基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
汪涛, 刘丹, 魏建军
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。
王世金
基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。
陆平, 郝彤, 李荣兴
冻融指数是气候变化的一个重要敏感指示器,也被广泛应用于冻土变化研究中。研究全球范围内冻融指数的空间分布特征与时间变化趋势,可为全球冻土环境评估、工程建设以及应对气候变化提供依据。该数据集基于1973—2021年覆盖全球陆地且超过14 000个站点的逐日气温观测数据,计算空气冻结指数(FI)和空气融化指数(TI)。冻结/融化指数,是冻结/融化期内日平均气温低于/高于 0 ℃的温度累计值。考虑到指数计算要覆盖整个冻结/融化期,并保证计算时段的连续,北半球以该年7月1日至次年6月30日为一个冻结期,以该年1月1日至12月30日为一个融化期,南半球冻结/融化时段相反。对于有缺测年份的站点未进行填补处理,一方面避免了插值对结果带来的不确定性误差,二是尽可能保留了数据的真实性与准确性。开展全球冻融指数研究,可以有效全面了解近地表热状态,并可以为探究冻融状态变化提供重要的支撑。
彭小清, 陈聪, 牟翠翠
多年冻土区的季节融化层,即活动层,是季节冻土研究中重要组成部分,其变化也深受气候变化的影响。活动层厚度变化深刻影响地~气之间能量传递、水分循环、碳循环、以及地表和地下水文过程、和植被生长。作者通过收集北半球347个站点的长时间序列活动层厚度,同时几十个CMIP5输出的气温资料,通过Stefan方程,构建北半球多年冻土区E-factor;最后耦合融化指数获取了北半球多年冻土区活动层厚度的空间分布及不同气候情景下的未来预测。经检验发现,观测值与模拟值具有显著的相关性,相关系数R=0.84(P<0.01),平均百分比误差为4.7%,平均偏离误差为-11.7 cm,均方根误差为64 cm。该数据产品可以用于冻土与气候变化、冻土碳循环、冻土生态水文过程、冻土工程等相关研究。
彭小清
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。
牛富俊
该数据集是支持《Advances in Climate Change Research》论文(Ran等,2022)分析的部分数据,包括第三极区域(青藏高原、帕米尔高原和天山)多年冻土、季节冻土和未冻土的当前(2000-2016年)范围、多年冻土年平均地温和活动层厚度的1960s以来每十年的变化,以及论文中的第三极范围数据。
冉有华, 李新, 车涛, 王冰泉, 程国栋
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。冻土温度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:冻土温度模拟误差小于1℃。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的多年冻土温度,并预测了SSP2-4.5气候变化情景下未来多年冻土温度。
牛富俊
该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
本数据集包含基于观测约束的本世纪末(2080-2099年)中排放情景(SSP245)下青藏高原地区冻土分布。研究参考Chadburn et al.(2017)运用通过空间关系约束时间变化这一思路,利用现阶段青藏高原1km分辨率冻土分布图(Zou et al. 2017)和CMFD 气候数据集,建立青藏高原冻土分布与温度梯度的数值关系。在此基础上,结合CMIP6 SSP245情景下10个地球系统模式模拟的未来青藏高原温度预测集合平均,模拟本世纪末(2080-2099年)中排放情景下青藏高原地区冻土分布。可为评估未来气候变化背景下冻土退化的速度和时空特征提供数据支持。
魏建军, 刘丹, 汪涛
多年冻土退化通过降低基底强度、增加物质运移和热融活动频率等方式威胁基础设施的安全,导致其维护成本增加、使用寿命缩短,造成现实的经济损害。 该数据集是发表在Communications Earth & Environment (2022,3,238.doi: 10.1038/s43247-022-00568-6)关于青藏高原未来多年冻土退化经济损害的论文数据。该数据集包括了预测的青藏高原空间分辨率为1km的未来多年冻土危险等级数据和论文中图2、3、4的原始数据。
冉有华, 程国栋, 董元宏, 李新
根据泛北极潜在热融灾害(主要为热融滑坡)诱发因素,包括:气温(冻融环境)、降雨、积雪、土壤类型、地形地貌及地下含冰量等,基于地球大数据资源库提供的基础数据,采用机器学习方法(逻辑回归、随机森林、人工神经网络、支持向量机等),以目前已有解译北半球热融滑坡为训练样本,最终获得了泛北极的热融灾害易发性(发生概率)区划图。根据驱动因素敏感性发现气候因素(气温与降雨)对热融灾害的发生于分布贡献度最大,坡度因素贡献度次之,含冰量与辐射也具有较高的贡献。
牛富俊
对于泛北极或北半球,通常使用冻融指数来预测多年冻土分布,活动层厚度及气候变化信息等。因此,结合加拿大气象中心提供的分辨率为25km月平均雪深数据,该数据基于CRUNCEP冻融指数利用雪深修正后的冻结数模型预测了泛北极多年冻土分布范围。考虑到雪深数据始于1998年而冻融指数止于2015年。所以模拟了2000-2015年的冻土分布状况。尽管国际雪冰数据中心(NSIDC)提供的泛北极多年冻土图也可以反映多年冻土的分布范围,但不能反映气候变暖背景下2000年之后的多年冻土分布状况。通过模拟得到的2000 – 2015年泛北极多年冻土面积为19.96×106 km2。和已有国际雪冰数据中心提供的多年冻土分布图不一致的地方主要位于岛状多年冻土区。
牛富俊
若尔盖湿地观测点始海拔 3435 米,位于四川省若尔盖县花湖湿地(102°49′09″E, 33°55′09″N),下垫面为典型的高寒泥炭沼泽湿地,植被、水体和泥炭层发育良好。本数据集为2017-2019年若尔盖湿地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射。
孟宪红, 李照国
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
