积雪是冰冻圈的重要组成要素,是全球变化与地球系统科学研究中不可或缺的变量。积雪的分布范围和物候信息是衡量积雪变化特征的重要指标,也是寒区水文模型中融雪径流模拟的重要参数。亚洲高山区是许多国际性河流的发源地,也是全球气候变化研究的热点区;该地区冰雪变化将引发的水资源减少、极端天气事件增多、灾害频发等生态和环境问题,已受到各国的广泛关注。因此,准确获取长时序的亚洲高山区积雪分布与积雪物候数据对气候变化研究、水资源管理以及灾害预警与防治至关重要。 亚洲高山区逐日无云MODIS归一化积雪指数(NDSI)产品(2000-2021,500 m)是在MODIS逐日积雪产品(包括Terra上午星数据产品MOD10A1和Aqua下午星数据产品MYD10A1,C6版本)的基础上,通过同一天上下午星数据融合以及三次样条函数插值去云算法处理后得到;其中,在2000-2002年只有上午星数据产品MOD10A1时,则直接采用三次样条函数插值去云算法处理。水文年2002-2020的积雪物候数据集是基于逐水文年内的无云MODIS NDSI产品制备而成,包括积雪开始日期(SOD)、积雪结束日期(SED)和积雪持续日数(SDD)3个参数。本数据集具有可靠的精度。
唐志光, 邓刚
该数据集是支持《Advances in Climate Change Research》论文(Ran等,2022)分析的部分数据,包括第三极区域(青藏高原、帕米尔高原和天山)多年冻土、季节冻土和未冻土的当前(2000-2016年)范围、多年冻土年平均地温和活动层厚度的1960s以来每十年的变化,以及论文中的第三极范围数据。
冉有华, 李新, 车涛, 王冰泉, 程国栋
本数据为泥石流风险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的危险性和易损性分析结果;根据联合国人道主义事业部(1992)给出的风险表达式:风险(Risk)=危险性(Hazard)×易损性(Vulnerability),对研究区的泥石流灾害进行风险分析。本数据可用于对中巴经济走廊泥石流灾害风险进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
本数据为泥石流易损性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的,栅格值表示易损区划:1表示低易损区,2表示较低易损区,3表示中易损区,4表示较高易损区,5表示高易损区。本数据可用于对中巴经济走廊重大泥石流灾害易损性进行评估,可以为泥石流风险性评估提供数据基础,了解重大泥石流对道路、房屋等基础设施损害程度的程度强弱关系,为当地政府部门防灾减灾、预测预报、乡村振兴等决策提供科学指导。
苏凤环
本数据为泥石流危险性评价数据,根据中巴经济走廊泥石流灾害情况进行分析研究后得到的。泥石流样本数据是通过遥感解译、现场核对等方式获得的泥石流灾害详细情况数据,构建危险性评价体系,利用信息量法对研究区泥石流危险进行评价,然后采用自然断点法进行危险性区的划分。本数据可用于对重大泥石流灾害危险性进行评估,了解重大泥石流风险程度强弱关系,为当地政府部门防灾减灾、城市治理等决策提供科学指导。
苏凤环
该数据提供了截止2021年度的中巴经济走廊和天山山脉泥石流分布,是基于历史资料收集、野外实地调查和遥感影像解译,结合数字地形图(DEM)和地质图,得到最新的中巴经济走廊(国外段)的泥石流分布数据,数据信息可靠性好,数据可以作为泥石流分布规律、泥石流危险性、风险计算的基础数据。泥石流流域的提取主要采用ArcGIS中的水文分析方法,考虑到DEM的精度限制,结合Google Earth影像进行必要的人工校正。
苏凤环
本数据为天山地区主要交通干道G217和G30典型泥石流沟物质物理性质数据,此数据为研究区典型泥石流灾害点的详细情况,包括流域参数、沟道参数、泥石流堆积体物质物理参数;这些数据可结合雨量数据可进一步开展该地区泥石流活动雨量阈值等研究内容。字段包括泥石流流域面积、沟宽、沟长、纵比降,以及冰湖面积、泥石流堆积体物质的物理性质等。堆积体物理性质数据通过激光粒度仪等实验设备获取,饱和渗透系数通过三轴实验获取。
陈宁生
