南极半岛植被数据来源于时空三级环境大数据平台的南极先锋植被覆盖分类数据,通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱和应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。数据格式为geotiff格式。数据内容是南极半岛典型年典型区植被覆盖度。本研究工作通过对南极半岛典型区典型年植被覆盖度后处理后生成tif栅格格式产品,栅格主体数值为植被盖度。本研究得到的南极半岛典型区植被覆盖度是将南极先锋植物丰度数据产品进行镶嵌,包括南极半岛及周边植物丰度数据产品。通过ArcGIS将南极半岛典型区域包括Adley,北部和南部镶嵌在一起,得到包括2008年、2017年和2018年的光谱角匹配法(SAM)和光谱信息散度法(SID)识别出的6幅植被覆盖度图。
叶爱中
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
在青海和西藏的荒漠带实地调查了52个样点,于2019年和2020年7-8月植被生长最大时期对植被地上生物量进行实地采样。同时,利用手持 GPS设备,记录了实验位点的经度、纬度和海拔等信息。样方的野外设置方法为:选取一块植被均匀的地段,当植被相对茂盛时样地设置为10米x10米的正方形样地,当植被相对稀疏时样地设置为30米x30米的正方形样地或者30米x90米的长方形样地;在设置好的样地中随机投掷3-5个小样方框(1米x1米),采用样方收割法收集植物样品:在1平方米的样方面积内,登记植物的物种名目,每个物种的株数等信息。并将样方内的各种植物分种齐地面刈割,带回实验室内, 在恒温干燥箱内65℃条件下烘干至恒重, 测定植物样本的干重,计算样方地上生物量。 此外,还通过采样点的经度纬度提取了该52个样点的2种遥感净初级生产力数据。(1) 2000-2018年的增强型植被指数(EVI),并计算年整合增强型植被指数(iEVI),iEVI与净初级生产力(NPP)具有高相关性,可作为净初级生产力的替代指标(He et al. 2021, Science of The Total Environment)。(2) 2001-2020年遥感净初级生产力(NPP)及其质量控制百分比(QC),遥感NPP数据来自MOD17A3HGF Version 6 product (https://lpdaac.usgs.gov/products/mod17a3hgfv006/),由净光合值(总初级生产力-植物维持呼吸)计算得到。植被覆盖度低的样点,遥感净初级生产力可能存在空值(NA)。
叶建圣
数据包括青藏高原与西北干旱区33个湖泊表层沉积物中植物DNA的原始测序文件。我们使用德国Qiagen公司的PowerMax土壤试剂盒提取DNA,并采用通用植物引物g-h (Taberlet et al., 2007) 对样品中叶绿体trnL (UAA) 内含子区的P6环进行PCR扩增,PCR产物随后送至瑞士Fasteris公司进行第二代高通量双端测序,测序仪器为Illumina NextSeq 550。数据质量分数Q30为81.97。
刘兴起, 贾伟瀚
1)数据内容 包括采样点的观测年份、经纬度、海拔、生态系统类型、不同土层(SOC0-100 (kg Cm-2); 0-100代表土层)、地下生物量含量。 2)数据来源 此部分数据是从文献中获取,具体文献来源参考说明文档。 3)数据质量描述 数据观测覆盖范围广,包含指标全面,展示了不同土层下的土壤有机碳含量,具有较高的完整性和精确性,能满足对青藏高原草地土壤碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原土壤的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
1)数据内容 包括采样点的观测年份、经纬度、生态系统类型、年降雨量、干旱指数、年净初级生产力、地上生物量、地下生物量等数据。 2)数据来源 一部分来源于文献(1980-1995),另一部分来源于实地采样(2005-2006)。 3)数据质量描述 数据观测年份长,时间跨度大,覆盖范围广,包含指标多,具有较高的完整性和精确性,能满足对青藏高原草地植被碳储量的估算。 4)数据应用成果及前景 为预测未来青藏高原的碳源–汇效应及实现生态系统碳可持续发展提供基础数据。
胡中民