三极多年冻土范围原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原的永久冻土和季节冻土的空间范围,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土范围数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,多年冻土用1表示,季节冻土用0表示。
叶爱中
北极多年冻土区作为全球碳库的重要组成部分,是全球气候变化最敏感的区域之一。北极地区变暖的速度是全球平均速度的两倍,引发北极多年冻土的快速变化。1982-2015北半球不同类型多年冻土区NDVI变化数据集,时间分辨率为每5年一期,覆盖范围为整个环北极国家,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北半球多年冻土对生态系统的调节服务功能,其所有数据进行了质量控制。
王世金
1)青海省湟水流域典型工业园土壤环境质量数据,为区域工业活动导致的土壤污染管控提供基础支撑; 2)数据来源为湟水流域典型区域土壤样品,样品采集后迅速放入-4℃冰箱保存送尽快至实验室,经前处理后完成相关参数的检测; 3)样品采集、转运过程符合规范,实验检测过程遵照相关标准严格执行结果,因土壤环境各因素的变化,该结果仅针对本次调查结果; 4)该数据可用于对区域土壤污染状况、重金属风险评估等内容进行分析;
王凌青
本数据集是基于青藏高原多年冻土分布区1114个样点的土壤调查数据,重点考虑了古气候在估算青藏高原土壤碳储量中的重要作用,在综合了气候(古气候和现代气候条件)、植被、土壤(土层厚度和土壤理化属性等)和地形等因素后,通过机器学习算法重新评估得到的青藏高原3m深度土壤碳储量。结果集表明当前陆地生态系统模型普遍低估了青藏高原冻土碳库大小,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。因此,未来模型模拟土壤碳循环应该将古气候的作用考虑在内。
丁金枝
本数据提供了2014-2101青藏高原二氧化碳气体排放数据,数据来源于CMIP6 ScenarioMIP 对比计划,选取了三种未来社会经济共享路径下的二氧化碳排放:SSP126, SSP370, SSP585。对青藏高原格点提取了2014-2101年数据,数据精度为0.9x1.25度。txt文件中包括三列,第一列是纬度,第二列是经度,第三列是年二氧化碳通量,单位为kg m-2 s-1。本数据集提供的青藏高原不同未来情景下二氧化碳排放,可为站点观测,数值模拟提供参考。
吕雅琼
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
冻结(融化)指数是指一年内小于(大于)0 ℃的所有温度的和。地表冻结(融化)指数是度量地表冻结(融化)时间和能力大小的重要参数,可反映区域的冻融环境特征。基于MODIS-LST数据产品,来源于国家青藏高原科学数据中心,采用MATLAB语言读取三江流域内数据,结合冻结(融化指数)公式计算,获得了三江流域外动力环境因素地表冻结、融化指数空间分布数据集(2003~2015平均),该数据集可较好的反映三江流域地表冻结、融化的能力,从而反映区域的冻融环境特征,为冻融滑坡的发育提供重要的外动力环境因素。
刘明浩
本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。
刘磊, 罗栋梁, 王磊
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
热融滑塌是由于富冰多年冻土退化而导致的一种类似滑坡的热喀斯特地貌。一旦形成,它们会以较高的速度(几米至几十米每年)溯上坡方向扩张,垮塌的土壤和岩石会流向周边,对基础设施构成威胁,并可能释放冻土中的碳。已有研究表明,热融滑塌广泛地分布于多年冻土区,并且最近十多年它们的数量和影响范围显著增加。青藏工程走廊跨越多年冻土区,是连接内地与西藏的动脉,但已有研究对热融滑塌的分布和影响的认识还十分缺乏。为了对整个青藏工程走廊的热融滑塌进行详细和全面的调查,本研究使用深度学习方法以及目视解译和实地验证,识别并勾勒了2019 年该区域的热融滑塌。使用的高分辨率遥感影像是PlanetScope微小卫星影像,分辨率为 3 米,有4个波段,完全覆盖了整个工程走廊的多年冻土区( 约54,000 平方公里)。该方法结合深度学习的高效性及自动化和人工解译的可靠性,对整个区域进行接近十次的迭代制图,最大程度地避免漏检和误检。目视解译根据其地貌特征和时间变化(2016至2020)检查深度学习算法自动勾绘的热融滑塌。结果中包含 875 个热融滑塌的边界,以及它们的一些属性,包括编号、经纬度、置信概率和时间等信息。该结果为研究青藏工程走廊多年冻土退化以及相应的影响提供了一个重要的基准数据集。
夏卓璇, 黄灵操, 刘琳
监测段位于楚玛尔河高平原(DK1043+500-DK1067+022),断面处路基下冻土为以多冰冻土、饱冰冻土及厚层地下冰为主,属于低温基本稳定多年冻土亚区(Ⅲ区)。该段共布设5个监测断面,其中素土路基断面2个,块石基底路基、块石护坡路基、U型块石路基断面各1个。每个断面布置4-5个测试孔,每孔测试深度15~20m,段内最深孔为40m,监测的主要要素为多年冻土地温,监测周期为2003至2021年。该数据基于冻土工程国家重点实验室自制的测温探头通过现场监测获得。每年现场通过CR3000型数据采集仪收集各监测断面的监测数据,通过一定的质量控制包括剔除传感器未完全适应土壤环境时的数据和传感器出现故障造成的系统误差。经过矫正的最终数据以excel文件存储。获取的现场数据经多人复查审核,数据完整性和准确度达到95%以上。该数据可为块石路基长期稳定性评估提供参考。
牛富俊
该数据集主要内容为青藏公路G109、青藏铁路以及新藏公路G219国道沿线地质灾害、路面病害以及桥涵病害调查数据集,调查时间为2020年8月12日--2020年8月19日,2021年7月26日--2021年8月15日。调查对象为南亚通道及喜马拉雅山区工程。调查的病害类型主要包括冻融诱发的地质灾害(落石、危岩体、泥石流冲沟及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及桥涵病害等等。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面、桥涵以及地质灾害各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解南亚通道及喜马拉雅山区工程冻融病害情况及相关研究提供依据。
李国玉
