本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
基于我国高分一号及二号数据,采用深度学习分类方法,结合人工目视解译修正,生产出青藏工程走廊冻融灾害分布数据。数据地理范围为青藏公路西大滩至安多段沿线40km范围。数据包括热融湖塘分布数据及热融滑坡分布数据。该数据集可为青藏工程走廊冻融灾害的研究工作及工程防灾减灾提供数据基础。青藏公路西大滩至安多段沿线40km范围冻融灾害空间分布基于国产高分二号影像数据自制。首先,利用深度学习方法从高分二号数据中提取泥流阶地区块;然后,利用ArcGIS进行人工编辑,将数据解译后合在一张图上可现实。
牛富俊, 罗京
该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
本数据集为过去20年间(2001-2020)青藏高原生长季NDVI与植被物候数据集,数据来源为MODIS(MOD13A2)产品,空间分辨率为1km。数据集内容包括:2001-2020年每年生长季(5-9月)平均NDVI、生长季开始日期(SOS)、生长季结束日期(EOS)与生长季长度(DOS)。提取物候采用了两种方法:动态阈值方法和双对数函数法。数据格式为TIFF格式,投影为Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area。
王泰华, 杨大文
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
本数据集包括2000-2018年青藏高原植被生长季开始日期、结束日期多年平均空间分布格局,1982-1999年和2000-2020年青藏高原植被生长季开始日期、结束日期的时间变化趋势。该数据集以AVHRR NDVI、MODIS NDVI、EVI为基础,通过四个步骤最小化植被指数时间序列的偏差和噪声。首先,去除无植被覆盖、低植被覆盖或季节性较弱的植被对应的像元;其次,将冬季(12月至3月初)受积雪、冰或两者污染的植被指数替换为冬季未受污染的高质量的植被指数的平均值;其他季节由云和气溶胶引起的植被指数负偏差通过Savitzky-Golay方法进行校准;最后,使用双逻辑斯蒂或改良后的双逻辑斯蒂函数拟合年植被指数时间序列。基于阈值和拐点的方法,逐像元提取青藏高原植被生长季开始日期、结束日期。数据的空间分辨率为250m和1/12°。数据质量可靠。
沈妙根
数据内容:该数据集是青藏高原重点河湖研究区的国产高分系列(GF1/2/3/4)2015-2020年历史存档卫星数据,可覆盖典型河湖区进行有效监测,数据的时间范围为2015-2020年。数据来源和加工方法:数据为1级产品,经过均衡化辐射校正,通过不同检测器的均衡功能对影响传感器的变化进行校正,部分数据基于同时期的Landsat8影像为底图,选取控制点,进行图像几何校正,之后基于DEM数据进行正射校正,并对相应的数据进行波段融合处理。数据质量描述:高分系列卫星由中国资源卫星应用中心负责处理,有中科院空天院卫星地面接收站接收的原始数据和经过加工处理形成的各级产品。其中,1A级(预处理级辐射校正影像产品):经数据解析、均一化辐射校正、去噪、MTFC、CCD拼接、波段配准等处理的影像数据;并提供卫星直传姿轨数据生产的RPC文件。具体参考中国资源卫星应用中心数据网站文件。数据应用成果及前景:数据为国产高分数据,分辨率高,可应用于监测青藏高原作为亚洲水塔的变化以及产生的影像,检验区内其他数据的准确性。
邱玉宝
及时准确地监测绿洲的时空格局和动态变化对干旱区社会经济的可持续发展至关重要。本研究基于1986年、1990年、1995年、2000年、2005年、2010年、2015年、2018年、2020年共计9期Landsat TM/OLI影像数据,采用OSTU阈值法和人工目视解译相结合的方法获取1986~2020年河西走廊绿洲分布数据,并结合高分辨率Google Earth影像和实地验证数据基于混淆矩阵的方法建立随机样点验证绿洲提取结果的准确性。河西走廊绿洲数据的总体精度超过94%,Kappa系数超过0.88。本数据集可以为河西绿洲生态环境保护提供数据支持。
颉耀文, 张学渊, 刘怡阳, 黄晓君, 李汝嫣, 宗乐丽, 肖敏, 秦梦瑶
