本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)生物活性元素Fe等元素数据,重建了1956-2004金属元素历史。数据内容:1956-2004年冰芯金属元素(包括:Fe, Cd, Pb, As, Ba, Al, S, Mn, Co和Ni);数据来源,通过ICP-MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Du, Z., Xiao, C., Zhang, W., Handley, M. J., Mayewski, P. A., Liu, Y., & Li, X. (2019). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956–2004. Atmospheric environment, 203, 121-130.,可提供中亚其他冰芯对比研究。
杜志恒
青藏高原中部的伦坡拉盆地位于羌塘地与拉萨地体之间东西向伸展的班公怒江缝合带南缘。由于伦坡拉盆地新生代沉积序列的年龄限制,特别是其上部由于剥蚀或风化作用造成的露头不连续或不暴露,使其具有典型的湖相油页岩沉积,阻碍了对气候变化记录的研究。通过新生代连续湖相地层的古地磁测量,获得其年龄约为21.2~15Ma。岩相、花粉和化石记录表明,伦坡拉盆地在丁青湖组时期应为相对温暖湿润的气候,表明印度季风发生在~26ma之前。
谭梦琪
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
周建民
三极气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。气溶胶类型数据融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终的三极地区气溶胶类型数据(共12种)和质量控制结果。该数据产品充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。
赵传峰
基于WRF模式,以ERA5再分析资料为初始和边界场,通过动力降尺度的方法,初步获得了青藏高原高分辨率低层大气结构和地气交换数据集。该数据集时间范围为2014年8月1日-8月31日,时间分辨率1小时,水平范围25oN-40oN,70oE-105oE,水平分辨率为0.05°。数据格式为NetCDF,每一小时数据输出一个文件,文件以日期命名。低层大气结构数据包含温度、相对湿度、水汽混合比、位势高度、经向风、纬向风气象要素,垂直方向为34层等压面;地气交换数据集包含地表接收的向上/向下短波辐射、向上/向下长波辐射、地表感热和通量、2米气温和水汽混合比、10米风等。该数据集可对青藏高原天气过程和气候环境研究提供数据支撑。
马舒坡
本研究数据主要基于Google Earth Engine大数据云处理平台,选用2017年三江源、普尔河、育空河流域Sentinel-2为基础数据,SRTM-DEM和Global Surface Water为辅助数据,选用AWEIn,AWEIs,WI2015,MNDWI,NDWI等多种水体指数阈值提取的方法,依据年水体频率获得季节水体与永久水体分类数据(空间分辨率10m)。该水体数据产品,为高时空分辨率水体变化和冻土水文分析提供了有效基础数据。
冉有华
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
邱玉宝, 田帮森
GLObal WAter BOdies database(GLOWABO)数据集,Charles Verpoorter等人基于GeoCoverTM Water bodies Extraction Method利用2000±3年Landsat 7 ETM+影像,获得全球水体数据集。水体提取方法结合主成分分析、阈值提取、纹理特征提取等多种方法,空间分辨率15m,总体精度91%。数据还包括水体面积、周长、形状指数、高程等信息。本数据集选区其中三江源流域、普尔河流域、育空河流三个流域数据集,为北半球极地水文研究提供数据支持。
Charles Verpoorter
“Poles AOD Collection 1.0”气溶胶光学厚度(AOD)数据集采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,覆盖范围为“三极”(南极、北极和青藏高原)地区,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)高氯酸等元素数据,重建了1956-2004高氯酸历史变化。数据内容:1956-2004年高氯酸浓度(包括:Cl-, NO3- 和SO42-);数据来源,通过ESI-MS/MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment.可提供中亚其他冰芯对比研究。