本数据集是2019年9月川藏铁路沿线典型植被无人机高光谱观测数据,使用的是大疆M600 Resonon成像系统的机载光谱仪。包括2019年在拉萨的草原区域观测的高光谱数据,自带经纬度。高光谱调查时基本为晴天。飞行前进行了白板校准;采集数据时设有靶标(即适于草地的标准反光布),用于光谱校准;设有地面标志点(即有字母的泡沫板照片),并记录了每个标志点的经纬度坐标,用于几何精确校准。无人机高光谱相机记录的dn值,可使用Spectronon Pro软件转换为反射率。高光谱数据用于提取不同植被类型光谱特征、植被分类、反演植被覆盖度等。
周广胜, 汲玉河, 吕晓敏, 宋兴阳
采用计算草地实际净初级生产力,CASA模型是一种光能利用率模型,生产力的估算主要由植物吸收的光合有效辐射(APAR)与光能转化率(ε)2个变量决定。植被所吸收的光合有效辐射(APAR)取决于太阳总辐射和植被对光合有效辐射的吸收比例;采用TEM(Terrestrial Ecosystem Model)模型计算草地潜在生产力,首先计算草地的总初级生产力(GPP),再计算植物自养呼吸(Ra),最后得出草地净初级生产力(NPP)。TEM模型是气候驱动的生产力模型,所需的参数有:植被类型、土壤质地、土壤水分、潜在蒸散、太阳辐射、云量、降水、温度和大气CO2浓度;利用随机森林算法(RF)计算青藏高原草地潜在地上生物量,预测变量包含气候、土壤、地形等14个变量。气候变量包含生长季(5-9月)平均日较差、生长季总降水、生长季平均温度和非生长季(前一年10 - 当年4月)平均日较差、非生长季总降水、非生长季平均温度。地形变量包括高程、坡度、坡向。土壤变量包含土壤质地(砂、粉、粘土含量)、土壤pH值和土壤有机碳。 实际净初级生产力和潜在净生产力数据年限为2000-2017;潜在草地地上生物量数据年限为(2014-2018)。
牛犇, 张宪洲
本数据集以大量的地面实测草地地上生物量数据为基础,以1980s中国植被类型图划分出温性草地类型,借助Google Earth Engine平台上的Landsat遥感数据,在不同草地类型分别构建了草地地上实测生物量-遥感数据的随机森林模型,在验证可靠的基础上,对1993~2019年间逐年的草地地上生物量进行了估算,从而形成了1993~2019年中国北方温性草地地上生物量的逐年空间数据集。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。已对原有栅格值乘以系数100,单位:0.01克/平方米(g/m²)。本数据集可为中国北方温性草地资源、生态环境的动态监测和评价提供科学基础。
张娜
1)数据内容:泛第三极地区基于遥感反演的主要生态环境数据,包含PM2.5浓度、森林覆盖率、EVI、土地覆被、CO2等指标;2)数据来源及加工方法:PM2.5数据来源于the Atmospheric Composition Analysis Group Web site at Dalhousie University、森林覆盖度数据来源于MODIS Vegetation Continuous Fields (VCF),CO2数据来源于ODIAC Fossil fuel emission dataset,EVI数据来源于MODIS Vegetation Index Products,土地覆被数据来源ESA CCI Land cover。提取出泛第三极65个国家和地区,其他未进行加工;3)数据质量描述:数据2000-2015年数据时间序列较好;4)数据应用成果及前景:可用于生态环境变化分析。
李广东
Data set contains tree age of trees growing at different glacier moraines in the central Himalayas. The data were obtained using tree ring samples. Cores samples were collected (almost near to the ground level to estimate the minimum age of the related moraine) using an increment borer. Samples were processed by using standard dendrochronological techniques.