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
(1)数据内容:全球气候-生态格局演变产品。时间范围包括历史时期1981-2020,空间分辨率0.5°,未来时期2021-2100(未来时期包含四个不同共享社会经济路径:SSP126,SSP245,SSP370,SSP585),空间分辨率1°,每20年1期。 (2)数据来源及加工方法:历史时期选用GLOBMAP 的叶面积指数数据为基础,未来时期融合三个CMIP6模式(ACCESS-ESM1-5,CanESM5,UKESM1-0-LL)的叶面积指数数据。通过多元线性回归构建温度、降水和辐射与叶面积指数之间的关系,提取相应的系数来表征各气候变量对叶面积指数的影响程度,最后通过RGB映射图来表征叶面积指数的气候因素的影响系数。 (3)数据质量描述:全球20年1期,历史时期2期(1981-2000;2001-2020),未来时期共包含四个共享社会经济路径(SSP126,SSP245,SSP370,SSP585),每个路径下4期(2021-2040;2041-2060;2061-2080;2081-2100)。 (4)数据应用成果及前景:该数据可用于气候变化背景下的植被和生态系统演变相关研究。
何斌
植被指数(NDVI, Normalized Difference Vegetation Index)可以准确反映地表植被覆盖状况。目前,基于SPOT/VEGETATION以及MODIS等卫星遥感影像得到的NDVI时序数据已经在各尺度区域的植被动态变化监测、土地利用/覆被变化检测、宏观植被覆盖分类和净初级生产力估算等研究中得到了广泛的应用。EVI类似于归一化差异植被指数(NDVI),可用于量化植被绿度。然而,EVI对一些大气条件和树冠背景噪声进行了校正,并且在植被茂密的地区更为敏感。它包含一个“L”值来调整树冠背景,“C”值作为大气阻力系数,以及来自蓝色波段(B)的值。这些增强功能允许将指数计算R和NIR值之间的比率,同时在大多数情况下降低背景噪声、大气噪声和饱和度。本研究工作主要是对NDVI和EVI数据进行后处理,通过转换投影坐标系、数据融合、最大值合成法、剔除异常值和剪裁后给出较为可靠的2013年和2018年的青藏高原的植被情况。
叶爱中
植被覆盖度(Fractional vegetation cover, FVC)表示植被地面垂直投影面积与研究区总面积的百分比,是衡量生态保护和生态恢复有效性的重要指标,被广泛应用于气候、生态和土壤侵蚀等领域。FVC不仅是反映植被生产能力的理想参数,而且在评估地形差异、气候变化和区域生态环境质量时也能发挥较好的作用。本研究工作主要是对两套GLASS FVC数据进行后处理,通过数据融合、剔除异常值和剪裁后给出较为可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被覆盖度情况。
叶爱中
NDVI能反映出植物冠层的背景影响,如土壤、潮湿地面、雪、枯叶、粗糙度等,且与植被覆盖有关。是反映农作物长势和营养信息的重要参数之一。根据该参数,可以知道不同季节的农作物对氮的需求量, 对合理施用氮肥具有重要的指导作用。植被修正指数Correct NDVI (C-NDVI) 是剔除气候要素(气温、降水等)对NDVI的影响后的NDVI的值。以降水为例,降水对植被生长影响的滞后效应的研究表明,不同地区由于植被组成和土壤类型的差异,降水影响的滞后时间不同。本研究工作主要是对MODIS NDVI数据进行后处理,首先将当月NDVI值与本月的降水量、本月与上月的降水量的平均值、本月与上两个月的降水量的平均值等分别进行相关分析,确定最优的滞后时间。将NDVI与降水和气温做回归分析,得到相关的系数,然后通过MODIS NDVI与气候因子回归的NDVI的差值计算出校正的NDVI值。我们利用气候数据对NDVI进行修正后给出可靠的2013年和2018年的环北极圈(范围为北纬66°以北)和青藏高原(范围为北纬26°到39.85°,东经73.45°到104.65°)的植被修正指数。数据空间分辨率为0.5度,时间分辨率为月度值。
叶爱中
