极具战略地位的海港。 本数据包含瓜达尔港区及其周围区域2014-2015年共343景Landsat8数据在各个30米格网内的中值,数据共包含12个波段,空间分辨率为30米,其中热红外波段为100米重采样至30米分辨率。
吴骅
遥感影像是指记录各种地物电磁波大小的胶片或照片,主要分为航空像片和卫星相片。仰光深水港地区1-5m遥感数据集来自于高分二号卫星,最高分辨率为1m,最低分辨率为5m,总共包括7个区域的影像。每一个区域都有4幅影像,分别是5m级和1m级的波段合成影像。5m级的影像的精度已经能够满足大部分研究用途的需要,且数据量更小;1m级的影像的精度更高,可以用于合成、验证等用途,但是数据量较5m级的数据更大。在实际使用时,可以根据研究者自己的需要,选择5m级或1m级的影像。
葛咏, 李强子, 李毅
汉班托塔地区的米级分辨率的遥感影像数据是由不同卫星的数据融合拼接而成,选择了2018年-2019年2年时间期间,分辨率在0.5米-1米之间的多光谱遥感影像,筛选时间相近的无云数据,按照研究区裁剪、拼接形成结果数据集。数据主要覆盖汉班托塔港口区域,数据的空间分辨率约为0.6米左右。数据主要用于研究去高精度的承灾体要素提取,例如港口设施、道路等。提取的专题要素将作为风暴潮灾害暴露度和脆弱性分析的基础数据。
董文
汉班托塔地区的5米分辨率的DEM数据是由资源三号卫星获取的立体像对数据加工处理得到。资源三号卫星搭载了四台光学相机,包括一台地面分辨率2.1m的正视全色 TDI CCD相机、地面分辨率3.5m的前视和后视全色 TDI CCD相机、一台地面分辨率5.8m的正视多光谱相机。其中前正后视全色相机,推扫成像形成三线阵立体像对,可用于DEM提取。通过对2018年至2019年间的资源三号过境信息及数据进行检索,选择了汉班托塔地区无云的立体像对数据进行DEM提取,主要包括定义地面控制点、连接点、设置DEM 提取参数和结果编辑等步骤。
董文
青藏高原蒸散发是利用遥感、气象、以及野外通量观测站等数据,采用多尺度-多源数据协同的陆表蒸散遥感模型-ETWatch进行计算的。ETWatch采用了余项法与P-M公式相结合的方法计算蒸散。首先根据数据影像的特点选择适用的模型反演晴好日蒸散;遥感模型常常因为天气状况无法获取清晰的图像而造成数据缺失,为获得逐日连续的蒸散量的,引入Penman-Monteith公式,将晴好日的蒸散结果作为“关键帧”,将关键帧的地表阻抗信息为基础,构建地表阻抗时间拓展模型,填补因无影像造成的数据缺失,利用逐日的气象数据,重建蒸散量的时间序列数据,并通过数据融合模型,将中低分辨率的蒸散时间变化信息与高分辨率的蒸散空间差异信息的相结合,构建高时空分辨率蒸散数据集,从而生成青藏高原8km分辨率蒸散数据集(1990-2015)。
王晓峰
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由GIMMS NDVI 3gv1.0数据、中国植被图、太阳总辐射值及温湿度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA模型的输入变量,基于参数化模型实现对青藏高原1990-2015年8km分辨率的陆地植被净初级生产力估算。
王晓峰
建成区(Built-up Area)可以反映一定时间阶段城市建设用地规模、形态和实际使用情况,为分析研究用地现状,合理利用建成区的土地和规划城市建设发展用地提供基础。基于1999~2003年和2013~2014年覆盖34个关键节点的卫星影像,采用有监督和无监督的数据分类过程,将数据驱动和知识驱动合理地结合起来生产得到2000年和2014年的关键节点区域建成区分布数据。初步试验证实,该建成区信息质量优于其他通过对地观测数据自动处理提取的全球信息数据。数据的Balanced Accuracy 为0.83,遗漏误差为0.22。数据为TIFF格式的栅格数据,包含0,1,2,3,4五个唯一值,其中0表示nodata,1表示水面,2表示没有建成区的土地,3表示2014年的建成区,4表示2000年的建成区。
周璞, 凌峰
青藏高原城镇分布和城镇化指标数据集主要包括青藏高原所有城镇土地的空间分布数据(2019年)和不同尺度的城镇化水平指标(2018年)。城镇分布数据集主要基于“1:25万全国基础地理数据库-2015版”的居民地地名(点)和居民地(面)数据,并结合2019年前后的Google Earth影像,通过目视解译的方法获得。城镇化指标包括利用珞珈一号夜间灯光数据计算出的全域、省级、流域、地级和县级尺度复合灯光指数(Compound night light index, CNLI)。本数据集将为青藏高原重点城镇化地区生态安全屏障优化体系研究提供支持。
何春阳, 刘志锋, 王一航
该数据集是基于一系列微波遥感数据获取,包含Special Sensor Microwave Imager (SSM/I), Advanced Microwave Scanning Radiometer for Earth Observation System (AMSR-E)等,表征植被的含水量,可作为初级生产力的参考。数据来源于Liu et al. (2015),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
刘毅
该数据集是基于GIMMS AVHRR传感器计算的LAI 3g,表征植被的绿度。数据来源于Chen et al. (2019),具体计算方法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。本数据将原本的半月尺度数据集成至月数据,加工方法为将一个月的两期LAI取最大值,尽可能达到去除噪声的效果。该数据集是使用最为广泛的LAI数据之一,常被用作评定植被绿度的时间和空间格局,具有实际意义和理论价值。
陈驰
