基于CMIP6模式资料(模式列表见表1)估算了历史时期(1990-2014年)和未来(2046-2065年)不同气候变化情景下(包括SSP126, SSP245, SSP585),青藏高原和环北极地区冻土分布、冻土活动层厚度,以及冻土区陆地生态系统碳通量(总初级生产力GPP和生态系统碳源汇NEP)数据,空间分辨率为1°×1°。其中冻土分布利用空间约束方法 (Chadburn et al., 2017),基于现阶段不同温度梯度下冻土出现的概率,结合地球系统模式模拟的未来温度变化,估算未来气候变暖情景下的冻土分布。活动层厚度变化方面,利用现阶段基于遥感估算的活动层厚度对温度变化的敏感性约束地球系统模式模拟的活动层厚度变化,从而校正模型对冻土活动层厚度模拟的误差。未来冻土区碳通量为地球系统模式模拟结果的多模式集合平均值。 模拟结果表明,未来气候变化情景下青藏高原冻土将显著退化,随着未来温度升高,连续多年冻土区表现为碳源,但升温促进植被生长,在非连续冻土区碳汇能力增强。与青藏高原类似,未来环北极地区冻土也将普遍退化,未来气候变暖促进北极地区植被增长,从而增强区域碳汇。
汪涛, 刘丹, 魏建军
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
1982-2015年北极多年冻土变化生态调节价值数据集,时间分辨率为1982、2015两期以及两期变化率,覆盖范围为整个环北极苔原区,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北极多年冻土对生态系统的调节服务价值,单价参考了剔除降水和雪水当量后的活动层厚度与NDVI变化相关性(0.35)及其草地生态系统服务价值(苔原生态系统服务单价以1/3草地生态系统服务价值为标准)。
王世金
基于SBAS-InSAR技术获取的地表季节性形变以及基于变分模态分解校正后的ERA5-Land时空多层土壤湿度数据反演青藏高原五道梁多年冻土区域的活动层厚度,数据时间范围为2017-2020年,空间分辨率为1km。该数据产品可用于研究青藏高原多年冻土区域活动层厚度变化以及分析其与气候变化以及水循环、能量循环的相互作用关系,对于了解多年冻土退化状况、高原环境演化以及冻土退化对生态和气候的影响具有重要意义。
陆平, 郝彤, 李荣兴
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。活动层厚度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:活动层厚度模拟误差小于50cm。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的活动层厚度,并预测了SSP2-4.5气候变化情景下未来活动层的厚度。
牛富俊
青藏工程走廊北起格尔木,南至拉萨,其穿越青藏高原核心区域、是连通内地与西藏的重要通道。冻土温度不仅是研究多年冻土区地面热状态的重要指标,而且是冻土工程建设中需考虑的关键因子。GIPL1.0的核心是Kudryavtesv方法,该模型考虑了雪盖、植被和不同土层的热物理性质,但尹国安等发现相比Kudryavtesv方法,引入TTOP模型后精度更高,因此结合冻结/融化指数对模型做了改进,通过实地监测数据验证发现:冻土温度模拟误差小于1℃。因此利用改进后的GIPL1.0 模型模拟了青藏工程走廊的多年冻土温度,并预测了SSP2-4.5气候变化情景下未来多年冻土温度。
牛富俊
该数据集是通过中国高分辨率对地观测中心获取了青藏工程走廊地区的高分1号卫星遥感影像资料,经过多光谱与全色波段的融合处理,得到了空间分辨率2 m的影像数据,在获取地面植被信息过程中,采用面向对象的计算机自动解译与人工目视解译相结合的分类技术,面向对象分类技术是集合邻近像元为对象来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据空间、纹理和光谱信息来分割和分类,以高精度的分类结果或者矢量输出。在实际操作中,借助 eCognition 软件对影像进行自动提取,主要过程为影像分割、信息提取和精度评价。经过与实地定点调查验证,整体提取精度大于90%。
牛富俊
根据泛北极潜在热融灾害(主要为热融滑坡)诱发因素,包括:气温(冻融环境)、降雨、积雪、土壤类型、地形地貌及地下含冰量等,基于地球大数据资源库提供的基础数据,采用机器学习方法(逻辑回归、随机森林、人工神经网络、支持向量机等),以目前已有解译北半球热融滑坡为训练样本,最终获得了泛北极的热融灾害易发性(发生概率)区划图。根据驱动因素敏感性发现气候因素(气温与降雨)对热融灾害的发生于分布贡献度最大,坡度因素贡献度次之,含冰量与辐射也具有较高的贡献。
牛富俊
对于泛北极或北半球,通常使用冻融指数来预测多年冻土分布,活动层厚度及气候变化信息等。因此,结合加拿大气象中心提供的分辨率为25km月平均雪深数据,该数据基于CRUNCEP冻融指数利用雪深修正后的冻结数模型预测了泛北极多年冻土分布范围。考虑到雪深数据始于1998年而冻融指数止于2015年。所以模拟了2000-2015年的冻土分布状况。尽管国际雪冰数据中心(NSIDC)提供的泛北极多年冻土图也可以反映多年冻土的分布范围,但不能反映气候变暖背景下2000年之后的多年冻土分布状况。通过模拟得到的2000 – 2015年泛北极多年冻土面积为19.96×106 km2。和已有国际雪冰数据中心提供的多年冻土分布图不一致的地方主要位于岛状多年冻土区。
牛富俊
若尔盖湿地观测点始海拔 3435 米,位于四川省若尔盖县花湖湿地(102°49′09″E, 33°55′09″N),下垫面为典型的高寒泥炭沼泽湿地,植被、水体和泥炭层发育良好。本数据集为2017-2019年若尔盖湿地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射。
孟宪红, 李照国