项目基于Landsat_TM30m遥感数据通过人工解译和机器学习算法完成了1990-2015年祁连山地区森林、农田、草地、湿地、聚落城市、荒漠六大类生态系统的空间格局分布信息提取,该套数据可以服务于研究区域生态系统宏观格局演变规律,生态系统服务功能评估,重大生态修复工程规划与效果评估。生态系统宏观格局演变是气候-社会经济耦合驱动的自然过程演变的宏观反应,也是土地利用与土地覆被变化的直接反映,更是区域可持续发展成效评估的重要数据基础。研究可为祁连山地区绿色发展指数评估提供数据基础。
吴锋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
该数据集产品包含1990-2020年每5年1期的青藏高原地上生物量和植被覆盖度数据产品,即1990年、1995年、2000年、2005年、2010年、2015年和2020年共7期。青藏高原地上生物量是根据不同的土地覆被类型,分别建立草地、森林等的地上生物量反演模型形成的地上生物量遥感反演产品;青藏高原植被覆盖度是采用像元二分法模型形成的植被覆盖度遥感反演产品。其中2000-2020年5期青藏高原地上生物量和植被覆盖度是基于MODIS卫星遥感数据进行遥感反演,空间分辨率为250米;1990和1995年2期青藏高原地上生物量和植被覆盖度是基于NOAA AVHRR卫星遥感数据进行遥感反演,经重采样后空间分辨率为250米。该数据集可为揭示青藏高原土地覆被量与质的时空格局,支持生态系统、生态资产与生态安全评估提供基础数据。
吴炳方
归一化植被指数(Normalized Difference Vegetation Index, NDVI)数据集源数据来自MODIS产品,经过数据格式转换、投影、重采样等预处理流程。现有格式为TIFF格式,投影为Krasovsky_1940_Albers投影。数据空间分辨率为1000米,时间上,从2001-2020年,每年提供一幅图像。NDVI产品有红光和近红外两个波段反射率计算得到,能够用于检测植被生长状态、植被覆盖度等。-1<=NDVI<=1,负值表示地面覆盖为云、水、雪等,对可见光高反射;0表示有岩石或裸土等,NIR和R近似相等;正值,表示有植被覆盖,且随覆盖度增大而增大。
朱军涛
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
本数据集提供了基于遥感估算凋萎系数优化后的全球土壤质地数据,空间分辨率为0.25度。数据集采用了SCE-UA的优化方法,以基于SMAP遥感土壤水分估算的凋萎系数为优化目标,对两套常用的土壤质地数据集GSDE(Shangguan et al. 2014)和HWSD(Fischer et al., 2008)进行了优化。与站点观测的结果表明(北美地区44个站点),在陆面模式中使用优化后土壤质地数据集的土壤水分和蒸散比模拟准确度有较为明显的提升。
何晴, 卢麾, 周建宏, 阳坤, 施建成
中国2000-2020年去云积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为8天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。
肖鹏峰, 胡瑞, 张正, 秦棽
帕里土壤温湿度观测网位于青藏高原南部,站点平均海拔4486米。观测网提供土壤水分、温度以及冻融信息,旨在为一系列卫星遥感和水文气象研究提供支持。 观测网详细信息: (1)站点数目:25 (2)观测变量:土壤湿度、土壤温度 (3)观测深度:0-5 cm、10 cm、20 cm、40cm (4)空间范围:27.7°-28.1°N; 89.1°-89.4°E (5)空间尺度:0.3°x 0.3°(对应被动微波卫星象元尺度) (6)记录间隔:30 min (7)测量精度: ±2%(土壤水分);±1℃(土壤温度) 数据文件字段描述: (1)变量1-6:观测时间(yyyy-mm-dd-hh-mm-ss;北京时间,UTC+8) (2)变量7-34:各站点观测值(实型,缺省值:-99.00) (3)土壤水分(SM):体积含量,单位:%vol(m3/m3) (4)土壤温度(ST): 单位:℃ 数据校正与质量控制: (1)土壤水分:基于实测土壤质地和有机质对“介电常数-土壤水分”转换公式进行校正 (2)土壤温度:针对实测数据进行合理物理范围内的质量控制