该数据集是基于GIMMS AVHRR传感器计算的NDVI 3g,是通过红外和近红外通道的反射率计算而得的产品,表征植被的绿度。源数据范围为全球,本数据集选取了青藏高原区域。本数据将原本的半月尺度数据集成至月数据,加工方法为将一个月的两期NDVI取最大值,在最大值滤波的处理下,尽可能达到去除噪声的效果。该数据集是使用最为广泛的NDVI数据之一,常被用作评定植被绿度的时间和空间格局,具有实际意义和理论价值。
刘焱序
The Water body dataset for the North American high latitudes(WBD-NAHL) data is important for hydrology research, matter and energy cycle research. The inland water inventory included water bodies of tundra and boreal forest in North America. The water extent was extracted from Sentinel-2 A/B multi-spectral with assistant of JRC yearly permanent water. Both water index and random forest methods were used to detect water. The water index extracted the loose water extent. Random forest extracted the more accurate water extent. And area, perimeter and shape index (SI) were provided in this dataset. The overall accuracy is 98%. It was established that about 6.5 million water bodies presented in tundra and boreal forest in North America, among witch 6 million small water bodies less than 0.1 km2 (90% of total water bodies) were included. And the inventory covered 801,445 km2 inland water, the average size, perimeter and SI of which were 0.12 km2, 1.01 km and 1.43.
冯敏, Yijie Sui
本数据集包括祁连山地区2018年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包含2001-2018年青藏高原月平均地表实际蒸散发量,空间分辨率为0.1度。数据集主要以卫星遥感数据(MODIS)和再分析气象数据(CMFD)作为输入,利用地表能量平衡系统模型(SEBS)计算得到。在计算湍流通量的过程中引入了次网格地形拖曳参数化方案,提高了对地表感热通量和潜热通量的模拟。另外,利用青藏高原6个湍流通量站的观测数据对模型输出的蒸散发量进行了验证,显示出了较高的精度。该数据集可用于研究青藏高原陆气相互作用和水循环特征。
韩存博, 马耀明, 王宾宾, 仲雷, 马伟强, 陈学龙, 苏中波
本数据集为青藏高原地区2005、2010、2015、2017、2018年逐日0.01°×0.01°地表土壤水分产品。采用多元统计回归模型,通过对“青藏高原地区SMAP时间扩展0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.01°×0.01°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集为基于SMAP时间扩展方法生产的青藏高原地区0.25°×0.25°地表土壤水分产品。即采用随机森林方法,利用被动微波亮温数据及相关辅助数据,实现对SMAP L3级地表土壤水分产品的时间扩展。其中,1980、1985、1990、1995和2000年为逐月产品,使用SMMR,SSM/I和SSMIS 19 GHz V/H及37 GHz V三个通道的亮温数据。2002年6月20日至2018年12月30日为逐日产品,使用AMSR-E和AMSR2 6.925 GHz V/H,10.65 GHz V/H及36.5 GHz V五个通道的亮温数据。 参与训练随机森林模型的辅助数据包括IGBP地表分类数据,GTOPO30 DEM数据以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
本数据集包括祁连山地区重点区域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
地表反照率是地表能量平衡的重要参量之一。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感地表反照率数据。地表反照率算法为统计回归方法,即基于6S模型和大量的典型地物光谱反射率数据,建立的从窄波段反射率到宽波段反照率的经验回归模型。将该回归模型应用于无人机多光谱遥感传感器获得的地表反射率,最终得到0.2 m空间分辨率的地表反照率数据。本数据集经过了辐射定标、几何校正,与地面站点实测数据的验证结果显示,均方根误差为0.049。本数据集提供了超高分辨率的地表反照率数据,可以作为卫星遥感尺度和地面观测尺度之间的“桥梁”,并为从事高分辨率和超高分辨率遥感数据工作的科研工作者提供数据支持。
周纪, 刘绍民, 董惟琛