三极多年冻土活动层厚度融合了两套数据产品,主要参考数据为通过GCM模型模拟生成的1990-2015年活动层厚度逐年值。本数据集的数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。参考校正数据集为利用统计和机器学习(ML)方法模拟得到2000-2015年的活动层厚度平均值,数据格式为GeoTIFF格式,空间分辨率为0.1°,数据单位为m。本研究工作通过对两套数据进行数据格式转换、空间插值、数据校正等后处理操作,生成了NetCDF4格式的多年冻土活动层厚度数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为1990-2015年,数据单位为cm。
叶爱中
三极多年冻土区碳通量原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据包括青藏高原多年冻土区NPP和GPP等表征碳通量的参数,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区NPP和GPP数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,数据单位为gc/m2yr。
叶爱中
三极多年冻土活动层厚度原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原冻土区活动层厚,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土区活动层厚度,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,单位为cm。
叶爱中
三极多年冻土范围原始数据通过GCM模型模拟生成,原始数据来源于http://www.cryosphere.csdb.cn/portal/metadata/5abef388-3f3f-4802-b3de-f4d233cb333b。本数据集包含了未来2046-2065年间不同典型浓度路径(Representative Concentration Pathways,RCP)下的未来情景预估,包括RCP2.6情景、RCP4.5情景、RCP8.5情景。原始数据内容是青藏高原的永久冻土和季节冻土的空间范围,数据格式为NetCDF4格式,数据空间分辨率为0.5°,时间分辨率为年。本研究工作通过对其进行数据格式转换、空间插值等后处理操作,生成了NetCDF4格式的多年冻土范围数据,其空间分辨率为0.1°,时间分辨率为年,时间范围为2046-2065年,多年冻土用1表示,季节冻土用0表示。
叶爱中
北极多年冻土区作为全球碳库的重要组成部分,是全球气候变化最敏感的区域之一。北极地区变暖的速度是全球平均速度的两倍,引发北极多年冻土的快速变化。1982-2015北半球不同类型多年冻土区NDVI变化数据集,时间分辨率为每5年一期,覆盖范围为整个环北极国家,空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态学方法结合,量化了北半球多年冻土对生态系统的调节服务功能,其所有数据进行了质量控制。
王世金
土壤冻结深度(SFD)是评估冻土区水资源平衡、地表能量交换和生物地球化学循环变化所必需的,是冰冻圈气候变化的重要指标,对季节性冻土和多年冻土都至关重要。 本数据是基于Stefan方程,对CanEMS2 (RCP 45和RCP85)、GFDL-ESM2M (RCP26、RCP45、RCP60和RCP85)、HadGEM2-ES(RCP26、RCP45和RCP85)、IPSL-CM5A-LR(RCP26、RCP45、RCP60和RCP85)、MIROC5(RCP26、RCP45、RCP60和RCP85)和NorESM1-M(RCP26、RCP45、RCP60和RCP85)等多模型不同情景下,利用逐日气温的预测数据及E-factor数据,获得2007-2065年空间分辨率为0.25度,青藏高原区域年平均土壤冻结深度数据集。
潘小多, 李虎
冻结(融化)指数是指一年内小于(大于)0 ℃的所有温度的和。地表冻结(融化)指数是度量地表冻结(融化)时间和能力大小的重要参数,可反映区域的冻融环境特征。基于MODIS-LST数据产品,来源于国家青藏高原科学数据中心,采用MATLAB语言读取三江流域内数据,结合冻结(融化指数)公式计算,获得了三江流域外动力环境因素地表冻结、融化指数空间分布数据集(2003~2015平均),该数据集可较好的反映三江流域地表冻结、融化的能力,从而反映区域的冻融环境特征,为冻融滑坡的发育提供重要的外动力环境因素。
刘明浩
本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。本数据集是以UEA-CRU与UDEL提供的长时间尺度(1901-2016年)温度计算的冻结指数作为输入数据,通过Stefan经验公式计算雅鲁藏布江流域土壤冻结深度,并插值模拟输出的30年尺度平均土壤冻结深度数据集。
刘磊, 罗栋梁, 王磊
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
热融滑塌是由于富冰多年冻土退化而导致的一种类似滑坡的热喀斯特地貌。一旦形成,它们会以较高的速度(几米至几十米每年)溯上坡方向扩张,垮塌的土壤和岩石会流向周边,对基础设施构成威胁,并可能释放冻土中的碳。已有研究表明,热融滑塌广泛地分布于多年冻土区,并且最近十多年它们的数量和影响范围显著增加。青藏工程走廊跨越多年冻土区,是连接内地与西藏的动脉,但已有研究对热融滑塌的分布和影响的认识还十分缺乏。为了对整个青藏工程走廊的热融滑塌进行详细和全面的调查,本研究使用深度学习方法以及目视解译和实地验证,识别并勾勒了2019 年该区域的热融滑塌。使用的高分辨率遥感影像是PlanetScope微小卫星影像,分辨率为 3 米,有4个波段,完全覆盖了整个工程走廊的多年冻土区( 约54,000 平方公里)。该方法结合深度学习的高效性及自动化和人工解译的可靠性,对整个区域进行接近十次的迭代制图,最大程度地避免漏检和误检。目视解译根据其地貌特征和时间变化(2016至2020)检查深度学习算法自动勾绘的热融滑塌。结果中包含 875 个热融滑塌的边界,以及它们的一些属性,包括编号、经纬度、置信概率和时间等信息。该结果为研究青藏工程走廊多年冻土退化以及相应的影响提供了一个重要的基准数据集。