阳坤, 陈莹莹, 赵龙, 秦军, 拉珠, 周旭, 姜尧志, 田佳鑫
该数据为雅鲁藏布江年楚河沿程DEM和正射影像数据,采用DJI无人机搭载的照相机,按照设定的飞行路线对年楚河采样河段进行拍摄照片。相邻照片重叠度不低于70%,将拍摄的照片利用Agisoft Metashape软件生成正射影像和DEM,正射影像包含红绿蓝三个波段。年楚河沿程共包含年楚河流域4个干流和2个支流采样河段。数字高程模型分辨率为<1.0m,坐标系为WGC1984坐标系。该数据集可以为年楚河流域洪水灾害的精确模拟提供数据支撑,进一步服务于洪水灾害的防治与风险评价,具有重要科学与社会价值。
马旭东, 黄尔, 闫旭峰, 罗铭, 王路
本数据集包括祁连山地区重点区域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
本数据集包括黑河流域2021年5月至2021年10月的归一化植被指数、植被覆盖度、植被净初级生产力、草地生物量、森林蓄积量植被参数遥感产品,空间分辨率为8m。本数据集采用高分一号、高分六号、哨兵、资源三号等遥感数据源,结合气象、地面监测等基础数据,采用波段比值法、混合像元分解模型、CASA模型等植被参数反演算法和模型,生成祁连山重点区域生长季逐月植被指数遥感产品。本数据集通过构建以高分卫星为主的高时空分辨率生态环境监测数据集,为区域生态环境问题诊断与生态环境动态评估提供数据支持。
祁元, 张金龙, 王宏伟, 周圣明, 曹永攀
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据使用了大量的MODIS遥感影像,基于Google Earth Engine平台对青藏高原2000年至2018年地表植被覆盖情况进分析计算。植被指数(NDVI)是监测地面植被情况的重要指标。Terra中分辨率成像光谱仪(MODIS)植被指数3级产品(MOD13Q1)第6版数据每16天以250米的空间分辨率生成。基于GEE平台计算的年均NDVI指数可以反映出2000-2018年的植被盖度长时间变化趋势。同时,2000-2018多年平均NDVI指数反映了青藏高原地区的空间分布情况。植被指数(NDVI)的时空变化监测对于环境变化研究、可持续发展规划等是不可或缺的重要基础信息和关键参量,有助于理解气候变化背景下一些生态因子(气温、降水)等变化及其产生的影响。
邱海军
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
该数据为喜马拉雅山区流域所在喜马拉雅山区1:25万地形数据,由STRM90m高程数据实体在ARCGIS软件中按喜马拉雅山区边界掩膜提取得到,为90M栅格分辨率。由于DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础。
王中根
中国区域PML-V2水碳耦合的陆地蒸散发与总初级生产力数据集,即PML-V2(China),包括总初级生产力(gross primary product, GPP),植被蒸腾(vegetation transpiration, Ec),土壤蒸发(soil evaporation, Es),冠层截流蒸发(vaporization of intercepted rainfall, Ei)和水体、冰雪蒸发(ET_water),共5个要素。数据格式为TIFF,时空分辨率为1天、500米,时间跨度为2000.02.26-2020.12.31。 与全球版本相比,PML-V2(China)产品在中国区域的模拟精度有很大的提升,且具有以下改进和创新: i. 相较于全球版本的八天分辨率,新产品的时间分辨率升至每日; ii. 观测数据来自中国26个涡动通量站,其下垫面包括植被稀疏的荒漠在内的9种植被功能型,并用于模型的参数校准(用于率定全球版产品的中国站点仅有8个,只覆盖5种植被类型); iii. 2000-2018年使用0.1°的中国区域气象要素驱动数据,2019-2020年使用偏差校正的全球陆面数据同化系统GLDAS-2.1气象数据,这些气象输入数据用来替换原先0.25°的GLDAS输入; iv. 使用ERA5陆地的地表温度取代空气温度作为输入,用于计算输出长波辐射; v. 将改进的Whittaker滤波的MODIS叶面积指数作为模型输入,新产品在监测作物耗水量和揭示种植制度特征方面提供了新的见解。 注:本数据集不包含中国南海部分。