本数据集包括黑河流域2019年5月至2019年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为10m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
归一化植被指数在研究植被长势、地物分类方面有重要作用。本数据集为2019年植被生长季逐月的黑河流域典型站点无人机遥感NDVI(Normalized Differential Vegetation Index)数据,空间分辨率为0.2 m。NDVI数据获取流程为将无人机拍摄后的单幅影像通过pix4D mapper进行拼接,并由pix4D mapper自动进行拼接后影像的植被指数计算。最后将pix4D mapper拼接的单航次影像利用ArcGIS镶嵌得到整个飞行区域影像。
周纪, 刘绍民, 金子纯
数据集包括2015年11月27日- 2016年3月26日阿勒泰基站(lon:88.07, lon: 44.73)地面被动微波亮温、多角度亮温、10分钟四分量辐射和雪温、雪坑日观测数据和逐时气象数据。 日雪坑参数包括:积雪分层、分层厚度、密度、粒度、温度。 这些数据存储在5个NetCDF文件中,TBdata.nc, TBdata-multiangle.nc, Ten-minute 4 component radiation and snow temperature.nc, Hourly meteorological and soil data.nc and Daily snow pit data.nc,以及readme.doc。 TBdata.nc 为六通道双偏振微波辐射计RPG-6CH-DP自动采集的两偏振三个通道的亮度温度。内容包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 TBdata-multiangle.nc为两种极化的3个通道的7组多角度亮度温度。 包括年、月、日、时、分、秒、Tb1h、Tb1v、Tb18h、Tb18v、Tb36h、Tb36v、入射角、方位角。 The ten-minute 4 component radiation and snow temperature. nc 为4组分辐射和层状雪温度。 内容包括:年、月、日、时、分、SR_DOWN、SR_UP、LR_DOWN、LR_UP、T_Sensor、ST_0cm、ST_5cm、ST_15cm、ST_25cm、ST_35cm、ST_45cm、ST_55cm。 The hourly meteorological and soil data.nc为每小时天气数据和分层土壤数据。内容包括年、月、日、时、Tair、Wair、Pair、Win、SM_10cm、SM_20cm、Tsoil_5cm、Tsoil_10cm、tsoil_15cm、Tsoil_20cm。 The daily snow pit data.nc为人工雪坑数据。观测时间为当地时间上午8:00-10:100。内容包括年、月、日、雪深、thickness_layer1、thickness_layer2、thickness_layer4、thickness_layer5、thickness_layer6、Long_layer1、Short_layer1、Long_layer2、Short_layer2、Long_layer3、Short_layer4、Long_layer5、Short_layer5、Long_layer6、short_layer6、Stube、snow shovel_0-10、 雪铲_10-20、雪铲_20-30、雪铲_30-40、雪铲_40-50、雪叉_10、雪叉_15、雪叉_20、雪叉_25、雪叉_30、雪叉_35、雪叉_40、雪叉_45、雪叉_50、形状1、形状2、形状3、形状4、形状5。
戴礼云
本数据集包括祁连山区域2019年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2019年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据为祁连山地区2019年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2019年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2019年的大致分布,可用于流域水资源定量估计研究。
李佳, 李建江, 李新, 刘绍民
本数据集包括祁连山地区2019年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
最优差值海表温度(OISST)分析产品提供了使用最优插值(OI)技术构建的完整海洋温度场。海温产品的空间网格分辨率为0.25度,时间分辨率为1天。该产品使用先进的甚高分辨率辐射计(AVHRR)卫星数据,来自探路者(Pathfinder) AVHRR SST数据集(1981年9月至2005年12月)和海军AVHRR多通道海表温度数据(2006年至今)。选择探索者AVHRR海表温度是因为其与现场观测数据吻合较好。该产品还使用海冰数据集,来自船只和浮标的现场数据,并包括大规模调整卫星偏差的现场数据。在有海冰存在的地区,海表温度是由美国国家航空航天局2005年以前的GSFC和2005年以后的NOAA NCEP提供的海冰浓度数据来估计的。海表温度在风暴潮研究中具有重要意义。基于1981年至2016年的海表温度产品,利用GEE对数据进行研究区的掩模裁剪并重采样。最后得到了1981-2016年“一带一路”沿海海域16天合成海面温度数据集。
葛咏, 李强子, 董文