最大冻结深度是季节冻土热状态的重要指标,由于全球变暖,季节冻土的最大冻结深度不断下降。发布了中国西北五省、西藏和周边地区1961-2020年每10年的最大冻结深度数据集,空间分辨率为1km。该数据集是采用2001-2010年的最大冻结深度实测数据和空间环境变量构建的支持向量机回归模型,模拟了1961-2020年中国西北、西藏和周边地区的最大冻结深度。验证结果表明:支持向量机回归模型具有良好的空间泛化能力,最大土壤冻结深度的预测值和实测值之间具有较高的一致性,1980s、1990s、2000s和2010s四个时期模拟结果的决定系数分别为0.77、0.83、0.73和0.71。预测结果的百分位区间表明,模拟结果具有良好的稳定性。基于该数据集,发现我国西北地区最大土壤冻结深度不断下降,其中,青海的下降速率最快,平均每十年下降0.53 cm。该数据集为中国西北、高山亚洲和第三极等地区季节冻土的研究提供数据支持。
王冰泉, 冉有华
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
本数据通过GIPL1.0冻土空间分布模型,结合已有基础数据,包括气候变化,土壤类型,以及植被数据,对川藏线的多年冻土以及季节冻土特性进行了模拟,数据结果为500m空间分辨率栅格,包括了多年冻土区最大化深度以及季节冻土区最大冻结深度。该结果通过了钻孔数据验证。数据日期为2001-2019,2041-2060,2081-2100(20年平均值),其中水体以及冰川区域通过掩膜排除在计算范围以外(空值)。气候数据为月均值,其他数据在模拟的过程中保持不变,空间分辨率都为500m。数据来源与“WoeldClim:https://www.worldclim.org/,DEM以及植被土壤:https://data.tpdc.ac.cn/zh-hans/”根据不同数据源的特点对原始资料进行真实性、一致性的检查及规范化处理;利用冻土模型对多年冻土及季节冻土进行计算模拟,输出结果为地温和活动层(最大冻深),模拟结果与钻孔地温进行验证。最终空间数据集通过ArcGIS成图。制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。数据可为后期开展川藏工程走廊冻结(融化)深度相关研究工作提供必要的数据支撑。
尹国安
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
孔维栋
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
青藏高原是陆地表面中低纬度地区多年冻土分布最为广泛的地区,大量研究表明,青藏高原多年冻土的存在和变化强烈影响着区域乃至全球的水文、生态和气候系统。但由于青藏高原高寒缺氧、生存条件恶劣、交通极不便利,数据资源非常贫乏,尤其是在极高海拔的多年冻土区,这种状态不仅严重地限制了对于该区域气候、环境和冻土等诸多方面的研究和理解,也严重限制了适应于该区域遥感反演算法的研发、各类陆面乃至于地球系统模型的模拟和改进,而且也限制了该区域经济发展和国家战略的规划。过去几十年,我们研究团队在青藏高原多年冻土区建立了综合观测网络,展开了对多年冻土地温、活动层水热以及气象因子的系统监测,形成了能够基本覆盖青藏高原高平面的、与多年冻土有关的多要素观测数据。本数据集包括在这一区域的6个自动气象观测站、12个活动层及84个钻孔长时间序列观测数据,主要观测要素包括气象(气温、降水、风速、比湿等)、土壤水热、活动层厚度及冻土温度等观测数据。各观测数据在收集和处理过程中都已经过了严格的质量控制。本数据集面向多学科背景的科学家发布(如:冰冻圈、水文学、生态学和气象科学等),将进一步促进青藏高原水文模型、陆面过程模型和气候模型的验证、发展和改进。
赵林, 胡国杰, 邹德富, 吴通华, 杜二计, 刘广岳, 肖瑶, 李韧, 庞强强, 乔永平, 吴晓东, 孙哲, 幸赞品, 盛煜, 赵拥华, 史健宗, 谢昌卫, 汪凌霄, 王翀, 程国栋
广义的季节冻土包括非多年冻土区的季节冻结层和多年冻土区的季节融化层。季节冻土的面积可达80%以上,占据北半球大部分陆地面积。季节冻土的冻融循环过程对地-气水热交换、地表能量平衡、地表水文过程、生态系统、碳循环、农业生产、工程建设等具有非常重要的影响。基于站点观测资料、CRU资料,利用Stefan方程,计算祁连山多年冻土区活动层厚度和季节冻土区土壤冻结深度的空间分布(1971-2000年的30年平均值)。研究结果有助于进一步探讨祁连山季节冻土变化与气候变化之间的物理机制、冻土区生态-水文过程等研究。
彭小清, 张廷军
本数据集是祁连山区多年冻土地下冰分布数据。本数据借助已有的钻孔资料,结合第四纪祁连山区沉积类型分布资料与土地利用数据,对多年冻土上限至地下 10 m 深度范围内的的地下冰分布进行估算。本数据集采用了祁连山区共计374个钻孔资料,并考虑了第四纪沉积类型对地下冰储量的标示作用,具有一定的可靠性。本数据对于祁连山区多年冻土、水资源等方面的研究有一定的科学价值。此外,对于整个青藏高原地下冰储量估算具有一定的推广价值。
盛煜
该数据包含黄河源区地温数据,以黄河源区38 个多年冻土钻孔及其实测地温数据为基础构建黄河源区多年冻土分布的主体模型,并对阳坡地形多年冻土地温值进行单独调整,建立阳坡地形条件下的微调模型,对黄河源区地温进行模拟分析。参与模型构建的多年冻土钻孔实测地温值与年均地温值均具有较好的一致性,所得到的模型用于黄河源区多年冻土年均地温空间分布格局的模拟具有较大的可行性。该数据可用于黄河源区多年冻土分布、多年冻土变化等方面的研究。
盛煜, 李静
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
黄河源多年冻土分布数据是基于黄河源区多年冻土年均地温模型而建立的,以年平均地温0℃作为划分季节冻土和多年冻土的标准和界限。与目前可利用的黄河源区冻土分布图有青藏高原冻土图(1:300万)和青藏高原多年冻土本底调查项目完成的青藏高原冻土分布图(1:100万)相比,该数据集基于黄河源区实测数据,与实测数据有更高的吻合性,冻土分布图的模拟精度也最高。该数据集可用于黄河源区多年冻土分布研究的验证,也可用于冻土环境等方面的研究。
盛煜, 李静
本数据集来源于论文:Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. 数据中包含新评估的青藏高原3m深度土壤有机碳库格点数据及相应的R代码,格点数据空间分辨率为0.1°。 以往对青藏高原土壤碳库的评估多以现代气候、植被等特性为根据,未考虑古气候条件、土层厚度等因素的影响。本研究中,研究人员综合考虑了古气候和现代气候条件、土层厚度和土壤理化属性、植被和地形等因素,通过机器学习算法重新评估了青藏高原3m深度土壤碳库。新评估得到的青藏高原土壤碳储量为36.6 Pg C (38.9-34.2 Pg C),约为陆地生态系统模型模拟均值的3倍(11.5±4.2 Pg C)。同时,研究指出,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。 数据中包含以下字段: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