夏卓璇, 黄灵操, 刘琳
该数据集主要内容为青藏公路G109、青藏铁路以及新藏公路G219国道沿线地质灾害、路面病害以及桥涵病害调查数据集,调查时间为2020年8月12日--2020年8月19日,2021年7月26日--2021年8月15日。调查对象为南亚通道及喜马拉雅山区工程。调查的病害类型主要包括冻融诱发的地质灾害(落石、危岩体、泥石流冲沟及碎屑坡)、路面裂缝类病害、松散类病害、坑槽类病害、路基变形类病害以及桥涵病害等等。采用人工调查的方法,观察各类病害破损情况,按要求详细记录路面、桥涵以及地质灾害各种破坏类型的数量(范围)、破坏程度及所在位置。该数据集可为全面了解南亚通道及喜马拉雅山区工程冻融病害情况及相关研究提供依据。
李国玉
最大冻结深度是季节冻土热状态的重要指标,由于全球变暖,季节冻土的最大冻结深度不断下降。发布了中国西北五省、西藏和周边地区1961-2020年每10年的最大冻结深度数据集,空间分辨率为1km。该数据集是采用2001-2010年的最大冻结深度实测数据和空间环境变量构建的支持向量机回归模型,模拟了1961-2020年中国西北、西藏和周边地区的最大冻结深度。验证结果表明:支持向量机回归模型具有良好的空间泛化能力,最大土壤冻结深度的预测值和实测值之间具有较高的一致性,1980s、1990s、2000s和2010s四个时期模拟结果的决定系数分别为0.77、0.83、0.73和0.71。预测结果的百分位区间表明,模拟结果具有良好的稳定性。基于该数据集,发现我国西北地区最大土壤冻结深度不断下降,其中,青海的下降速率最快,平均每十年下降0.53 cm。该数据集为中国西北、高山亚洲和第三极等地区季节冻土的研究提供数据支持。
王冰泉, 冉有华
新的北半球多年冻土图利用基于规则的GIS模型融合了新的多年冻土范围(Ran et al., 2021b)、气候条件、植被结构、土壤和地形条件以及富冰和富含有机质多年冻土图(yedoma)。与之前的多年冻土图不同,根据多年冻土与气候和生态系统的复杂交互作用,我们将北半球多年冻土分为五种类型:气候驱动型、气候驱动型/生态系统改造型、气候驱动型/生态系统保护型、生态系统驱动型和生态系统保护型。除去冰川和湖泊,北半球这五种类型的面积分别为3.66×106km2、8.06×106km2、0.62×106km2、5.79×106km2和1.63×106km2。北半球81%的多年冻土区受到生态系统的改造、驱动或保护,表明生态系统在北半球多年冻土稳定性中的主导作用。气候驱动的多年冻土只占北半球多年冻土区的19%,主要分布在高北极和高山地区,如青藏高原。
冉有华, M. Torre Jorgenson, 李新, 金会军, 吴通华, 李韧, 程国栋
泛第三极区域数据集呈现海量、零散等特征,现有数据集种类较多,覆盖范围广,涉及水文、生态、大气以及灾害等多个领域,但这些数据集来自不同平台,在尺度、数据格式等方面各不相同,数据的可利用性较差,不利于科研人员展开泛第三极地区的科学研究,同时也无法发挥出这些数据集的巨大潜力。本研究采用来自多个数据平台的最新数据使用数据集成、数据融合等集成方法生产更高质量和更新年份的泛第三极综合数据集。根据不同来源、不同分辨率的数据,对这些数据进行质量控制,根据数据科学内容进行集成。对部分数据,利用数据融合技术,融合不同来源的数据,产生数据质量更高、年份更新的创新性数据产品,更好地服务于陆面过程模型等研究中。泛第三极数据集根据自然数据和社会经济数据分别采用泛第三极流域边界和泛第三极国家边界获取数据,统一采用罗宾逊(Robinson)投影格式。获得了多源集成的包含基础数据集、冰冻圈数据集、水文大气数据集、生态数据集、灾害数据集和人文地理数据集共六类数据集。 (1)基础数据集包含边界数据集、30米土地覆被数据、植被功能数据、30米SRTM数字高程数据和HWSD土壤质地数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极基础数据集数据文档.docx”。 (2)冰冻圈数据集包含冻土数据集、冰川分布数据、冰湖分布数据和积雪深度数据。其中,冻土数据集又包含冻土分布数据、冻土水热分带数据、冻土指数数据和冻土表面粗糙度数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极冰冻圈数据集数据文档.docx”。 (3)水文大气数据集包含河流湖泊数据集、蒸散发数据集和大气数据集。河流湖泊数据集包含河流数据和湖泊数据,蒸散发数据集包含MODIS蒸散发数据、土壤蒸发数据、水体冰雪蒸发数据和冠层截流蒸发数据,大气数据集包含ERA5-Land再分析数据集中的地表热辐射数据、地表太阳辐射数据、降水数据、气压数据、温度数据和风场数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极水文大气数据集数据文档.docx”。 (4)生态数据集包含总初级生产力数据和植被蒸腾数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极生态数据集数据文档.docx”。 (5)灾害数据集包含滑坡数据和地震区划数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极灾害数据集数据文档.docx”。 (6)人文地理数据集则包含交通道路数据、铁路机场数据、人口密度数据、主要国家人均GDP数据、收入水平数据和世界遗产分布数据。详情请查看元数据页面附件信息中或数据中的文档“泛第三极人文地理数据集数据文档.docx”。 泛第三极综合数据集将为相关研究者提供便利,避免相关研究在获取数据和处理数据的过程中重复劳动,节省研究者宝贵的时间,并且在陆面过程模型、水文模型和生态模型等科学研究中起到重要作用,促进泛第三极地区科学研究的发展,为泛第三极地区的科学研究提供数据支撑。