西亚地区荒漠化专题数据主要包括:西亚地区沙化土地分布图和西亚地区退化草地分布图,空间分辨率为30m。西亚地区沙化土地分布图包含的土地类型有沙地、盐碱地、裸土地和裸岩石砾地,西亚地区退化草地分布图将草地划分为高覆盖草地、中覆盖草地和低覆盖草地三类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”,数据空间分辨率为30m。数据主要是基于2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。数据验证方式为野外实地验证和高精度影像验证两种方式,验证精度达到85%以上。
基于环境敏感区指数(ESAI)方法,计算获得2018年阿姆河流域栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿姆河流域的荒漠化风险数据精度可靠。
许文强
Snow is a significant component of the ecosystem and water resources in high-mountain Asia (HMA). Therefore, accurate, continuous, and long-term snow monitoring is indispensable for the water resources management and economic development. The present study improves the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra and Aqua satellites 8 d (“d” denotes “day”) composite snow cover Collection 6 (C6) products, named MOD10A2.006 (Terra) and MYD10A2.006 (Aqua), for HMA with a multistep approach. The primary purpose of this study was to reduce uncertainty in the Terra–Aqua MODIS snow cover products and generate a combined snow cover product. For reducing underestimation mainly caused by cloud cover, we used seasonal, temporal, and spatial filters. For reducing overestimation caused by MODIS sensors, we combined Terra and Aqua MODIS snow cover products, considering snow only if a pixel represents snow in both the products; otherwise it is classified as no snow, unlike some previous studies which consider snow if any of the Terra or Aqua product identifies snow. Our methodology generates a new product which removes a significant amount of uncertainty in Terra and Aqua MODIS 8 d composite C6 products comprising 46 % overestimation and 3.66 % underestimation, mainly caused by sensor limitations and cloud cover, respectively. The results were validated using Landsat 8 data, both for winter and summer at 20 well-distributed sites in the study area. Our validated adopted methodology improved accuracy by 10 % on average, compared to Landsat data. The final product covers the period from 2002 to 2018, comprising a combination of snow and glaciers created by merging Randolph Glacier Inventory version 6.0 (RGI 6.0) separated as debris-covered and debris-free with the final snow product MOYDGL06*. We have processed approximately 746 images of both Terra and Aqua MODIS snow containing approximately 100 000 satellite individual images. Furthermore, this product can serve as a valuable input dataset for hydrological and glaciological modelling to assess the melt contribution of snow-covered areas. The data, which can be used in various climatological and water-related studies, are available for end users at https://doi.org/10.1594/PANGAEA.901821 (Muhammad and Thapa, 2019).