本数据使用了大量的MODIS遥感影像,基于Google Earth Engine平台对青藏高原2000年至2018年地表植被覆盖情况进分析计算。植被指数(NDVI)是监测地面植被情况的重要指标。Terra中分辨率成像光谱仪(MODIS)植被指数3级产品(MOD13Q1)第6版数据每16天以250米的空间分辨率生成。基于GEE平台计算的年均NDVI指数可以反映出2000-2018年的植被盖度长时间变化趋势。同时,2000-2018多年平均NDVI指数反映了青藏高原地区的空间分布情况。植被指数(NDVI)的时空变化监测对于环境变化研究、可持续发展规划等是不可或缺的重要基础信息和关键参量,有助于理解气候变化背景下一些生态因子(气温、降水)等变化及其产生的影响。
邱海军
本数据集是中巴经济走廊及天山山脉活动断裂带(2013),其中获取的地质图是1:250万地质图,覆盖范围为中巴经济走廊以及天山山脉。地质构造图可以为国民经济信息化提供数字化空间平台,为国家和省级各部门进行区域规划、地质灾害监测、地质调查、找矿勘查、宏观决策等提供信息服务。获取的地质图数据源是首先将纸质版地图扫描,然后在ArcGIS 10.5 平台进行地理配准,然后矢量化获得,存储格式为矢量数据,空间粒度是分区域划分的。
朱亚茹
本数据集是中巴经济走廊及天山山脉地质构造图,其中获取的地质图是1:250万地质图,覆盖范围为中巴经济走廊以及天山山脉。地质构造图可以为国民经济信息化提供数字化空间平台,为国家和省级各部门进行区域规划、地质灾害监测、地质调查、找矿勘查、宏观决策等提供信息服务。获取的地质图数据源是首先将纸质版地图扫描,然后在ArcGIS 10.5 平台进行地理配准,然后矢量化获得的,存储格式为矢量数据,空间粒度是分区域划分的。
朱亚茹
本数据集是中巴经济走廊及天山山脉土壤类型图(1971-1981),来源于世界粮农组织(FAO)和谐世界土壤数据库(v1.2),覆盖范围为全球,空间分辨率为0.0833333°。该土壤数据是世界粮农组织与世界土壤信息机构、中国科学院土壤研究所及欧盟委员会联合研究中心合作的结果。统一的世界土壤数据库是一个拥有15000多个不同土壤测绘单元的30弧秒栅格数据库,结合了全世界现有的土壤信息与世界粮农组织的1:5 000 000比例尺世界土壤图(粮农组织,1971-1981)中的信息。该栅格数据库由21600行和43200列组成,并使用标准化的结构将属性数据与栅格地图联系起来,以显示或查询土壤单位的组成和选定的土壤参数的特征。土壤类型图可以为土地利用规划,地质灾害防治和管理等提供基础科学参考。
裴艳茜
本数据集整理和收集了青藏高原及周边地区500米空间分辨率的地表植被类型数据,数据源来自于美国地质调查局(USGS)官网(https://lpdaac.usgs.gov/products/mod12q1v006/),此数据是是MODIS三级数据的土地利用与覆被产品,空间分辨率为500m。通过使用Terra和Aqua反射率数据的监督分类得到的。通过将平滑样条应用于天底双向反射率分布函数(BRDF)-调整后的反射(NBAR)时间序列,第6版MCD1201产品开发出新的缺口填充光谱时间特征。而且,第6版产品还使用了隐马尔可夫模型(HMM),可减少类别标签中的虚假变化。该数据集中包含了17个主要土地覆盖类型,根据国际地圈生物圈计划(IGBP),其中包括11个自然植被类型,3个土地开发和镶嵌的地类和3个非草木土地类型定义类。其分别为:1-常绿针叶林;2-常绿阔叶林;3-落叶针叶林;4-落叶阔叶林;5-混交林;6-稠密灌丛;7-稀疏灌丛;8-木本稀树草原;9-稀树草原;10-草地;11-永久湿地;12-农用地;13-城市和建筑区;14-农用地/自然植被拼接;15-雪和冰;16-裸地;17-水。
邱海军
中巴经济走廊及天山山脉区域属于亚热带草原、沙漠气候和暖温带大陆性干旱气候,河流降水补给较少,北部山区河流补给为冰川积雪融水补给。地处印度河流域,印度河上游水系发达,有印度河干流、左岸西部杰赫勒姆河和奇纳布河等。本数据集是青藏高原水系图。水系是一种重要的自然要素,它的发育、形态及分布是多种因素综合作用的结果。河流的分类是依据水系最典型特征而进行的,因而水系的编码充分考虑了水系的分类,并兼顾河水的其他特性。国外河流数据来源于Natural Earth,所有的河流都接受了人工平滑和位置调整,以适应SRTM Plus高程数据生成的阴影地形。
邱海军