李虎, 潘小多, 李新, 盖春梅, 冉有华
本数据通过GIPL1.0冻土空间分布模型,结合已有基础数据,包括气候变化,土壤类型,以及植被数据,对川藏线的多年冻土以及季节冻土特性进行了模拟,数据结果为500m空间分辨率栅格,包括了多年冻土区最大化深度以及季节冻土区最大冻结深度。该结果通过了钻孔数据验证。数据日期为2001-2019,2041-2060,2081-2100(20年平均值),其中水体以及冰川区域通过掩膜排除在计算范围以外(空值)。气候数据为月均值,其他数据在模拟的过程中保持不变,空间分辨率都为500m。数据来源与“WoeldClim:https://www.worldclim.org/,DEM以及植被土壤:https://data.tpdc.ac.cn/zh-hans/”根据不同数据源的特点对原始资料进行真实性、一致性的检查及规范化处理;利用冻土模型对多年冻土及季节冻土进行计算模拟,输出结果为地温和活动层(最大冻深),模拟结果与钻孔地温进行验证。最终空间数据集通过ArcGIS成图。制定数字加工操作规范。加工过程中,规定操作人员严格遵守操作规范,同时由专人负责质量审查。经多人复查审核,其数据完整性、逻辑一致性、位置精度、属性精度、接边精度、现势性均符合国家测绘局制定的有关技术规定和标准的要求,质量优良可靠。数据可为后期开展川藏工程走廊冻结(融化)深度相关研究工作提供必要的数据支撑。
尹国安
本数据包括北极Barrow地区不同年龄冻土土壤细菌物种组成数据,可用来探索土壤微生物对冻土消融的响应及不同年龄冻土的土壤细菌差异;本数据为扩增子测序结果,引物为Earth Microbiome Project 标准引物 515F–806R,扩增范围为V4区,测序平台为Illumina Hiseq PE250; 数据通过质量控制,至少达到Q30水平;本数据用于发表于Cryospshere文章Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, https://doi.org/10.5194/tc-14-3907-2020。本数据还可用于三极土壤微生物比较分析研究
孔维栋
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
整编了目前北半球数量最多的年平均地温(1002个)和活动层厚度(452个)地面观测数据,利用四种统计学习模型融合这些地面观测与多源遥感等数据产品,集合模拟得到了代表2000-2016年北半球多年冻土区年平均地温、活动层厚度、多年冻土发生概率和多年冻土水热分带数据集,空间分辨率为1公里,验证表明具有更高的精度。可为北半球多年冻土区的工程规划、设计、环境模拟与评价等提供数据支持,也可作为北半球多年冻土现状的数据基准,评估未来多年冻土变化及其影响。
冉有华, 李新, 程国栋, 车金星, Juha Aalto, Olli Karjalainen, Jan Hjort, Miska Luoto, 金会军, Jaroslav Obu, Masahiro Hori, 俞祁浩, 常晓丽
青藏高原是陆地表面中低纬度地区多年冻土分布最为广泛的地区,大量研究表明,青藏高原多年冻土的存在和变化强烈影响着区域乃至全球的水文、生态和气候系统。但由于青藏高原高寒缺氧、生存条件恶劣、交通极不便利,数据资源非常贫乏,尤其是在极高海拔的多年冻土区,这种状态不仅严重地限制了对于该区域气候、环境和冻土等诸多方面的研究和理解,也严重限制了适应于该区域遥感反演算法的研发、各类陆面乃至于地球系统模型的模拟和改进,而且也限制了该区域经济发展和国家战略的规划。过去几十年,我们研究团队在青藏高原多年冻土区建立了综合观测网络,展开了对多年冻土地温、活动层水热以及气象因子的系统监测,形成了能够基本覆盖青藏高原高平面的、与多年冻土有关的多要素观测数据。本数据集包括在这一区域的6个自动气象观测站、12个活动层及84个钻孔长时间序列观测数据,主要观测要素包括气象(气温、降水、风速、比湿等)、土壤水热、活动层厚度及冻土温度等观测数据。各观测数据在收集和处理过程中都已经过了严格的质量控制。本数据集面向多学科背景的科学家发布(如:冰冻圈、水文学、生态学和气象科学等),将进一步促进青藏高原水文模型、陆面过程模型和气候模型的验证、发展和改进。
赵林, 胡国杰, 邹德富, 吴通华, 杜二计, 刘广岳, 肖瑶, 李韧, 庞强强, 乔永平, 吴晓东, 孙哲, 幸赞品, 盛煜, 赵拥华, 史健宗, 谢昌卫, 汪凌霄, 王翀, 程国栋
广义的季节冻土包括非多年冻土区的季节冻结层和多年冻土区的季节融化层。季节冻土的面积可达80%以上,占据北半球大部分陆地面积。季节冻土的冻融循环过程对地-气水热交换、地表能量平衡、地表水文过程、生态系统、碳循环、农业生产、工程建设等具有非常重要的影响。基于站点观测资料、CRU资料,利用Stefan方程,计算祁连山多年冻土区活动层厚度和季节冻土区土壤冻结深度的空间分布(1971-2000年的30年平均值)。研究结果有助于进一步探讨祁连山季节冻土变化与气候变化之间的物理机制、冻土区生态-水文过程等研究。
彭小清, 张廷军
本数据集是祁连山区多年冻土地下冰分布数据。本数据借助已有的钻孔资料,结合第四纪祁连山区沉积类型分布资料与土地利用数据,对多年冻土上限至地下 10 m 深度范围内的的地下冰分布进行估算。本数据集采用了祁连山区共计374个钻孔资料,并考虑了第四纪沉积类型对地下冰储量的标示作用,具有一定的可靠性。本数据对于祁连山区多年冻土、水资源等方面的研究有一定的科学价值。此外,对于整个青藏高原地下冰储量估算具有一定的推广价值。
盛煜