Sher Muhammad
阿姆河流域人工绿洲格局图包括1990年、2000年、2010年和2015年四期数据,由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,数据空间分辨率为30m。数据生产费用由“中国科学院战略性先导科技专项XDA20030101资助”。阿姆河流域人工绿洲格局图是基于1990年、2000年、2010年和2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。绿洲内土地利用类型分为水域、耕地、建设用地、草地、林地、湿地、灌丛、滩地和未利用地。数据验证方式为野外实地验证和高精度影像验证两种方式,解译精度达到85%。
许文强
青藏高原由于高云覆盖,通常用来监测湖泊面积的光学遥感影像数据,如Landsat只能用来监测湖泊年尺度面积变化,而对湖泊季节变化研究了解较少。使用Sentinel-1 SAR数据,对青藏高原大于50平方公里湖泊月尺度面积进行了提取。研究显示,湖泊的季节变化显示出截然不同的模式,面积较大的湖泊(> 100 km2)在8-9月达到峰值,而较小的湖泊(50-100 km2)面积在6-7月达到峰值。封闭湖泊面积的季节峰值更突出,而外流湖的季节峰值更平缓。冰川补给湖相对于非冰川补给湖显示了延迟的面积峰值。同时,大尺度的大气环流,如西风、印度季风、和东亚季风也影响着湖泊面积的季节变化。此研究为监测湖泊面积年内变化弥补了空白。
张宇, 张国庆
泛第三极是全球变化的敏感地区,其增温速率为全球的2倍以上,并且受到了西风和季风协同作用的影响。该地区植被如何响应气候变化,将深刻的影响区域生态安全。然而现有产品对泛第三极地区生态系统净初级生产力(NPP)的估算仍旧存在较大的不确定性。为此,本产品结合多源遥感数据,包括AVHRR NDVI,MODIS 反射率数据,多种气候变量(温度、降水、辐射、VPD)以及大量野外实测数据,利用机器学习算法,反演获得了泛第三极生态系统净初级生产力。
汪涛
1)数据内容:种植结构指的是一个地区或国家在农作物种类种植比例上的问题,一般以粮食作物为主,其他经济类作物为辅,本数据描述10M分辨率的灌区种植结构的空间分布。2)数据来源及加工方法:哨兵数据,随机森林法。3)数据质量描述:Kappa系数80%。4)数据应用成果及前景:各种水文生态模拟分析的基础数据,精细计算农业蒸散、农业需水、下渗、灌溉需求,农业结构达到田块级别,为了能够推动农业种植健康发展,调整和优化各因素,并明确各要素在农业种植结构中的作用显得尤为重要。5)种植结构是在GEE平台上利用随机森林算法并结合采集的样本点数据计算得出的,为了区分方便,在计算过程中我们将每一种相似作物类型用一个阿拉伯数字表示,计算完的.tif结果再用分区统计的方式链接到提取的耕地上,在这个过程中,我们把表示作物类型的字段保留下来,即max字段,每个阿拉伯数字对应的作物类见说明文档。
刘铁
1)数据内容:种植结构指的是一个地区或国家在农作物种类种植比例上的问题,一般以粮食作物为主,其他经济类作物为辅,本数据描述10M分辨率的灌区种植结构的空间分布。2)数据来源及加工方法:哨兵数据,随机森林法。3)数据质量描述:Kappa系数80%。4)数据应用成果及前景:各种水文生态模拟分析的基础数据,精细计算农业蒸散、农业需水、下渗、灌溉需求,农业结构达到田块级别,为了能够推动农业种植健康发展,调整和优化各因素,并明确各要素在农业种植结构中的作用显得尤为重要。5)种植结构是在GEE平台上利用随机森林算法并结合采集的样本点数据计算得出的,为了区分方便,在计算过程中我们将每一种相似作物类型用一个阿拉伯数字表示,计算完的.tif结果再用分区统计的方式链接到提取的耕地上,在这个过程中,我们把表示作物类型的字段保留下来,即max字段,每个阿拉伯数字对应的作物类见说明文档。
刘铁
中亚土地利用类型数据来源于欧洲太空局气候变化项目全球土地覆盖产品,在中亚地区具有较高的数据质量,准确刻画了湖泊面积的年度动态变化过程。本数据包括22种土地利用类型,采用IPCC土地利用分类系统,经重分类处理得到了包括耕地、林地、草地、城镇、未利用地和水域等6种土地利用类型,空间分辨率为300米。包括2000,2005,2010,2015年中亚五国(包括哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、土库曼斯坦和乌兹别克斯坦)土地利用数据。
Pierre
本数据集为欧亚大陆温性草地类型时空变异图-中国区域三级分类图(1980S)。数据为tif栅格格式,空间分辨率为1公里,温性草地三级分类取值1-8分别为:1-温性草甸草原;2-温性典型草原;3-温性荒漠化草原;4-温性草原化荒漠;5-温性荒漠及三个非温性草地类型(6-高寒草地、7-其他植被区、8-非植被区)。 该数据以中国科学院植物研究所为主持单位的《中华人民共和国植被图(1 ∶1 000 000)》数据集为基础,结合历史气象等辅助资料分析处理而成,中华人民共和国植被图包含我国1980年代我国植被类型11 个植被型组、55 个植被型、960 个植被群系和亚群等植被信息,我们选择1980-1989历史气象数据,结合卫星数据进一步分析修正,并进行空间插值计算,得出我国温性草地三级分类。该数据可用于欧亚大陆温性草地分布信息以及时空变异分析提供依据。
唐家奎