丁金枝, 汪涛
该数据包含黄河源区多年冻土层的地下冰分布数据。数据基于黄河源区地貌及其成因类型,冻土地温分布、结合岩性组成、含水率等 105 个钻孔的野外实测数据,估算了黄河源区多年冻土层 3. 0~10. 0 m 深度范围内地下冰储量,该数据结果中黄河源区每立方米土体平均含冰量和赵林等计算青藏高原冻土地下冰储量估计值( 已将折算的未冻水含量计入) 接近。该数据对于冻土预报、评价多年冻土区景观稳定性以及因环境变化引起的地形、植被和水文的区域性变化评价也具 有十分重要的意义。
盛煜, 王生廷
环北极不同类型多年冻土区NDVI变化数据集(1982-2015),时间分辨率为每5年一期,覆盖范围为整个环北极国家, 空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础, 使用GIS方法和生态学方法结合, 量化了北半球多年冻土对生态系统的调节服务功能, 其所有数据进行了质量控制。利用环北极不同类型多年冻土区划,借助1982-2015年期间NDVI值,使用GIS方法,计算了1982-2015年期间环北极不同类型多年冻土区的NDVI变化,形成了“1982-2015环北极不同类型多年冻土区NDVI变化数据集”。同时,综合多个文献,对其数据进行了质量控制。
王世金
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
本数据包括祁连山连续多年冻土、不连续多年冻土以及季节冻土的空间分布图。本数据基于野外科学考察、道路勘察钻孔点并结合前人所获得的多年冻土下界海拔资料,回归得出多年冻土下界海拔公式。其中,DEM数据采用美国太空总署(NASA)和国防部国家测绘局(NIMA)联合测量的SRTM(Shuttle Radar Topography Mission)数据,数据转化为GCS·WGS·1984坐标系后,重采样成100 m的空间分辨率,采用以此数据海拔3 000 m作为界定祁连山区范围。借助ArcGIS平台在DEM数据的支持下,模拟出分辨率为100 m的祁连山区多年冻土分布图。回归得出祁连山区多年冻土分布下界模型,并通过了显著性检验。通过已有的548个钻孔数据点检验,多年冻土区验证正确率为90.11%。本数据可用于祁连山地下冰含量以及多年冻土退化释放水量估算,并对祁连山生态环境整治和生态文明建设具有一定借鉴意义。
盛煜
数据包含了黄河源区黄河干流和4条支流的径流成分资料。在2014-2016,春季,夏季和冬季,通过测试黄河源区几种冻土区河流水样的氡同位素和氚同位素含量,根据河道水流的质量守恒模型和同位素平衡模型,对河道流量进行径流成分解析,初步划分了地下水补给和地下冰融水在河川径流中的占比。模型计算得到的数据质量较好,相对误差在20%以内,通过了与以往实测数据的对比分析。该数据可为未来水文模型的参数率定及水文径流过程的模拟提供帮助。
万程炜
祁连山典型冻土区水文地质要素数据集内容主要包括黑河上游西支流域内的地下水类型、富水性(单孔涌水量或单泉流量)、主要河流与支流、泉水(下降泉、泉群、大泉、矿泉分布)、钻孔(承压水钻孔、潜水钻孔、自流水钻孔分布)、断裂带(压性断裂、张性断裂)、角度不整合界线、平行不整合界线、黑河上游西支流域边界线、季节性冻土区与多年冻土区分界线、现代冰川及沼泽分布。本水文地质要素数据集可为寒区水文生态过程和水文地质环境提供背景资料。本数据来自四幅1:20万水文地质图(祁连幅、野牛沟幅、祁连山幅、肃南幅)的矢量化并重新对地下水类型进行整合。分辨率较高,数据可为泛第三极江河源区水土资源演变和环境变化等研究提供背景资料。
孙自永
黑河上游八宝河流域2013-2014年各层(0 cm, 4 cm, 10 cm, 20 cm, 40 cm, 80 cm, 120 cm, 160 cm, 240 cm, 400 cm, 600 cm, 900 cm, 1200 cm, 1400 cm, 1500 cm) 1km 逐小时土壤温度、湿度和含冰量数据,本数据由SHAW模型模拟产生,并基于地面站点和无线传感器网络观测的土壤温湿度数据进行了验证,结果较好,可用于上游冻土水热过程相关研究。
张艳林
中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏公路沿线部分的研究区域主要是青藏公路自西大滩到那曲约700公里长、公路两侧20~30公里宽的区域,这一区域广泛分布着多年冻土。青藏公路沿线基础数据库包含以下类型的数据: 1、冰冻圈数据。包括:积雪深度分布。 2、自然环境与资源。包括: 基础地质:第四纪地质(Quatgeo) 3、公路沿线冻土钻孔观测数据(Borehole):青藏公路沿线200个钻孔探测资料。 工程地质剖面图(CAD):岩性分布、含水量、颗分资料等 4、青藏公路沿线地区冰川质量平衡分布模型(Model):预测冻土格网数据。 青藏公路沿线图形数据包括13幅的比例尺为1:250000图幅;格网尺寸为100×100m。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏公路.DOC”。
李新
分别于2014年4月和2016年5月在黄河源区(黄河沿以上)采集的21个湖泊(7个非热融湖塘,14个热融湖塘),在加拿大维多利亚Inno Tech Alberta实验室通过Delta V Advantage Dual Inlet/HDevice system 测试氢氧同位素丰度,同位素丰度表达为δ(‰)形式(相对于维也纳平均海水丰度) 测试误差:δ18O: 0.1‰,δD: 1‰ ,数据还包括通过Google earth engine中 Landsat 2017影像数据提取得到的湖泊面积和湖泊流域面积。 通过的长期气象资料数据(多年平均气温,多年平均相对湿度,多年平均年降水量,多年平均年水面蒸发量),基于水量平衡及同位素质量守恒模型(模型参数也包括在数据集中)对湖泊水文信息,包括蒸发/入流比例(E/I)和湖泊流域产水量(WY)进行估算。
万程炜
本数据集包括三江源地区环境介质中主要持久性有机污染物的浓度和分布数据。样品采集于2018年5月,采样范围包括三江源自然保护区及其周边地区。样品经索氏提取-净化-浓缩等前处理步骤制备后,由气相色谱-离子阱质谱进行测定。目标化合物包括有机氯农药、多氯联苯、多环芳烃等。样品前处理过程中,添加Mirex和PCB-30作为回收率标志物。样品测试时的内标为PCNB和PCB-209。经计算样品回收率普遍在60%-101%之间。