基于青藏高原土壤温湿度观测网玛曲站点建立的地基L波段微波辐射计观测系统(ELBARA-III,由欧洲航空局提供),本数据集囊括了水平和垂直极化的L波段亮温数据,地表及以下不同层土壤湿度和温度数据,地表通量(如感热、潜热、碳通量),气象要素数据(如降水、上下行长波/短波辐射、空气温度和湿度、气压)以及植被叶面积指数LAI和土壤性质等辅助数据。此多年尺度的数据集可用于提高对陆面过程、微波辐射过程的理解,验证SMOS和SMAP卫星亮温观测和土壤湿度反演结果,校验微波辐射传输模型中的假设条件,验证陆面模式输出以及再分析资料,反演土壤物理性质,量化陆-气间的水、碳、能量交换,并将帮助定量化地球系统模型中参数化方案的偏差和不确定性,从而提出相应改进方案。 ELBARA-III双极化亮温数据可通过测量的辐射计电压和校准的内部噪声温度计算得到。该数据质量可靠,其质量控制主要通过:1)对辐射计输出的原始电压数据(以800Hz采样频率)进行直方图检验,利用统计指标过滤射频干扰对ELBARA-III微波信号数据的影响;2)检查辐射计进行天空辐射测量时两天线端口的电压值是否相似,天线电缆有无损耗;3)分析仪器内部温度、主动冷源温度和环境温度;4)分析不同入射角度的双极化亮温的特点。 - 时间分辨率:30分钟 - 空间分辨率:入射角为40°~ 70°,间隔为5°,观测覆盖范围为3.31 m^2~ 43.64 m^2 - 测量精度:亮温,1 K;土壤水分,0.001 m^3 m^-3;土壤温度,0.1 °C - 单位:亮温,K;土壤水分,m^3 m^-3;土壤温度,°C /K
Bob Su, 文军
黄河源多年冻土分布数据是基于黄河源区多年冻土年均地温模型而建立的,以年平均地温0℃作为划分季节冻土和多年冻土的标准和界限。与目前可利用的黄河源区冻土分布图有青藏高原冻土图(1:300万)和青藏高原多年冻土本底调查项目完成的青藏高原冻土分布图(1:100万)相比,该数据集基于黄河源区实测数据,与实测数据有更高的吻合性,冻土分布图的模拟精度也最高。该数据集可用于黄河源区多年冻土分布研究的验证,也可用于冻土环境等方面的研究。
盛煜, 李静
环北极不同类型多年冻土区NDVI变化数据集(1982-2015),时间分辨率为每5年一期,覆盖范围为整个环北极国家, 空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础, 使用GIS方法和生态学方法结合, 量化了北半球多年冻土对生态系统的调节服务功能, 其所有数据进行了质量控制。利用环北极不同类型多年冻土区划,借助1982-2015年期间NDVI值,使用GIS方法,计算了1982-2015年期间环北极不同类型多年冻土区的NDVI变化,形成了“1982-2015环北极不同类型多年冻土区NDVI变化数据集”。同时,综合多个文献,对其数据进行了质量控制。
王世金
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏公路沿线部分的研究区域主要是青藏公路自西大滩到那曲约700公里长、公路两侧20~30公里宽的区域,这一区域广泛分布着多年冻土。青藏公路沿线基础数据库包含以下类型的数据: 1、冰冻圈数据。包括:积雪深度分布。 2、自然环境与资源。包括: 基础地质:第四纪地质(Quatgeo) 3、公路沿线冻土钻孔观测数据(Borehole):青藏公路沿线200个钻孔探测资料。 工程地质剖面图(CAD):岩性分布、含水量、颗分资料等 4、青藏公路沿线地区冰川质量平衡分布模型(Model):预测冻土格网数据。 青藏公路沿线图形数据包括13幅的比例尺为1:250000图幅;格网尺寸为100×100m。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏公路.DOC”。
李新
本数据集采用SMMR(1979-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB_37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为三江源区域,空间分辨率为25.067525 km,EASE Grid投影方式,以Geotif格式存储。像元数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表水体。因为该数据集中所有tif文件描述的是三江源国家公园范围,所以这些文件的行列号信息是不变的,摘录如下(其中cellsize单位为m): ncols 52 nrows 28 cellsize 25067.525 nodata_value 0
晋锐
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
高质量的多年冻土图是多年冻土环境效应研究和寒区工程应用的基础数据。该数据集是在系统整编青藏高原2005-2015年共237个钻孔位置年变化深度年平均地温测量数据基础上,利用支持向量回归模型融合了这些地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料, 集合模拟了代表2005-2015年的青藏高原1km分辨率年平均地温分布图。10折交叉验证表明,模拟的年平均地温的均方根误差约为0.75 °C, 偏差约0.01 °C。基于高海拔多年冻土稳定性分类体系,利用年平均地温,划分了多年冻土的热稳定类型。数据显示,青藏高原多年冻土面积约115.02 (105.47-129.59) *104 km2, 其中, 极稳定型(<-5.0 °C)、稳定型(-3.0~-5.0 °C)、亚稳定型(-1.5~-3.0 °C)、过渡型(-0.5~-1.5 °C)和不稳定型(>-0.5 °C)多年冻土面积分别为0.86*104 km2, 9.62*104 km2, 38.45*104 km2, 42.29*104 km2和23.80*104 km2。该数据集可用于寒区工程的规划、设计及生态规划与管理等,并可作为多年冻土现状的数据基准,用于评估未来青藏高原多年冻土的变化。关于该数据更详细的方法等信息可参考《中国科学:地球科学》的论文(Ran et al., 2020)。
冉有华, 李新
本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。本数据是通过建立雅鲁藏布江流域WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。
王磊