TRMM 3B43数据是TRMM卫星与其他卫星以及地面观测联合反演的降水产品,该产品首先订正TRMM/TM1资料,并联合SSM/1,AMSR-E和AMSU-B资料估值降水,其次利用全球降水气候计划(GPCP)的红外降水估值订正微波降水,再进行微波和红外资料联合估值。此外,合同该数据的3B43算法是利用TRMM卫星和其他数据源来生产最佳降水率(mm*h-1)估计和降水误差估计的均方根(RMS)数据产品。该数据还融合了地面的雨量计资料,最大限度利用已有的探测资料,提供了每个标准观测时次每个网格降水的最优估值。以主要覆盖东南亚和中东的关键节点为研究区域,基于1998至2016年的TRMM 3B43数据,利用Google Earth Engine对数据进行研究区的裁剪,最终得到了34个泛第三极关键节点区域1998-2016每月的降雨数据。(明斯克、新西伯利亚、华沙三个地方由于纬度高于50°N,TRMM 3B43没有这三个地方的数据,故采用升尺度后的GPM数据。)
葛咏, 凌峰, 张一行
叶面积指数(leaf area index)又叫叶面积系数,是指单位土地面积上植物叶片总面积占土地面积的倍数,是反映作物群体大小的较好的动态指标。叶面积指数是森林生态系统的一个重要结构参数,表征叶片的疏密程度和冠层结构特征,影响着植被冠层内的光合、呼吸和蒸腾作用等生理生化过程,是描述土壤-植被-大气之间物质和能量交换的关键参数,也是估算多种生态过程与功能的重要变量。 本数据基于2000至2016年MODIS叶面积指数数据,对泛第三极关键节点区域的MCD15A3H产品数据进行了裁剪,最终得到了关键节点区域2002-2016年4天叶面积指数数据。数据投影:正弦投影 sinusoidal 数据的区域为泛第三极34个关键节点(阿巴斯、阿斯塔纳、科伦坡、瓜达尔、孟巴、德黑兰、万象等地区)。
阴海明
气温数据集来源于全球陆地数据同化系统(GLDAS),该系统利用卫星和地面观测数,并基于先进的地表建模和数据同化技术,模型模拟初始化使用土壤湿度和来自LSM气候学的其他状态场,最终生成最优地表状态(例如土壤湿度和地表温度)和通量场,已广泛应用于全球变化与水循环研究中。原始气温数据为0.25˚×0.25˚的格网数据。以主要覆盖东南亚和中东的关键节点为研究区域,基于2001至2016年的森林冠层覆盖度数据,利用GEE对数据进行研究区的掩模裁剪并重采样,最终得到了34个关键节点区域2001-2016 16天合成的气温格网数据。
葛咏, 凌峰, 张一行
该数据集结合了美国航空航天局中分辨率成像光谱辐射计(MODIS)、多角度成像光谱辐射计(MISR)和海洋观测宽视场传感器(SeaWiFS)等多种卫星设备的AOD检索。地球化学的化学传输模型被用来将气溶胶的总柱测量与近地表的PM2.5浓度联系起来。全球地面测量使用地理加权回归(GWR)来预测和调整初始卫星数据中每个网格单元的PM2.5偏差。提供0.01度的网格数据集,以便用户能够最好地满足他们的特殊需求。以34个泛第三极关键节点区域为研究区域,对全球2000-2016年的浓度数据进行裁剪和估算,得到了关键节点区域2000-2016年的PM2.5浓度数据。
葛咏, 凌峰, 张一行
Landsat植被连续场(VCF)的森林冠层覆盖度数据包含了高度大于5米的木质植被覆盖百分比,分辨率为30米。这些数据是由ASA/USGS全球土地调查(GLS)收集的Landsat数据汇编而成。该产品来源于Landsat-5主题成像仪(TM)和/或Landsat-7增强型主题成像仪 (ETM+)的七个波段,具体取决于GLS图像。以主要覆盖东南亚和中东的关键节点为研究区域,基于2000至2016年的森林冠层覆盖度数据,利用GEE对数据进行研究区的掩模裁剪,最终得到了34个关键节点区域2000-2016每5年的森林冠层覆盖度数据。
葛咏, 凌峰, 张一行
土地覆盖数据是了解人类活动与全球变化之间复杂相互作用的关键信息来源。基于清华大学制作的30 m分辨率的FROM-GLC全球土地覆盖产品,利用34个泛第三极关键节点区域矢量对其进行裁剪等处理,获得本数据集。本数据集的一级分类体系为:10.农田;20.森林;30.草地;40.灌木丛;50.湿地;60.水体;70.苔原;80.不透水面;90.裸地;100.冰雪;120.云。其数据质量取决于FROM-GLC产品质量,本数据集作为所有遥感数据的研究基础,为项目提供了基底数据。
葛咏, 凌峰, 张一行
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。全球陆表实际蒸散发数据集(2013-2014) (ETMonitor-GlobalET-2013-2014) 是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到。输入数据主要采用的遥感数据包括国家重大科学研究计划(973)项目“全球陆表能量与水分交换过程及其对全球变化作用的卫星观测与模拟研究”(2015CB953700)提供的较高空间分辨率的陆表净辐射和较高时间分辨率的水体等数据集,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐日蒸散发量。计算在1km分辨率上开展,最终聚合到5km分辨率。利用FLUXNET地面观测数据进行直接验证,估算结果与地面实测数据一致性较好。该数据集覆盖全球,空间分辨率为5公里,时间步长为每天,单位为mm/d,数据类型为整型,缩放系数为0.1。
郑超磊, 贾立, 胡光成
基于2015年欧空局ESA GlobCover全球陆地覆盖数据,结合中科院地理资源所土地利用数据NLCD-China、清华大学全球土地覆被FROM-GLC数据、美国NASA的MODIS全球土地覆被MCD12Q1数据、马里兰大学全球土地覆被UMD、美国USGS土地覆被数据IGBP DISCover,构建了青藏高原LUC分类系统以及其余数据分类系统的转换规则,构建土地覆被分类置信度函数和地类融合规则,进行土地覆被产品融合与修正,完成了青藏高原土地利用数据V1.0(1992,2005,2015,,300m×300m栅格,一级分类)
许尔琪