龚平, 王小萍
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
黑河上游山区山体阴影时空分布图(2018年),本数据基于STRM数字高程模型和太阳位置变化(http://www.esrl.noaa.gov/gmd/grad/solcalc/azel.html),采用通视分析计算得到,空间分辨率为100m,时间分辨率为15分钟,可用于冻土、积雪、生态水文和遥感研究等领域。利用黑河上游多个自动气象站观测的太阳辐射进行综合对比分析,对计算结果进行了精度验证,可以准确地捕捉气象站位置山体阴影的时空变化,其中时间误差20分钟以内。
张艳林
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E、AMSR2被动微波亮温数据,以及MODIS光学遥感数据,利用冻融判别式算法和冻融降尺度算法制备的全球近地表冻融状态(空间分辨率:0.05°;时间跨度:2002-2017年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰, 张子谦
多年冻土约占青藏高原陆地面积的46%,是冰冻圈重要组成部分。但是,由于多年冻土埋藏较深,其分布难以通过地表观测直接获取,因此,研究多年冻土分布往往依赖于地面观测。该数据集基于多种观测方法,包括:钻孔勘察、坑探、土壤温度和探地雷达,获取青藏高原多年冻土分布点尺度信息,并归档形成首个青藏高原多年冻土存在性数据集(v1.0)。数据集包含626条信息,覆盖不同海拔、坡向和气候状态。同时,根据观测方式和数据质量,对数据的置信度进行了分类,为不同研究目的使用该数据提供了参考。该数据为多年冻土分布提供了本底信息,可用于多年冻土模拟验证和未来气候变暖下多年冻土退化评估。
曹斌, 张廷军, 吴青柏, 盛煜, 赵林, 邹德富
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
冻土是指温度低于或等于0℃且含有冰的土体或岩体,它对温度特别敏感,其物理力学性质会随温度的变化而产生显著变化。冻土的冻胀变形和融化沉降变形是最为常见的冻土灾害,它们的发生主要是因冻土工程活动使冻土固有的温度发生变化而引起的,所以保护冻土主要也是保护冻土温度,让其维持在工程活动之前最为接近的状态。获取冻土地温的主要方法是埋设测温电缆,通过CR3000的数据采集功能获得测温电缆不同时间的阻值变化,利用标定系数和电阻值的对应关系计算出温度值。依据冻土对温度的敏感特征,地温的变化情况,能够反应气候的变化情况,也能够结合其他要素分析出人类活动对冻土的稳定性的影响机理及程度,从而来指导后期工程活动中的冻土保护措施的升级改造等。
陈继
青藏高原是世界上中低纬度地区冻土面积最大的地区。目前已编制了一些多年冻土分布图,但由于资料来源有限、标准不明确、验证不充分、高质量空间数据集的缺乏,使得在TP上绘制多年冻土分布图存在较大的不确定性。 本数据集基于改进的中分辨率成像光谱仪(MODIS)地表温度(LSTs)2003-2012年1km晴空MOD11A2 (Terra MODIS)和MYD11A2(Aqua MODIS)产品(reprocessing version 5)的冻融指数及冻土顶部温度(TTOP)模型模拟了多年冻土的分布,生成了青藏高原冻土图。并通过野外地面观测、土壤含水率和容重等各种调查数据对该图进行了验证。 冻土属性主要包括:季节性冻土(Seasonally frozen ground)、多年冻土(Permafrost)、非冻土区域(Unfrozen ground)。 数据集为青藏高原冻土研究提供了更详细的冻土分布资料和基础资料。
赵林
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
钻孔位置在加格达奇向北约7km附近(50.47°N, 124.23°E)一个湿地里面,地表泥炭土层较厚约80cm。 钻孔直径为40mm,深度为20~60 m的钻孔,利用冻土工程国家重点实验室研制的热敏电阻(精度±0.05℃)对中俄原油管道沿线冻土地温进行监测,获取地层信息、冻土地温、地表温度、活动层厚度等关键冻土特征参数。测温孔有三个,一个是管道附近T1(距离一线管中心2m),一个是天然孔T2(距离一线管中心约16.6m),第三个孔T3,距离管道二线约50m。2014年10月~2017年10月期间,T1和T2进行每年一次的人工监测。T3从2018年6月12日开始连续自动化监测。至此,三个孔得到连续时间序列的地温数据。通过该地温监测资料可分析中俄原油管道沿线多年冻土的发育特征、历史演化趋势及其对气候变化的响应过程。
李国玉
活动层是多年冻土的主要特征之一,暖季融化,冷季冻结,呈季节性变化,其中活动层地温变化剧烈程度将直接影响冻土温度的变化,从而影响冻土稳定性。该数据集的监测站点位于92°E,35°N,海拔4600米,监测场地地势平坦,植被类型为高寒草甸,监测仪器为DT500系列数据采集仪,分别在地表以下10cm、20cm、40cm、80cm、160cm的5个深度上进行地温监测,该数据集的时间间隔为1天,是通过30分钟一次的数据的平均值,监测期间数据稳定、连续。通过结合土壤热通量和土壤水分等资料开展活动层的热变化过程以及变化机理等科学课题
活动层是多年冻主要特征之一,暖季融化,冷季冻结,呈季节性变化,其中所含水分的多少会对冻土的温度有一定影响,从而影响冻土稳定性。该数据集主要是活动层水分数据,监测站点位于92°E,34°N,海拔4600米,监测场地地势平坦,植被类型为高寒草甸,北麓河气象站采用的水分探头为CS615,分别在地表以下10cm、20cm、40cm、80cm、160cm的5个深度上进行水分监测,该数据集的时间间隔为1天,是通过30分钟一次的数据的平均值,监测期间数据稳定、连续。通过结合土壤热通量和冻土地温等资料可以开展活动层的热变化过程以及变化机理等科学课题。
陈继
本数据集为2014-2018青藏高原西大滩(XDT)气象要素数据集。气象要素包括:2m空气温度(℃)、2m空气湿度(%)、降水(mm)、2m风速(m/s)、总辐射(w/㎡)。降水观测采用T200B。数据来源于中国科学院青藏高原冰冻圈观测研究站位于青藏线西大滩的综合监测场(场点编号:XDTMS),数据根据原始监测数据(监测频率为每半小时一次)计算日均值,缺测部分或不满足计算日均值条件的以NAN表示。数据经过人工整理及校验,缺测时段为2017-7-7至2017-10-3。
赵林