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E、AMSR2被动微波亮温数据,以及MODIS光学遥感数据,利用冻融判别式算法和冻融降尺度算法制备的全球近地表冻融状态(空间分辨率:0.05°;时间跨度:2002-2017年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰, 张子谦
多年冻土约占青藏高原陆地面积的46%,是冰冻圈重要组成部分。但是,由于多年冻土埋藏较深,其分布难以通过地表观测直接获取,因此,研究多年冻土分布往往依赖于地面观测。该数据集基于多种观测方法,包括:钻孔勘察、坑探、土壤温度和探地雷达,获取青藏高原多年冻土分布点尺度信息,并归档形成首个青藏高原多年冻土存在性数据集(v1.0)。数据集包含626条信息,覆盖不同海拔、坡向和气候状态。同时,根据观测方式和数据质量,对数据的置信度进行了分类,为不同研究目的使用该数据提供了参考。该数据为多年冻土分布提供了本底信息,可用于多年冻土模拟验证和未来气候变暖下多年冻土退化评估。
曹斌, 张廷军, 吴青柏, 盛煜, 赵林, 邹德富
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
使用Sentine-1 SAR 数据对青藏高原黑河流域野牛沟冻土进行监测。采用2014~2018年野牛沟区域Sentine-1 SAR影像,利用了基于分布式雷达目标的小基线集时序InSAR(DSs-SBAS)冻土形变监测方法,结合SAR后向散射系数,MODIS地表温度和Stefan模型,估算了研究区活动层厚度。结果表明活动层厚度在0.8米至6.6米之间,平均值约为3.3米。对开展大范围、高分辨监测具有十分重要的意义。
江利明
全球气候变暖及人类活动导致青藏高原大面积冻土退化、热融滑塌等问题,严重影响了多年冻土区工程建设和生态环境。以青藏高原黑河流域俄博岭的冻土为研究区,基于高分辨率卫星影像,利用机器学习面向对象分类技术提取研究区内热融滑塌信息,结果表明2009年至2019年研究区热融滑塌数量从12条增至16条,总面积由14718.9平方米增至28579.5平方米,增加了近两倍。高空间分辨率遥感与面向对象分类方法相结合在冻土热融滑塌监测中具有广阔的应用前景。
江利明
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
冻土是指温度低于或等于0℃且含有冰的土体或岩体,它对温度特别敏感,其物理力学性质会随温度的变化而产生显著变化。冻土的冻胀变形和融化沉降变形是最为常见的冻土灾害,它们的发生主要是因冻土工程活动使冻土固有的温度发生变化而引起的,所以保护冻土主要也是保护冻土温度,让其维持在工程活动之前最为接近的状态。获取冻土地温的主要方法是埋设测温电缆,通过CR3000的数据采集功能获得测温电缆不同时间的阻值变化,利用标定系数和电阻值的对应关系计算出温度值。依据冻土对温度的敏感特征,地温的变化情况,能够反应气候的变化情况,也能够结合其他要素分析出人类活动对冻土的稳定性的影响机理及程度,从而来指导后期工程活动中的冻土保护措施的升级改造等。
陈继
青藏高原是世界上中低纬度地区冻土面积最大的地区。目前已编制了一些多年冻土分布图,但由于资料来源有限、标准不明确、验证不充分、高质量空间数据集的缺乏,使得在TP上绘制多年冻土分布图存在较大的不确定性。 本数据集基于改进的中分辨率成像光谱仪(MODIS)地表温度(LSTs)2003-2012年1km晴空MOD11A2 (Terra MODIS)和MYD11A2(Aqua MODIS)产品(reprocessing version 5)的冻融指数及冻土顶部温度(TTOP)模型模拟了多年冻土的分布,生成了青藏高原冻土图。并通过野外地面观测、土壤含水率和容重等各种调查数据对该图进行了验证。 冻土属性主要包括:季节性冻土(Seasonally frozen ground)、多年冻土(Permafrost)、非冻土区域(Unfrozen ground)。 数据集为青藏高原冻土研究提供了更详细的冻土分布资料和基础资料。
赵林
本数据集包括了青藏高原祁连山地区自从1980年到2013年以来的逐月的地表平均温度数据。本数据集来源于欧洲中期天气预报中心的第三代ERA-Interim再分析资料,该数据集采用四维变分分析,结合卫星数据误差校正等技术,实现了再分析资料的质量提升。数据集的空间分辨率为0.125°。本数据集是祁连山地区过去30多年以来地表温度网格数据集,可为祁连山地区的气候变化、生态系统发展演替及相关地球系统模型的研究提供数据基础。
吴晓东
钻孔位置在加格达奇向北约7km附近(50.47°N, 124.23°E)一个湿地里面,地表泥炭土层较厚约80cm。 钻孔直径为40mm,深度为20~60 m的钻孔,利用冻土工程国家重点实验室研制的热敏电阻(精度±0.05℃)对中俄原油管道沿线冻土地温进行监测,获取地层信息、冻土地温、地表温度、活动层厚度等关键冻土特征参数。测温孔有三个,一个是管道附近T1(距离一线管中心2m),一个是天然孔T2(距离一线管中心约16.6m),第三个孔T3,距离管道二线约50m。2014年10月~2017年10月期间,T1和T2进行每年一次的人工监测。T3从2018年6月12日开始连续自动化监测。至此,三个孔得到连续时间序列的地温数据。通过该地温监测资料可分析中俄原油管道沿线多年冻土的发育特征、历史演化趋势及其对气候变化的响应过程。
李国玉
活动层是多年冻土的主要特征之一,暖季融化,冷季冻结,呈季节性变化,其中活动层地温变化剧烈程度将直接影响冻土温度的变化,从而影响冻土稳定性。该数据集的监测站点位于92°E,35°N,海拔4600米,监测场地地势平坦,植被类型为高寒草甸,监测仪器为DT500系列数据采集仪,分别在地表以下10cm、20cm、40cm、80cm、160cm的5个深度上进行地温监测,该数据集的时间间隔为1天,是通过30分钟一次的数据的平均值,监测期间数据稳定、连续。通过结合土壤热通量和土壤水分等资料开展活动层的热变化过程以及变化机理等科学课题