依据多土地覆被类型数据包括有欧空局全球陆地覆盖数据(ESA CCI-LC,300m栅格)、清华大学全球土地覆被数据(FROM-GLC,30m栅格)和美国NASA的LP DAAC 中心的MODIS全球土地覆被数据(MCD12Q1,300m栅格)等3个土地覆被产品数据。个别类别土地覆被数据包括有美国地质调查局USGS的全球耕地数据(GFSAD30,30m)、日本宇宙航空研究开发机构JAXA的全球林地数据(PALSAR/PALSAR-2,25m)、欧盟联合研究中心(JRC, EC)的全球水体数据(GSWD,Global Surface Water Data)和中山大学基于Google earth engine提取的全球城市用地数据(GULM,Global Urban Land Map)。构建了“一带一路”区域LUC分类系统以及其余数据分类系统的转换规则,构建土地覆被分类置信度函数和地类融合规则,进行土地覆被产品融合与修正,完成了“一带一路”核心国家2015年土地利用数据(V1.0)。
许尔琪
该数据集分析了2018-2019年全球典型洪水灾害事件的时空分布规律、影响及损失情况。2018年,全球洪水灾害发生次数共109起,死亡人口1995人,受灾人口总数达1262万人次,直接经济损失约为45亿美元,在全球近30年中处于较低水平。2018年全球洪灾事件发生次数上半年较下半年多,5月至7月发生频次较高。因此,以2018年美国弗罗伦斯飓风洪水、2018年尼日利亚尼日尔河洪水及2018年中国山东寿光洪水等三个典型灾害事件为案例,从灾害背景、致灾因子、受灾情况等方面进行了分析。
蒋梓杰, 蒋卫国, 武建军, 周红敏
本数据集是2015年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
此数据集包含2018全年及2019上半年全球重大林火案例数据,包括2018年11月美国加州林火、2018年7月希腊阿提卡区林火及2019年3月中国山西省林火3个案例数据。具体数据包括:监测范围的火烧强度数据及灾前灾后植被指数变化数据。该数据集主要用于描述2018-2019上半年全球重大林火事件的发生、发展、影响及恢复,数据主要来源于NASA官网和EM-DAT数据库,在EXCEL和ArcGIS中运用统计与空间分析方法,对数据进行处理。数据来源可靠,处理方法科学严谨,可有效运用于全球(林火)灾害案例分析研究。
杨雨晴, 宫阿都, 武建军, 周红敏
本数据集是2011年青藏高原地区的土地覆被数据,数据为栅格TIFF格式,空间分辨率为300米,包含耕地、林地、草地、水体、城市用地等22个大类,可用于青藏高原城镇化与生态环境交互胁迫的地理本底研究。该数据来自欧空局CCI-LC项目生产的土地覆被数据产品。该数据集采用了WGS84的地理坐标系统,有22个大类。数据的生产融合多种卫星数据资料,包括MERIS FR/RR,AVHRR,SPOT-VGT,PROBA-V等。经验证,该数据集的总体精度在70%以上,当然精度会在不同的地区和覆被类型上存在差异。
杜云艳
高分二号(GF-2)卫星是我国自主研制的首颗空间分辨率优于1米的民用光学遥感卫星,搭载有两台高分辨率1米全色、4米多光谱相机,星下点空间分辨率可达0.8米。 该数据集为2017年的6景高分二号卫星遥感影像数据。文件夹列表为: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 GF2_PMS2_E100.5_N36.7_20170805_L1A0002526723 GF2_PMS2_E100.7_N37.2_20171013_L1A0002672923 GF2_PMS2_E100.7_N37.4_20171013_L1A0002672921 文件命名规则:卫星名称_传感器名称_中心经度_中心纬度_成像时间_L****
中国资源卫星应用中心
该数据集包含2014年07月23日至2014年08月18日在黑河下游混合林站和超级站观测的热像仪组分温度数据。观测地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。在混合林站和超级站分别使用Testo890-2(热红外图像:640 × 480,可见光2048 × 1536)和Testo875-2i(热红外图像:160 × 120,可见光640 × 480)热像仪,以通量塔为中心,在10m高度处,拍摄塔周围的地表亮温和可见光图像。在混合林站的观测方向为东北、东、东南、西南和西北,在超级站的观测方向为东北、东南、西南和西北。观测时间范围主要为晴空日期的10:00至16:00;各次的观测时间为整点和MODIS、Landsat 8过境时;8月4日的拍摄为配合航空飞行,观测间隔约为10min。
李明松, 马晋
该数据集包含2014年07月22日至2016年07月19日在黑河下游混合林站和超级站观测的组分温度数据。测量地点坐标分别为101.1335E、41.9903N和101.1374E、42.0012N,海拔约874m。所使用的红外辐射计型号为SI-111,数采为CR800。混合林站使用两支传感器分别观测光照胡杨(南侧)和阴影胡杨(北侧)的组分温度。两支传感器架设高约5m,距目标约1m,水平观测。超级站使用两支传感器分别观测裸土和柽柳的组分温度。观测裸土的传感器架设高度约2m,观测天顶角约45°;观测柽柳的传感器架设高度约1m,距被测目标约0.5m,水平观测。
周纪, 李明松, 马晋
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据集包括祁连山区域2018年的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出2018年的土地覆盖分类产品。对分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波