总览我国现有的各种冻土图,他们在分类系统、数据源、制图方法等方面存在较大的不同,这些图件代表了我国在过去的半个世纪中对多年冻土分布的阶段认识。为了更加合理地反映我国冻土的分布,并统计出我国冻土分布面积,我们在分析现有冻土图的基础上,制备了一个新的冻土分布图,该图融合了现有多个冻土图和青藏高原多年冻土分布的模型模拟结果,统一了全国各部分数据的获取时间,反映了2000年左右我国冻土的分布状况。 新的冻土图中,各种冻土类型的分布按以下原则确定: 1. 底图采用中国冻土区划及类型图(1:1000万)(邱国庆 等,2000)。青藏高原以外的高山多年冻土和瞬时冻土的分布沿用原图;季节冻土和瞬时冻土、瞬时冻土和非冻土的界限也均无变化。青藏高原地区的多年冻土和东北地区高纬度多年冻土的分布则采用以下结果更新。 2. 青藏高原区域的高海拔多年冻土和高山多年冻土分布采用南卓铜 等(2002)的模拟结果进行更新。该模型利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布,再以年平均地温0.5C作为多年冻土与季节冻土的界限。 3. 东北地区的高纬度多年冻土分布采用了Jin et al. (2007)的最新结果。 Jin et al. (2007)通过对过去几十年东北年平均降水和土壤水分的分析,认为东北地区的多年冻土南界与年平均气温的关系在过去几十年中没有发生实质变化。 4. 其他地区的高山多年冻土分布采用中国冰川冻土沙漠图(1:400万)(中国科学院寒区旱区环境与工程研究所,2006)更新。 在分类系统方面,现有的冻土图对多年冻土的划分多采用连续性标准,但对连续性的具体定义有很大不同。很多研究表明,连续性标准是一个与尺度密切相关的概念,并不适合于高海拔多年冻土的分类(程国栋, 1984; Cheng et al., 1992),且该标准无法应用于以网格为基本模拟单元的多年冻土分布模型。在本文中,我们放弃了连续性标准,而以制图单元(网格或区域)内是否存在冻土为标准。新的冻土图将我国冻土分为几下几类: (1)高纬度多年冻土 (2)高海拔多年冻土 (3)高原多年冻土 (4)高山多年冻土 (5)中深季节冻土:可能达到的最大季节冻结深度>1m; (6)浅季节冻土:可能达到的最大季节冻结深度<1m; (7)瞬时冻土:保存时间不足一个月 (8)非冻土。 数据具体说明,请参考说明文档及引用文献。
冉有华, 李新
本数据集包含从2004年到2009年青藏公路沿线6个位置的多年冻土活动层厚度和地表景观观测数据。 数据来源于科技基础性工作专项“青藏高原多年冻土本地调查”,观测方法为土壤温度法,通过布设活动层测温探头,进行多年冻土区活动层厚度的年际变化观测,并对观测数据进行计算整编。
赵林
基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。
牛富俊, 尹国安
地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。
牛富俊, 尹国安
该数据集是青藏工程走廊多年冻土段三个气象站近50年来的年平均气温和降雨量变化趋势。从记录数据可以看到,年平均气温整体在经历着缓慢的升高过程。五道梁和沱沱河在过去的56年内年平均气温的变化有很好的相关性(r2=0.83)。在1957年,五道梁、沱沱河年平均气温分别为-6.6和-5.1℃,到2012年,两站的气温分别为-4.6和-3.1℃,总的增温大约是2℃左右,年平均增温率为0.03-0.04℃。五道梁和安多在过去的47年内年平均气温的变化也有很好的相关性(r2=0.84)。在1966年,安多年平均气温为-3.0℃,到2012年,气温增加到了-1.8℃,总的增温大约是1.2℃,年平均增温为0.02-0.03℃。年平均气温的增加在五道梁和沱沱河略快于安多。 然而,从降雨量来看,降雨的变化比气温变化更加波动。五道梁和沱沱河在过去56年内年降雨量的变化相关性较差(r2=0.60)。在1957年,五道梁、沱沱河年降雨量分别为302和309mm,到2012年,两站的年降雨量分别为426和332mm,五道梁有124mm的降雨增加,年降雨量增加率约为2mm,沱沱河年降雨量增加率仅为0.4mm。五道梁和安多在过去的47年内年降雨量的变化相关性也较差(r2=0.35)。在1966和2012年,安多年平降雨量分别为354和404mm,总的增加大约是50mm,年平均增加率为1mm。年降雨量的增加在五道梁是最快的。 三个气象站代表了青藏工程走廊多年冻土段的气候变化情况。从整体的气温和降雨量的变化趋势来看,过去50年,走廊北部和中部的气温增速较快,超过全球平均0.02℃/a的水平(IPCC)。北部的降雨量增加也较明显,尤其是五道梁气象站的降雨增速非常明显。气温变暖和降雨增加都对加速多年冻土的空间变化产生较大影响,是导致青藏高原多年冻土退化的主导因素。
牛富俊, 林战举, 尹国安
应用GIPL2.0冻土模型模拟了青藏工程走廊的平均地温分布图。该模型需要合成时间序列的温度数据集,按照时间跨度为2010-2015,数据应用空间分辨率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对年平均地温模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性。模拟结论得出在高山区域,如昆仑山,唐古拉山,年平均地温小于-2.0 °C;而在较高的河谷地带,如坨坨河的年平均地温高于0 °C;对于高平原地区(如北麓河盆地和五道梁盆地)的年平均地温较高在-2.0 °C ~ 0 °C范围内。如果以年平均地温小于0 °C为多年冻土存在与否的阈值,则青藏工程走廊的多年冻土占整个区域的78.9%。同时根据地温的不同将青藏工程走廊的冻土类型分为低温稳定多年冻土、低温基本稳定多年冻土、高温不稳定多年冻土和高温极不稳定多年冻土。
牛富俊, 尹国安
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E和AMSR2被动微波亮温数据,利用冻融判别式算法制备的全球近地表冻融状态(空间分辨率:0.25°;时间跨度:2002-2019年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰
青藏高原被称为“世界第三极”和“亚洲水塔”,一个较为准确的青藏高原冻土图对当地寒区工程和环境建设有着重要意义。因此,为了满足工程和环境需求,通过多源遥感数据(高程、MODIS地表温度、植被指数和土壤水分)建立决策树对青藏高原多年冻土和季节冻土进行了划分。数据为栅格格式,DN=1为多年冻土;DN=2为季节冻土。 其中高程数据来自于1kmx1km的中国DEM(Digital Elevation Model)数据集(http://westdc.westgis.ac.cn);地表温度是欧阳斌等通过 Sin-Linear 法拟合后的日平均地表温度年均值。文中在MODIS 地表度产品用Sin-Linear 法拟合估算出日平均地表温度基础上,为了缩小与已有冻土图前后时间差异,以研究区2003年地表温度做为冻土分类的信息源;植被信息采用Aqua 和Terra 星的2003 年 16 天合成产品数据(MYD13A1 和 MOD13A1)提取植被指数值;土壤水分值根据 2003 年 AMSR-E观测质量较好的5月份升轨数据得到。因此,基于以上数据信息,以1:300万青藏高原冻土图和1:400万<<中国冰川冻土沙漠图>>为先验信息得到决策树的分类阈值,从而对青藏高原的冻土类型进行分类。 最后,对于分类结果利用西昆仑山、改则和温泉的调查冻土图以及其它已有的青藏高原冻土图进行了验证和对比,统计结果显示基于多源遥感信息的青藏高原冻土图多年冻土面积占青藏高原总面积的42.5%(111.3 × 104 km²),季节冻土面积占青藏高原总面积的53.8% (140.9 × 104 km²),这个结果与先验图(1:300万青藏高原冻土图)具有较好的一致性。此外,文中基于不同冻土图之间的总体精度和Kappa系数表明:不同方法编制或模拟的青藏高原冻土图在空间分布格局上基本保持一致,而分类不一致的地方大部分在多年冻土与季节冻土的分界边缘地带。
牛富俊, 尹国安
青藏高原过去的冻土图主要基于稀少的台站气温观测,采用基于连续性的分类系统。本数据集利用地理加权回归模型(GWR)综合了经过时空重建的MODIS地表温度、叶面积指数、积雪比例和国家气象信息中心多模型土壤水分预报产品、融合了4万多个气象站降水观测和FY2卫星观测的降水产品及152个气象台站2000-2010年的多年平均气温观测数据,模拟得到了青藏高原过去1公里分辨率的多年平均气温数据,利用多年冻土热条件分类系统,将多年冻土分为非常冷(Very cold)、冷(Cold)、凉(Cool)、暖(Warm)、非常暖(Very warm)和可能解冻(Likely thawing)几个类型。该图显示,扣除湖泊和冰川,青藏高原多年冻土总面积约为107.19万平方公里。验证表明该图具有更高的精度。可为今后冻土工程规划设计与环境管理等提供支持。
冉有华, 李新
高亚洲地区是中纬度全球变化敏感区和研究的热点区域,其境内湖泊星罗棋布,湖冰冻融参数是全球变化的关键敏感因子之一。由于冰水介电常数差异大,高重访率且对天气不敏感的星载被动微波遥感可实现湖冰冻融状态的快速监测。本数据集依据微波辐射计像元内湖泊和陆表的面积比例,应用混合像元分解方法获取了像元(亚像元级)的湖泊亮温信息,实现高亚洲地区被动微波遥感亚像元级湖冰冻融监测,并采用多种被动微波数据,共计获得高亚洲区域 2002-2016 年 51 个中大型时间序列湖泊亮温数据和冻融状态信息。以无云MODIS 光学产品为验证数据,在高亚洲不同区域,选取可可西里湖、达则错、库赛湖等三个大小不一的湖泊进行冻融判别验证,结果表明微波和光学遥感所获取的湖冰冻结和融化参数具有较高的一致性,其相关系数可达0.968 与 0.987。本数据集包含湖泊的时间序列亮温值和湖冰冻融参数,可进一步对湖泊开展特征参数反演,以及提升对高亚洲地区的湖冰冻融的理解,为高亚洲地区气候、环境变化以及高亚洲对全球气候变化响应模型提供数据基础。数据集由 2 部分数据组成,其一为 2002-2016 年高亚洲区域 51个湖泊的被动微波遥感亮温数据集,观测时间间隔为 1~2 天;其二是由湖泊亮温数据集判断所获得的湖冰冻融数据集。文件名分别为:最邻近法与像元分解的湖泊亮温数据 .zip(12 MB),2002–2016 高亚洲 51 个湖泊湖冰冻融数据集 .xls(0.1 MB)
邱玉宝
南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
李新武, 梁雷
2008年全国遥感年平均地表温度和冻结指数是冉有华等(2015)基于MODIS Aqua/Terra逐日四次的5公里瞬时地表温度数据产品,发展了新的年平均地表温度和冻结指数估计方法,该方法利用上下午LST观测的平均获取日平均地表温度,方法的核心是如何恢复LST产品的缺失数据,该方法有两个特点:(1)将遥感观测到的日地表温度变幅进行了空间插值,利用插值获取的空间连续的日地表温度变幅,使一天只有一次的卫星观测数据得到应用;(2)利用了一个新的缺失数据时间序列滤波方法,即基于离散余弦变换的惩罚最小二乘回归方法。 验证表明,年平均地表温度与冻结指数的精度只与原始MODIS LST的精度有关,即保持了MODIS LST产品的精度。可用于冻土制图及相关资源环境应用。
冉有华, 李新
在黑河上游多年冻土区域,选取11个有编号的典型钻孔,使用钻孔温度插值计算得出多年冻土及季节冻土厚度值,设定0度等温面为多年冻土和季节冻土下底板。 数据包括钻孔编号、经纬度、冻土厚度及冻土类型。
张廷军, 高坛光
冻融指数作为冻土研究的重要参数,对于冻土研究具有十分重要的意义,同时也是研究气候变化的重要指标。冻融指数是日气温或地表土壤温度在给定时间的累计值。 本数据是根据中国气象局在黑河流域布设的15个常规气象台站逐日的地表温度的观测资料,计算得到的各气象台站1960-2006年逐年的地表冻融指数。
张廷军
1.数据概述: 此数据集是祁连站2011年1月1日—2011年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
韩春坛, 宋耀选, 刘俊峰, 阳勇, 卿文武, 刘章文
1.数据概述: 此数据集是祁连站2013年1月1日—2013年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 韩春坛, 宋耀选, 刘俊峰, 阳勇, 刘章文
1.数据概述: 此数据集是祁连站2012年1月1日—2012年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 宋耀选, 韩春坛, 刘俊峰, 阳勇
本数据是通过黑河上游源区内外九个站点0cm处的地表温度通过空间插值,结合冻土模拟方法获得。图中1代表季节性冻土,2代表多年冻土。 本数据为TIFF格式,投影采用WGS-84,空间范围为37.7263N-39.0976N,98.5769E-101.1608E。
葛社民
2007年10月17日夜间,在阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。阿柔样方2为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在阿柔样方2,采用ML2X土壤水分速测仪获取土壤体积含水量;采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