杜志恒
基于20世纪60年代的锁眼卫星数据,采用面向对象的监督分类,结合人工目视解译修正,生产出水体数据产品。总解译面积64.5万km2,占研究区96.28%,其中三江源研究区影像缺失18844 km2,阿拉斯加育空流域研究区影像缺失4220 km2,西西伯利亚普尔河流域研究区影像缺失1954 km2。解译最小线状地物图上宽度大于8米,最小面状地物图上面积大于100平方米,描迹精度2个象元,一级类解译精度达到95%以上。获取的高空间分辨率水体数据产品,为上世纪70年代水体变化研究提供有效数据,也为冻土变化研究提供可靠依据。
冉有华
冰盖高程变化数据首先利用2004年和2008年的GLAS12的数据获取两年间的重复轨道,在理想情况下每个轨道都是严格重复测量的,但由于轨道偏差,无法保证轨道按照设计严格重复,偏差在几米到几百米不定,取500m*500m的格网,认为落在同一格网内的点为重复轨道的重复点,相减获取2004-2008年的高程变化,获得年度的高程变化。在格陵兰中部地形平缓区域,高程变化较为准确,但在边缘地带,高程变化明显存在较大误差,可能是因为在边缘区域的坡度较大,500m*500m的范围内的点的高程会有较大的变化,因此在边缘区的高程变化有待改正。为对比不同的方法,采用2004年和2008年的GLAS12的春季数据获取这两年间的交叉点,2004年的降轨与2008年的升轨可以获得一组交叉点对应的高程变化;2004年的升轨与2008年的降轨也可以获得一组交叉点对应的高程变化。两组交叉点作为2004年到2008年的高程变化数据,采用克里金插值获得高程变化图。采用交叉点的方法获取的高程变化得到在边缘区域的结果有明显的改善,但在格陵兰东中部部分区域内的高程变化趋势有明显的误差,这些误差可能是季节性变化引起的。因此,采用2004年到2008年的GLAS12的春季数据获取每两年间的交叉点,每两年可以获得两组交叉点数据,总共获得十组交叉点。将这十组交叉点作为2004年到2008年的高程变化数据,与前两次比较发现,高程变化精度有所提高。
黄华兵
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。
徐希燕
北极地区因其独特的自然条件和地理位置,在全球变化中扮演着非常重要的角色。而极地海冰作为影响气候变化的重要影响因子,是全球气候变化的灵敏器。中国在北极建设的考察站之一——黄河站,其重点支持围绕全球变化及其区域相应、极区空间环境与空间气候、极地环境中的生命特征与过程三大科学领域,为中国深入开展北极科学考察活动提供了重要平台。因此,构建了近年来北极海冰关键区域数据验证产品数据集,实现对北极海冰关键区域的监测情况。
陈甫, 邱玉宝
微波散射计冰盖冻融数据覆盖时间更新到2015年到2019年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
梁雷
青藏高原珠峰站和纳木错站点气溶胶光学厚度数据是基于中科院青藏高原所大气辐射观在珠峰站和纳木错站点的观测数据产品而形成,数据覆盖时间从2017年到2019年,时间分辨率为逐小时,覆盖站点为珠峰站和纳木错站点,经纬度坐标为(珠峰站:28.365N, 86.948E,纳木错站:30.7725N,90.9626E)。观测数据来源为MFRSR仪器观测的辐射数据反演获得,所包含特征变量为气溶胶光学厚度,观测反演误差范围约为15%。数据格式为txt格式。
丛志远
高山冰缘带植物名录与分布数据库主要包括高山冰缘带采集植物的采集信息和鉴定信息。其中,采集信息文档中包含物种名、属名、科名、生境、海拔、经纬度、采集人及采集时间;而鉴定信息文档中包含物种名、属名、科名、鉴定人及鉴定时间。该数据库中的采集信息来源于野外第一手数据;而鉴定信息来源于全球著名植物学专家的鉴定结果。数据库中数据的质量较高。其不仅可用于该区域的植物区系、区划研究,同时为该区域的植物多样性、生态系统及至全球气候变化响应等研究奠定了坚实基础。
孙航
数据包含了青海省和西藏自治区各县市区基本情况、综合经济、农业和工业、教育卫生和社会保障四大类30项数据。涵盖了青藏高原主体县级行政单元的人口数量、从业人员、产业产值、农业机械动力、设施农业等反映人类活动的基本数据。数据根据2001-2018年中国县域统计年鉴资料整理,为便于应用,将青海和西藏数据独立建表,各年数据列入其中。该数据以县级行政单位为基本统计单元,可用于分析县域人类活动与社会经济发展状况,也可用于分析农业与农村发展与变化过程。
王兆锋
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件