本数据集为2014-2018青藏高原西大滩(XDT)气象要素数据集。气象要素包括:2m空气温度(℃)、2m空气湿度(%)、降水(mm)、2m风速(m/s)、总辐射(w/㎡)。降水观测采用T200B。数据来源于中国科学院青藏高原冰冻圈观测研究站位于青藏线西大滩的综合监测场(场点编号:XDTMS),数据根据原始监测数据(监测频率为每半小时一次)计算日均值,缺测部分或不满足计算日均值条件的以NAN表示。数据经过人工整理及校验,缺测时段为2017-7-7至2017-10-3。
赵林
总览我国现有的各种冻土图,他们在分类系统、数据源、制图方法等方面存在较大的不同,这些图件代表了我国在过去的半个世纪中对多年冻土分布的阶段认识。为了更加合理地反映我国冻土的分布,并统计出我国冻土分布面积,我们在分析现有冻土图的基础上,制备了一个新的冻土分布图,该图融合了现有多个冻土图和青藏高原多年冻土分布的模型模拟结果,统一了全国各部分数据的获取时间,反映了2000年左右我国冻土的分布状况。 新的冻土图中,各种冻土类型的分布按以下原则确定: 1. 底图采用中国冻土区划及类型图(1:1000万)(邱国庆 等,2000)。青藏高原以外的高山多年冻土和瞬时冻土的分布沿用原图;季节冻土和瞬时冻土、瞬时冻土和非冻土的界限也均无变化。青藏高原地区的多年冻土和东北地区高纬度多年冻土的分布则采用以下结果更新。 2. 青藏高原区域的高海拔多年冻土和高山多年冻土分布采用南卓铜 等(2002)的模拟结果进行更新。该模型利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布,再以年平均地温0.5C作为多年冻土与季节冻土的界限。 3. 东北地区的高纬度多年冻土分布采用了Jin et al. (2007)的最新结果。 Jin et al. (2007)通过对过去几十年东北年平均降水和土壤水分的分析,认为东北地区的多年冻土南界与年平均气温的关系在过去几十年中没有发生实质变化。 4. 其他地区的高山多年冻土分布采用中国冰川冻土沙漠图(1:400万)(中国科学院寒区旱区环境与工程研究所,2006)更新。 在分类系统方面,现有的冻土图对多年冻土的划分多采用连续性标准,但对连续性的具体定义有很大不同。很多研究表明,连续性标准是一个与尺度密切相关的概念,并不适合于高海拔多年冻土的分类(程国栋, 1984; Cheng et al., 1992),且该标准无法应用于以网格为基本模拟单元的多年冻土分布模型。在本文中,我们放弃了连续性标准,而以制图单元(网格或区域)内是否存在冻土为标准。新的冻土图将我国冻土分为几下几类: (1)高纬度多年冻土 (2)高海拔多年冻土 (3)高原多年冻土 (4)高山多年冻土 (5)中深季节冻土:可能达到的最大季节冻结深度>1m; (6)浅季节冻土:可能达到的最大季节冻结深度<1m; (7)瞬时冻土:保存时间不足一个月 (8)非冻土。 数据具体说明,请参考说明文档及引用文献。
冉有华, 李新
基于青藏工程走廊现有的15个活动层厚度监测场天然孔数据资料,运用GIPL2.0冻土模型模拟了青藏工程走廊的活动层厚度现状分布图。该模型需要合成时间序列的温度数据集,按照时间跨度分为两个阶段,分别是1980-2009和2010-2015,第一阶段的温度数据来自于中国气象驱动数据集(http://dam.itpcas.ac.cn/rs/?q=data#CMFD_0.1),第二阶段的数据应用空间分变率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性,相关系数达到0.75。在高山地区,活动层平均厚度小于2.0 m,然而在河谷地带,活动层平均厚度大于4.0 m,在高地平原区,活动层厚度通常在3.0 m -4.0 m之间。
牛富俊, 尹国安
地表温度作为地表能量平衡中的主要参数,表征了地气间能量和水分交换的程度,广泛应用于气候学、水文学和生态学等的研究中。 在冻土研究中,气候是冻土存在和发展的决定性因素之一,其中地表温度是影响冻土分布的主要气候因子,其影响冻土发生发育以及分布,是冻土建模的上边界条件,对寒区水文过程的研究具有重要的意义。 数据集基于青藏高原工程走廊DEM及观测站资料分析了青藏高原2000-2014地表温度变化趋势。利用MODIS上下午星Terra和Aqua的地表温度数据产品MOD11A1/A2、MYD11A1/A2,基于影像时空信息对云覆盖像元下地表温度信息进行了重建,采用昆仑山(湿地、草原)、北麓河(草原、草甸)、开心岭(草甸、草原)、唐古拉山(草甸、湿地)8个站点对重建信息及地表温度代表性问题进行了分析,通过相关性系数(R2)、均方根误差(RMSE)、平均绝对误差(MAE)和平均偏差(MBE)验证指标得出:(1)基于时空信息的MODIS云覆盖像元下地表温度重建精度较高;(2)上下午星Terra和Aqua四次观测加权平均代表性最好。 基于MODIS地表温度信息重建及代表性问题的分析,获取了青藏高原及其工程走廊带2000-2010年年均MODIS地表温度数据。 可以看出2000-2010年地表温度也在经历着波动的增温趋势,这与青藏高原以及青藏工程走廊多年冻土段气候变化保持基本相同的变化趋势。
牛富俊, 尹国安