张永强, 何韶阳
植被净初级生产力(Net Primary Productivity, NPP)作为生态系统物质及能量循环的基础,能够反映区域和全球尺度植被的固碳能力,是评价陆地生态系统质量的重要指标。针对植被净初级生产力产品生产,基于光能利用率模型的原理耦合遥感、气象、植被及土壤类型数据进行了国家屏障区生态系统生产力建模研究。在参数的选择上,由SPOT/VEG ETATION NDVI卫星遥感数据、中国植被图、太阳总辐射值及温度等数据计算出光合有效辐射(APAR);根据区域蒸散模型模拟水分胁迫因子,与土壤水分子模型相比,它可以简化参数,增强模型的可操作性。将光合有效辐射和实际光能利用率作为CASA(Carnegie-Ames-Stanford Approach)模型的输入变量,基于参数化模型实现对青藏高原2000-2018年1km分辨率的陆地植被净初级生产力估算。
王晓峰
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
“一带一路”沿线国家植被覆盖状况恢复力反映了沿线国家植被覆盖状况恢复力水平,数据值越高,表明沿线国家植被覆盖状况恢复力越强。植被覆盖状况恢复力数据产品制备参考了2000-2020年MODIS MOD13A3数据集,数据集空间分辨率为1 KM,时间分辨率为1年,利用2000-2020年“一带一路”沿线国家NDVI的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了植被覆盖状况恢复力产品。“一带一路”沿线国家植被覆盖状况恢复力数据集对分析和对比当前各国植被覆盖状况恢复力状况具有重要参考意义。
徐新良
“一带一路”沿线国家生态系统生产力恢复力反映了沿线国家生态系统生产力恢复力水平,数据值越高,表明沿线国家生态系统生产力恢复力越强。生态系统生产力恢复力数据产品制备参考了2000—2015年全球中等分辨率植被总初级生产力数据集,数据集空间分辨率为0.05°,时间分辨率为1年,利用2000-2015年“一带一路”沿线国家植被总初级生产力的逐年数据,在考虑逐年变化的基础上,基于敏感性和适应性分析,通过综合诊断,制备生成了生态系统生产力恢复力产品。“一带一路”沿线国家生态系统生产力恢复力数据集对分析和对比当前各国生态系统生产力恢复力状况具有重要参考意义。
徐新良
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序SI产品。2)数据来源及加工方法:主要是在青藏高原Landsat系列卫星地表反射率数据集的基础上,通过SI的计算公式进行生产的,即基于红光波段和蓝光波段能够很好地反映土壤盐分的原理;3)数据质量描述:为了标识云、冰雪,并相应生产了质量标识文件(QA)。4)数据应用成果及前景:该指数能很好的反映土壤的盐分程度,可用于定量化评价盐渍化土壤。
彭燕
1)数据内容:本数据集包含2020年青藏高原地区Landsat时序地表温度产品。2)数据来源及加工方法:利用中国遥感卫星地面站接收存档的Landsat数据和实用单通道算法反演得到;3)数据质量描述:root-mean-square error(RMSE)约为1.23K。4)数据应用成果及前景:地表温度是一个常用的陆地表面参数,该数据集可为资源调查、生态环境监测、全球变化研究等相关领域的研究和应用提供数据产品支撑。
张兆明
1)数据内容:本数据集包含2020年青藏高原地区MODIS时序光合有效辐射分数(FPAR)产品、地表总初级生产力产品(GPP)产品、Npp产品、蒸散发产品(ET)和叶面积指数(LAI)产品。2)数据来源及加工方法:FPAR产品和LAI产品来自第六版MODIS Terra MOD15A2H产品集,GPP和NPP产品均来自MODIS Terra MOD17A2H产品集,蒸散发产品来自MODIS Terra MOD16A2;通过USGS网站下载,利用GDAL插件进行拼接和转投影得到;3)数据质量描述:每种产品均有相应的质量文件,标识了云、雪、无效值等,以有效位编码方式存储。4)数据应用成果及前景:在森林、农业、生态等领域长时序信息挖掘分析方面具有重要的应用价值。