本数据集包括祁连山区域1990年至2017年每5年一期的30m土地覆盖分类产品。该产品首先利用Landsat-8/OLI构造2015年时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息,得到2015年的土地覆盖分类图。分类系统参考了IGBP分类系统和FROM_LC分类系统,共分为耕地、林地、草地、灌丛、湿地、水体、不透水面、裸地、冰川和积雪共10大类。由Google Earth高清影像和实地调研数据进行精度评价,得出2015年土地覆盖分类产品的总体精度高达92.19%。以2015年的土地覆盖分类产品为底图,按各类别的比例选取大量样本,基于Google Earth Engine平台的Landsat系列数据和强大地数据处理能力,利用深度学习的思想,选取随机森林分类器,对波段信息和NDVI、MNDWI、NDBI等指数进行样本训练,生产出1985-2017年每5年一期的土地覆盖分类产品。对2套2015年的分类产品进行比较,得出基于Google Earth Engine平台生产的土地覆盖分类产品与基于时间序列方法得到的分类产品具有很好的一致性。总之,祁连山核心区的土地覆盖数据集具有较高的总体精度,且基于Google Earth Engine平台样本训练的方法能够在时间和空间上对现有的分类产品进行扩展,每5年一期的频次能够在长时间序列上反映更多的土地覆盖类型变化信息。
仲波, 角坤升
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表植被指数产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。 数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好。
吴金华, 仲波
本数据集包括祁连山区域2018年月度合成30m×30m地表植被覆盖度产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域1986、1990、1995、2000、2005、2010、2015和2017年月度合成30m×30m地表LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用 Landsat5, Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表叶面积指数(Leaf Area Index, LAI)产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集包括祁连山区域2018年月度合成30m×30m地表NPP产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。数据通过Google Earth Engine云平台对反射率进行月度合成,通过模型计算指数,对于缺失像素进行插补,质量较好,可用于环境变化监测等领域。
吴金华, 仲波, 吴俊君
本数据集为2018年祁连山重点区域人类活动数据集,空间分辨率为2m。本数据集以祁连山重点区域矿山开采、城市扩展、耕地开发、水电建设、旅游开发为重点监测内容,通过高分辨率遥感影像,对比统计前后变化图斑。对祁连山地区地类发生变化的图斑,逐块调查核实;对判图可疑的地块,重新判读验证;对影像无法反映的地类,实地核实地类,采集相关数据,核对并修正位置。同时进一步核对2018年祁连山重点区域监测内容属性信息,统一进行图斑及其属性的录入和编辑,形成2018年祁连山地区人类活动数据集,实现祁连山地区生态治理的现势性和时效性,为祁连山重点区域人类活动监测提供数据支撑。
祁元, 张金龙, 贾永娟, 周圣明, 王宏伟
本数据为祁连山地区2018年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2018年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2018年的大致分布,可用于流域水资源定量估计研究。
李佳
本数据集包括祁连山地区重点区域2018年5月至2018年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 曹永攀, 周圣明, 王宏伟
本数据集包括祁连山地区2018年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山地区2017年日值0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周济-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
本数据集包括祁连山地区1985-2015年每5年一期的逐月地表蒸散发产品,1985-1995年产品分辨率为0.05°,2000-2015年产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR)、GIMMS AVHRR NDVI等遥感产品,中国区域高时空分辨率地面气象要素驱动数据集(何杰, 阳坤. 中国区域高时空分辨率地面气象要素驱动数据集. 寒区旱区科学数据中心, 2011. doi:10.3972/westdc.002.2014.db)等。
姚云军, 刘绍民, 尚珂
本数据集包括祁连山地区2005年、2010年、2015年月0.05°×0.05°地表土壤水分产品。采用多元统计回归模型,通过对“祁连山地区基于AMSR-E和AMSR2亮温数据的SMAP时间扩展日0.25°×0.25°地表土壤水分数据(SMsmapTE, V1)”进行降尺度,得到0.05°×0.05°地表土壤水分产品。参与多元统计回归的数据包括GLASS Albedo/LAI/FVC,周纪-中国西部1km全天候地表温度数据(V1),以及经/纬度等信息。
柴琳娜, 朱忠礼, 刘绍民
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件