中巴经济走廊及天山山脉地形数据由日本宇宙航空研究所(Japan Aerospace Exploration Agency,简称JAXA)生产。中巴经济走廊及天山山脉30m数字高程模型(DEM)(2006-2011)描述的是地面高程信息,其是研究分析地形、流域、地物识别的重要原始资料。它在测绘、水文、水文、气象、地貌、地质、土壤、工程建设等国民经济以及人文和自然科学领域有着广泛的应用。在防洪减灾方面,DEM是进行水文分析如汇水区分析、水系网络分析、降雨分析、蓄洪计算、淹没分析等的基础;同时,DEM数据能够反映一定分辨率的局部地形特征,通过DEM可提取大量的地表形态信息,可用于绘制等高线、高程图、坡度图、坡向图、水系图、立体透视图、立体景观图,并应用于制作正射影像、立体地形模型与地图修测。该数据水平分辨率为30m(1弧秒),高程精度5米,是目前世界上最精确的地形数据之一。该数据下载地址为https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/。
邱海军
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
冰川物质平衡是表征冰川积累和消融量值的重要冰川学参数之一。冰川物质平衡是联系气候和冰川变化的纽带,是冰川对所在地区气候状况的直接反映。气候变化导致冰川的物质收支状况发生相应的变化,而这种物质上的收支变化又可以引起冰川运动特征及冰川热状况的改变,进而导致冰川末端位置、面积和冰储量的变化。监测方法即在冰川表面设置固定标志花杆,定期监测冰川表面相对于花杆顶点的距离,以计算冰雪消融量;在积累区定时定点开挖雪坑或钻孔取样,测量雪层密度,分析雪-粒雪-附加冰层位特征,计算雪层积累量;再将单点监测结果绘到大比例尺冰川地形图上,按净平衡等值线法或等高线分区法计算整条冰川的瞬时、季节(如冬季和夏季)及年度的物质平衡分量。该数据集为青藏高原及天山地区不同代表性冰川年物质平衡数据,单位为毫米水当量。
邬光剑
1. 数据内容(包括的要素及意义) 冰川厚度即冰川表面与冰川底部间的垂直距离。冰川厚度的分布不仅受冰川规模与冰下地形控制,同时也随着冰川对气候响应阶段不同而变化。数据包含冰川测线经纬度、高程、单点厚度、测量冰川冰体总储量、测量仪器型号等信息。 2. 数据来源与加工方法 冰川厚度主要来源于钻孔和探地雷达测厚(Ground-Penetrating Radar, GPR)。钻孔法即在冰面进行钻孔至冰下基岩,从而获得单点的冰川厚度;冰川雷达测厚技术则能精确地测量出测线上冰川厚度的连续分布,同时获取冰下基岩的地形特征,从而为冰川储量估算和冰川动力学研究提供必要的参数 3. 数据质量描述 冰川钻孔数据精度达到分米级。GPR雷达测厚由于冰川性质及底界面雷达信号强度差异,测厚精度理论上在5%-15%之间,。 4. 数据应用成果与前景 冰川厚度是获取冰下地形和冰川储量信息的先决条件。在冰川动力学数值模拟与模型研究中,冰川厚度是一个重要的基本输入参数。同时,冰川储量是表征冰川规模和冰川水资源状况的最直接参数,不仅对冰川水资源的准确评估和合理规划及有效利用十分重要,更对于区域社会经济发展和生态安全具有重要和深远
邬光剑
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)生物活性元素Fe等元素数据,重建了1956-2004金属元素历史。数据内容:1956-2004年冰芯金属元素(包括:Fe, Cd, Pb, As, Ba, Al, S, Mn, Co和Ni);数据来源,通过ICP-MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Du, Z., Xiao, C., Zhang, W., Handley, M. J., Mayewski, P. A., Liu, Y., & Li, X. (2019). Iron record associated with sandstorms in a central Asian shallow ice core spanning 1956–2004. Atmospheric environment, 203, 121-130.,可提供中亚其他冰芯对比研究。
杜志恒
本项目是基于东天山庙尔沟冰芯(94°19′E,43°03′N,4518 m)高氯酸等元素数据,重建了1956-2004高氯酸历史变化。数据内容:1956-2004年高氯酸浓度(包括:Cl-, NO3- 和SO42-);数据来源,通过ESI-MS/MS测试;数据质量:空白样品显著低于样品值,质量较好;数据应用成果及前景:数据已发表,具体信息见Zhiheng Du, Cunde Xiao, Vasile I. Furdui C,Wangbin Zhang. (2019). The perchlorate record during 1956–2004 from Tienshan ice core, East Asia. Science of the Total Environment.可提供中亚其他冰芯对比研究。