Shalik Ram Sigdel, Hui Zhang, Haifeng Zhu, Sher Muhammad, Eryuan Liang
西亚地区荒漠化专题数据主要包括:西亚地区沙化土地分布图和西亚地区退化草地分布图,空间分辨率为30m。西亚地区沙化土地分布图包含的土地类型有沙地、盐碱地、裸土地和裸岩石砾地,西亚地区退化草地分布图将草地划分为高覆盖草地、中覆盖草地和低覆盖草地三类。数据由中国科学院新疆生态与地理研究所遥感与GIS重点实验室生产,生产费用由“中国科学院战略性先导科技专项XDA20030101资助”,数据空间分辨率为30m。数据主要是基于2015年TM、ETM遥感影像数据,基于去云、镶嵌与裁剪、拼接、阴影处理等预处理,借助eCognition软件进行面向对象的地类分类,实现软件自动分类和人工信息提取相结合,最后对分类结果进行人工检查与修正。数据验证方式为野外实地验证和高精度影像验证两种方式,验证精度达到85%以上。
该数据集是基于MODIS 16天合成的NDVI产品(MOD13Q1 collection6)估算的三江源国家公园区域的植被生长季开始(Start of Season: SOS)和生长季结束的日期(End of Season: EOS)。共用了两种常见的物候期估算方法,分别是基于多项式拟合的阈值提取法(文件名中有poly字符)和基于双逻辑曲线(double logistic function)拟合后的拐点提取法(文件名中有sig字符)。该数据可以用来分析植被物候期与气候变化的关系。时间范围为2001年至2020年。空间分辨率为250m。数据中包含4个子文件夹,CJYYQ_phen是三江源国家公园长江源园区的物候结果,HHYYQ_phen是三江源国家公园黄河源园区的物候结果,LCJYYQ_phen是三江源国家公园澜沧江源园区的物候结果,SJY_phen是整个三江源区域的物候。 数据格式为geotif,建议使用arcmap或者Python+GDAL浏览和处理数据。
王旭峰
PML_V2陆地蒸散发与总初级生产力数据集,包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为tiff,时空分辨率为8天、0.05°,时间跨度为2002.07-2019.08。 PML_V2在Penman-Monteith-Leuning (PML) 模型的基础上,根据气孔导度理论,耦合了GPP过程。GPP与ET相互制约、相互限制,使得PML_V2在ET模拟精度,相对于以往的模型有很大的提升。PML_V2的参数分不同的植被类型,在全球95个涡度相关通量站上率定。其后根据MODIS MCD12Q2.006 IGBP分类,将参数移植至全球。PML_V2采用GLDAS 2.1的气象驱动和MODIS 叶面积指数(LAI)、反射率(Albedo),发射率(Emissivity)为输入,最终得到PML_V2陆地蒸散发与总初级生产力数据集。
张永强
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。
徐希燕
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物丰度数据产品通过实测光谱匹配遥感影像,应用纯像元PPI提取出苔藓、地衣、岩石、海、积雪的端元波谱。应用线性混合模型LMM(Linear Mixture Model)计算得到。菲尔德斯半岛特色植被覆盖度根据其与丰度的相关线性关系获得。
徐希燕
南极半岛也叫“帕默尔半岛”或“格雷厄姆地”。位于西南极洲,是南极大陆最大、向北伸入海洋最远(南纬63°)的大半岛,东西濒临威德尔海和别林斯高晋海。南极半岛被称为南极洲的“热带”。这里属于典型的副极地海洋性气候,与南极大陆相比,是南极洲最暖、最湿的地区之一,边缘区域的岛屿分布有少量的先锋植物,主要以苔藓和地衣为主。南极半岛及周边植物光谱和标注数据为2018年1月7-22日南极半岛周边菲尔德斯半岛和阿德利岛的9个区域37个样点的光谱数据,为南极植物分布和变化研究提供本底信息。
徐希燕
斯瓦尔巴群岛(又译斯瓦尔巴特、斯匹次卑尔根群岛)。位于北极地区的群岛,是挪威最北界国土范围的属地,它坐落在欧洲大陆北方,于挪威大陆与北极点两者之间。植被主要是地衣和苔藓类,仅有的树木是小极地柳和矮桦木。该地区采集的植被光谱数据集主要是基于北极斯瓦尔巴群岛新奥尔松地区283个样点的先锋植物调查,调查时间为2018年7月6-22日,采集地点包括伦敦岛,黄河站区和冰川前,为北极苔原区植物分布和变化研究提供本底信息。
徐希燕
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
魏彦强, 王旭峰
联系方式
关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved
| 京公网安备11010502040845号
数据中心技术支持: 数云软件