贡成娟
该数据集包含了青海湖千户里小流域的高寒草甸观测的季节性冻土土壤活动层土壤温度和湿度高频观测数据,站点位于青海刚察县,处于沙柳河流域的支流上游,处于河谷东侧,海拔高度介于3565-3716m,海拔落差151 m,是典型的高寒草甸下垫面,观测点的经纬度为E100°15,37°25'N。 10层土壤水分SM(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)10层土壤温度ST(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)及10层土壤介电常数EC(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)。数据1-10编号对应相应(5cm、10cm、20cm、40cm、80cm、100cm、120cm、140cm、160cm和180cm)的土壤深度。 原始的采集器输出数据统一整理成30分钟采样周期并经过初步质量控制,将整理后的将数据30分钟存储,命名规则为:数据日期。 数据观测时段为2018年11月5日至2011年12月21日。2020年下半年数据缺失较多。时间分辨率半小时。该数据集可为率定土壤水热模型,及土壤活动层动态刻画提供数据支撑。
李小雁, 王佩
土壤水分是地气交互作用的重要边界条件,是全球观测系统提出的关键气候变量之一;植被光学厚度是微波辐射传输过程中衡量植被衰减特性的物理量,在表征植被水分与生物量动态变化中具有重要作用。 本数据集使用多通道协同反演算法获取SMAP观测的土壤水分与植被光学厚度。该算法利用参数间的自约束关系与通道间的理论转换关系进行地表参数反演,反演过程不依赖于其他辅助数据,并适用于多种不同载荷配置。本数据集的土壤水分反演结果包含了融化期的土壤水分含量与冻结期的液态水含量;同时反演了水平和垂直两个极化的植被光学厚度,是全球第一套具有极化差异的L波段植被光学厚度产品。 本数据集基于国际土壤水分观测网络、美国农业部及研究室自建发布的共19个土壤水分密集观测站网(其中包含9个SMAP核心验证站点以及SMAP尚未使用的10个密集观测站点)以及被广泛使用的土壤气候分析网络SCAN进行验证,结果发现MCCA土壤水分反演结果精度优于其它SMAP产品。
赵天杰, 彭志晴, 姚盼盼, 施建成
1)数据内容:本数据集为青藏高原东南三江流域滑坡灾害数据;2)数据来源及加工方法:本数据集系北京工业大学戴福初利用谷歌地球独立解译完成;采用遥感解译-现场验证-再解译-再验证等方法,经过7次系统解译最终形成本数据文件,累计对超过5000处滑坡开展了现场验证,具有较高的精度;4)本数据对青藏高原东南三江流域水能资源开发、交通工程建设、地质灾害评价等方面具有广阔的应用前景。
戴福初
青藏高原灾害编录包含了多种历史灾害的空间分布与类型信息,范围西至巴基斯坦、克什米尔地区,东至青海省,南至喜马拉雅山山麓,北至阿尔金山山麓。数据的生产是由大量人工遥感解译、实地考察、收集地调数据与开源数据结合完成的。数据以矢量点的形式储存,主要内含属性表注明灾害类型、坐标等信息。本数据可以应用于研究灾害的空间分布规律与灾害评价工作。本数据共包含23536条数据,泥石流数据由于参考了地调数据,大多沿路分布,无人区则数据较少。
唐晨晓
本数据集为青藏高原区域2016-2019年0.02° x0.02°地表反照率日变化产品。采用耦合地形因子的多源遥感数据协同反演的BRDF模型(Extended Multi-Sensor Combined BRDF Inversion model (EMCBI)),并引入先验知识进行质量控制,联合极轨卫星数据MODIS反射率和静止卫星葵花8-AHI地表反射率数据反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)和AHI天顶反射率数据集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日内变化的反照率,其中,黑空反照率的太阳入射为北京时间8:00-18:00逐小时的入射(UTM time zone 8)。经过验证评估,日内变化的反照率更能有效捕捉反照率的日变化,可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