杜志恒
根据树木年轮学的方法,采集天山中部(乌鲁木齐后峡)以及西部(伊犁库尔德宁)的雪岭云杉。通过传统的树木年轮学的方法进行样品的处理、定年,并建立了天山中西部雪岭云杉的宽度年表。再根据树轮同位素的方法选四根树芯进行清洗、风干后在显微镜下用手术刀进行样品的剥离。采用冷原子吸收的原理,用Hydra IIde 进行汞含量的测量。建立五年分辨率的中西部树轮汞污染记录。低频上记录的汞污染在逐渐的加强,结果和全球的汞排放有较为相似的趋势。在天山中部,人类的排放是主要的影响因素,树轮中的汞污染记录揭露了当地的汞沉降变化。相比较冰芯中的记录,二战之后树轮中汞有更为急剧的上升。结果表明在偏远地区,树轮可以作为一个区域的汞污染检测器并反映了低频的汞浓度变化趋势。
刘晓宏
该数据集结合中国第二次编目数据、空间分辨率30米且云量覆盖度低于10%的landsat系列光学影像数据及SRTM等多种数据的基础上,利用ArcGIS,ENVI和Google Earth等处理软件,通过人工目视解译的方法提取冰川边界10km范围内的冰湖边界,并对解译后的数据进行统一的冰湖的类型、所属山脉、省域、流域等属性添加、质量检验与精度验证。空间分辨率30米。 由两部分组成,分别为利用冰川编目数据生成冰湖分布区矢量文件和2015年中国西部冰湖编目数据集。 为中国西部冰湖-冰川耦合关系、水资源利用与管理等相关研究的参考数据,还可以作为区域气候变化与冰冻圈等相关研究的基础数据。
王欣
中国高寒山区月降水数据集包括祁连山(1960-2013)、天山(1954-2013)、长江源(1957-2014)地区月降水数据集。 分布式水文模型需要高精度的降水空间分布信息作为输入。由于站点稀少,站点插值降水无法体现高寒山区的降水空间分布。本数据集生成方式: (1) 收集整理各个地区国家气象台站降水数据、水文站点降水数据,新增中国科学院野外台站海拔4000m以上降水观测站点数据; (2)利用各个台站的气温资料对收集的降水数据进行不同降水类型的降水数据校正; (3)建立降水数据与海拔、经度、纬度之间的关系,逐月拟合生成1km尺度的月降水数据集。 本数据插值年份为1954-2014年,数据投影方式:Albers投影,空间插值精度为1-km,时间精度为逐月数据。数据经过交叉验证,站点观测数据验证,结果表明插值降水具有可靠性。 数据采用ASCII文件存储,天山和长江源月降水数据文件的文件名均为YYYYMM.txt形式,YYYY为年份,MM为月。祁连山逐月降水数据名称为:month_10001.txt,该文件为1960年1月降水数据,依次month_10002.txt为1960年2月降水,month_10013.txt为1961年1月降水数据,...... month_10648.txt为2013年12月降水数据。每个ASCII文件代表当日的网格降水数据,单位为mm。
陈仁升, 刘俊峰
研究区位于天山北麓中段部分,西起新疆塔城 地区的乌苏市、东到昌吉州的木垒县,东西长约 500 km。天山北坡植被垂直带可分为高山座垫植被( >3400 m)、高山亚高山草甸带(3400~2700 m)、中山 森林带(2700~1720 m)、森林草原过渡带(1720~ 1300 m)、半荒漠带(1300~700 m)和典型荒漠带 ( <700 m) 。 选择天山北坡根据垂直植被带特点,选取不同海拔、不同植被带和不同沉积年代的5个沉积剖面进行研究。取得的5个中晚全新世剖面来计算孢粉复合分异度 指数,并尝试利用该指数来解释孢粉多样性,再结合 粒度、磁化率、烧失量等多项分析的数值整合来探讨 该区中晚全新世以来生物多样性变化和环境特征。 数据包括: 1.大西沟剖面孢粉粒数资料(8-110厘米共52层的孢粉粒数,3640±60aB.P-890±60aB.P) 2.小西沟剖面孢粉粒数资料(0-90厘米共38层的孢粉粒数,3240±60 aB.P) 3.桦树窝子剖面孢粉粒数资料(0-106厘米共52层的孢粉粒数,2170±185aB.P-450±155aB.P) 4.四厂湖剖面孢粉粒数资料(10-84厘米共19层的孢粉粒数,1000±50aB.P-665±65aB.P) 5.东道海子剖面B孢粉粒数资料(0-190厘米共64层的孢粉粒数,4500±310aB.P-305±130aB.P) 数据的详细说明请参考文献“新疆天山北坡地区中晚全新世古生物多样性特征”。
倪健
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件