环北极多年冻土和地下冰分布图是1997年国际冻土协会联合多个国家的冻土研究机构编制的目前唯一的一个国际冻土数据图。该冻土图描述了北半球(20°N to 90°N)多年冻土的分布与属性及地下冰条件。通过连续性划分冻土范围,将多年冻土划分为连续(90-100%)、不连续(50-90%)、零星(10-50%)、岛状(<10%)和无多年冻土。最上层20米的地下冰丰度通过冰的体积百分比划分(>20%, 10-20%, <10% 和 0%)。发布的ESRI-shape文件源于1:10,000,000的纸质地图(Brown et al. 1997)。该图可用于全球气候变化、极地资源开发和环境保护等相关领域。中国部分如图例所示。更多信息参考文献(Heginbottom et al. 1993)。 数据的格式为ESRI shapefiles,可通过美国冰雪数据中心下载(http://nsidc.org/data/ggd318.html)。
O. Ferrians, J. A. Heginbottom, E. Melnikov
2007年10月18日,在阿柔样方1和阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:17BJT。阿柔样方1和阿柔样方2均为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 在每个采样点,采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
该数据是黑河流域2000年—2009年,季节冻土冻融状态的月平均空间分布。基于黑河流域2000—2009年栅格化气温数据,将地表土壤的冻融状态划分为三种:不冻结状态,不完全冻结状态,完全冻结状态。完全冻结是指土壤在全月都处于完全冻结状态。不完全冻结是指土壤在月内冻结天数≤30天但≥1天,且土壤有冻融循环出现。不冻结是指土壤在本月不发生冻结。数据以栅格的形式,可以在ArcGis中打开,1代表不冻结状态,2代表不王全冻结状态,3代表完全冻结
彭小清, 张廷军
冻土图的编制依据包括:(1)冻土野外调查、勘探实测资料;(2)航空像片和卫星影像判译;(3)TOPO30 1km分辨率的地面高程数据;(4)气温和地面温度资料。其中,青藏高原的冻土分布采用了南卓铜等(2002)的研究结果,利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布。以年平均地温0.5 ℃作为多年冻土与季节冻土的界限,参考《中国冰雪冻土图》(1:400万)(施雅风 等,1988)划定高原不连续多年冻土与高原岛状多年冻土的界限;另外,参考东北大小兴安岭多年冻土分区图(郭东信 等,1981)、环北极多年冻土和地下冰分布图(Brown et al. 1997)和最新野外实测资料,对东北的多年冻土界线进行了修订;西北高山多年冻土界线多采用了《中国冰雪冻土图》(1:400万)(施雅风 等,1988)中划定的界线。 根据该数据统计的中国多年冻土区面积约1.75×106km2,约占中国领土的18.25%。其中,高山多年冻土0.29×106km2,约占我国领土面积的3.03%。 更多信息参考《1:400万中国冰川冻土沙漠图》说明书(中国科学院寒区旱区环境与工程研究所,2006)
王涛
字段说明: Num_code(冻土属性编码) Combo(冻土属性) extent(冻土范围) content(含冰量) 属性对照如下: (1)冻土属性对照表: 0 (No information ) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden ) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden ) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden ) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden ) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden ) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden ) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden ) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes ) 24 - o (Ocean/inland seas ) 25 - ld (Land) (2)冻土范围对照表 c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches ( 0 - 10%) (3)含冰量对照表 h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%)
National Snow and Ice Data Center(NSIDC), 吴立宗
该图是施雅风先生和米德生编制的《中国1:400万冰雪冻土图》,地图编制的工作地图为《中华人民共和国汉语拼音版》,保留了地图的水系及山脉注记,并增加了一些山文注记。编绘冻土图的依据是:冻土调查和勘探的实际资料、遥感资料的判译、影响冻土形成和分布的气温条件及地形特征。冰川雪线高度以等值线表示其变化趋势。季节性积雪与季节性结冰是综合依据了全国1600个气象观测台站资料和多年考察结果以等值线加注记和符号表示、冷生(冰缘)现象选择具有代表性且经实地观察到的给予示意性的表示。多年冻土和非多年冻土范围界线,依据考察现场资料经计算而编制成图,其综合程度较高(特普费尔著,1982) 《中国冰雪冻土图》反映了冰川、积雪、冻土及冰缘分布的规模、类型、特征,以及在科学研究上的价值和生产实践中利用、防治的前景。表现了我们三十年来在冰川冻土科研方面的成果。
施雅风, 米德生
该数据集对扫描图《中国400万冰雪冻土图》(施雅风、米德生,1988)进行几何校正,然后通过数字化,综合考虑海拔和纬度,结合多年冻土的连续性将冻土划分为:高纬度多年冻土的大片多年冻土、岛状融区多年冻土和岛状多年冻土;高海拔多年冻土和高山多年冻土(包括阿尔泰山,天山,祁连山、横断山、喜马拉雅山及中国东部的太白山、黄岗梁和长白山)和高原多年冻土(青藏高原),高原多年冻土(青藏高原)又分为大片多年冻土和岛状多年冻土;季节冻土、瞬时冻土和无冻土区。
施雅风, 米德生
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件