本数据集为青藏高原区域2002-2020年日分辨率0.00425° x0.00425°地表反照率产品。基于MODIS反射率数据,采用耦合地形因子的多源遥感数据协同反演的BRDF\反照率模型,并引入先验知识进行质量控制,反演时空连续的日分辨率的高精度BRDF/反照率。MODIS地表反射率数据(MOD09GA、MYD09GA)集为官方网站下载,以5天为周期合成日分辨率BRDF,进而估算日分辨率的反照率,其中,黑空反照率的太阳入射为当地正午时太阳入射。经过验证评估,满足反照率应用精度要求,相较于同类产品在山区站点的验证精度更高,且时空连续性更好。可有效支撑青藏高原地区辐射平衡、环境变化研究。
游冬琴, 唐勇, 韩源
数据内容:伊塞克湖流域2019年种植结构数据集。 数据来源及加工方法:从2019年中提取出5月-6月,7月-8月和9月-10月三个时间段,将每个时间段内云量最少,质量最高的哨兵2号数据拼接为一张完整地图,得到咸海流域三期哨兵2号遥感影像。在此基础上求出三期影像的NDVI结果,以哨兵2数据的不同波段和NDVI结果为基础,再结合耕地数据和实地采样数据,用随机森林算法对其分类,最终得到每个地块上的种植结构类型。 数据质量:空间分辨率为10m×10m,时间分辨率为年,Kappa系数0.8。 数据应用成果:可用于农作物产量估算和水资源利用效率计算。
刘铁
数据内容:咸海流域2019年归一化植被指数数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD13A2产品第一波段作为归一化植被指数数据,乘以比例因子0.0001。 数据质量:空间分辨率为1000m×1000m,时间分辨率为一个月,每个像元的值为每个月的归一化植被指数的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它植被数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年反照率数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MCD43A1产品中的"BRDF_Albedo_Parameters_nn. Num_Parameters_01",“BRDF_Albedo_Parameters_nn. Num_Parameters_02“和“BRDF_Albedo_Parameters_nn. Num_Parameters_03”波段,参考MODIS官方算法,计算得出白天反照率和夜间反照率,乘以比例因子0.001。 数据质量:空间分辨率为500m×500m,时间分辨率为8天,每个像元的值为八天地表反照率的平均值。 数据应用成果:作为重要参数可反演地表蒸散发。
刘铁
数据内容:咸海流域2019年地表温度数据。 数据来源及加工方法:来源于美国国家航空航天局中分辨率成像光谱仪,提取MOD11A2产品第一波段作为地表温度数据,乘以比例因子0.02。 数据质量:空间分辨率为1000m×1000m,时间分辨率为8天,每个像元的值为八天地表温度的平均值。 数据应用成果:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布。
刘铁
数据内容:咸海流域2019年土壤湿度数据。 数据来源及加工方法:来源于美国国家航空航天局,对每天的土壤湿度数据相加得到各月土壤湿度之和,再除以天数得到每月土壤湿度的平均值。 数据质量:空间分辨率为0.25°×0.25°,时间分辨率为月,每个像元的值为每月土壤湿度的平均值。 数据应用成果及前景:在气候变化背景下,可用于气象要素和植被特征相关关系分析,也可以与其它气象数据相结合分析某种植被类型的区域分布
刘铁
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件