该数据集是青藏工程走廊多年冻土段三个气象站近50年来的年平均气温和降雨量变化趋势。从记录数据可以看到,年平均气温整体在经历着缓慢的升高过程。五道梁和沱沱河在过去的56年内年平均气温的变化有很好的相关性(r2=0.83)。在1957年,五道梁、沱沱河年平均气温分别为-6.6和-5.1℃,到2012年,两站的气温分别为-4.6和-3.1℃,总的增温大约是2℃左右,年平均增温率为0.03-0.04℃。五道梁和安多在过去的47年内年平均气温的变化也有很好的相关性(r2=0.84)。在1966年,安多年平均气温为-3.0℃,到2012年,气温增加到了-1.8℃,总的增温大约是1.2℃,年平均增温为0.02-0.03℃。年平均气温的增加在五道梁和沱沱河略快于安多。 然而,从降雨量来看,降雨的变化比气温变化更加波动。五道梁和沱沱河在过去56年内年降雨量的变化相关性较差(r2=0.60)。在1957年,五道梁、沱沱河年降雨量分别为302和309mm,到2012年,两站的年降雨量分别为426和332mm,五道梁有124mm的降雨增加,年降雨量增加率约为2mm,沱沱河年降雨量增加率仅为0.4mm。五道梁和安多在过去的47年内年降雨量的变化相关性也较差(r2=0.35)。在1966和2012年,安多年平降雨量分别为354和404mm,总的增加大约是50mm,年平均增加率为1mm。年降雨量的增加在五道梁是最快的。 三个气象站代表了青藏工程走廊多年冻土段的气候变化情况。从整体的气温和降雨量的变化趋势来看,过去50年,走廊北部和中部的气温增速较快,超过全球平均0.02℃/a的水平(IPCC)。北部的降雨量增加也较明显,尤其是五道梁气象站的降雨增速非常明显。气温变暖和降雨增加都对加速多年冻土的空间变化产生较大影响,是导致青藏高原多年冻土退化的主导因素。
牛富俊, 林战举, 尹国安
应用GIPL2.0冻土模型模拟了青藏工程走廊的平均地温分布图。该模型需要合成时间序列的温度数据集,按照时间跨度为2010-2015,数据应用空间分辨率为1km的MODIS地表温度产品(MOD11A1/A2, MYD11A1/A2)。此外,模型需要的土质类型数据来自于分辨率为1公里的中国土壤数据库(V1.1),同时还考虑了地貌,基于实测的土壤热物理参数以及土地覆盖类型等将研究区域归为88类进行了模拟。 对年平均地温模拟结果和现场实测数据进行了对比,结果显示具有较好的一致性。模拟结论得出在高山区域,如昆仑山,唐古拉山,年平均地温小于-2.0 °C;而在较高的河谷地带,如坨坨河的年平均地温高于0 °C;对于高平原地区(如北麓河盆地和五道梁盆地)的年平均地温较高在-2.0 °C ~ 0 °C范围内。如果以年平均地温小于0 °C为多年冻土存在与否的阈值,则青藏工程走廊的多年冻土占整个区域的78.9%。同时根据地温的不同将青藏工程走廊的冻土类型分为低温稳定多年冻土、低温基本稳定多年冻土、高温不稳定多年冻土和高温极不稳定多年冻土。
牛富俊, 尹国安
近地表土壤的冻结/融化状态表征着陆地表层过程的休眠和活跃,这种冻融相态交替能引起一系列复杂的地表过程轨迹模式突变,影响着土壤的水热特性、地表径流和地下水补给等水循环过程,同时也通过水和能量循环机制影响气候变化。本数据集是基于AMSR-E和AMSR2被动微波亮温数据,利用冻融判别式算法制备的全球近地表冻融状态(空间分辨率:0.25°;时间跨度:2002-2019年),可用于分析全球近地表冻融循环的开始/结束日期、冻结/融化时长、冻结范围等指标的空间分布和趋势变化,可为理解全球变化背景下陆表冻融循环与水分、能量交换过程的相互作用机制提供数据支持。
赵天杰
青藏高原被称为“世界第三极”和“亚洲水塔”,一个较为准确的青藏高原冻土图对当地寒区工程和环境建设有着重要意义。因此,为了满足工程和环境需求,通过多源遥感数据(高程、MODIS地表温度、植被指数和土壤水分)建立决策树对青藏高原多年冻土和季节冻土进行了划分。数据为栅格格式,DN=1为多年冻土;DN=2为季节冻土。 其中高程数据来自于1kmx1km的中国DEM(Digital Elevation Model)数据集(http://westdc.westgis.ac.cn);地表温度是欧阳斌等通过 Sin-Linear 法拟合后的日平均地表温度年均值。文中在MODIS 地表度产品用Sin-Linear 法拟合估算出日平均地表温度基础上,为了缩小与已有冻土图前后时间差异,以研究区2003年地表温度做为冻土分类的信息源;植被信息采用Aqua 和Terra 星的2003 年 16 天合成产品数据(MYD13A1 和 MOD13A1)提取植被指数值;土壤水分值根据 2003 年 AMSR-E观测质量较好的5月份升轨数据得到。因此,基于以上数据信息,以1:300万青藏高原冻土图和1:400万<<中国冰川冻土沙漠图>>为先验信息得到决策树的分类阈值,从而对青藏高原的冻土类型进行分类。 最后,对于分类结果利用西昆仑山、改则和温泉的调查冻土图以及其它已有的青藏高原冻土图进行了验证和对比,统计结果显示基于多源遥感信息的青藏高原冻土图多年冻土面积占青藏高原总面积的42.5%(111.3 × 104 km²),季节冻土面积占青藏高原总面积的53.8% (140.9 × 104 km²),这个结果与先验图(1:300万青藏高原冻土图)具有较好的一致性。此外,文中基于不同冻土图之间的总体精度和Kappa系数表明:不同方法编制或模拟的青藏高原冻土图在空间分布格局上基本保持一致,而分类不一致的地方大部分在多年冻土与季节冻土的分界边缘地带。
牛富俊, 尹国安
青藏高原过去的冻土图主要基于稀少的台站气温观测,采用基于连续性的分类系统。本数据集利用地理加权回归模型(GWR)综合了经过时空重建的MODIS地表温度、叶面积指数、积雪比例和国家气象信息中心多模型土壤水分预报产品、融合了4万多个气象站降水观测和FY2卫星观测的降水产品及152个气象台站2000-2010年的多年平均气温观测数据,模拟得到了青藏高原过去1公里分辨率的多年平均气温数据,利用多年冻土热条件分类系统,将多年冻土分为非常冷(Very cold)、冷(Cold)、凉(Cool)、暖(Warm)、非常暖(Very warm)和可能解冻(Likely thawing)几个类型。该图显示,扣除湖泊和冰川,青藏高原多年冻土总面积约为107.19万平方公里。验证表明该图具有更高的精度。可为今后冻土工程规划设计与环境管理等提供支持。
冉有华, 李新
高亚洲地区是中纬度全球变化敏感区和研究的热点区域,其境内湖泊星罗棋布,湖冰冻融参数是全球变化的关键敏感因子之一。由于冰水介电常数差异大,高重访率且对天气不敏感的星载被动微波遥感可实现湖冰冻融状态的快速监测。本数据集依据微波辐射计像元内湖泊和陆表的面积比例,应用混合像元分解方法获取了像元(亚像元级)的湖泊亮温信息,实现高亚洲地区被动微波遥感亚像元级湖冰冻融监测,并采用多种被动微波数据,共计获得高亚洲区域 2002-2016 年 51 个中大型时间序列湖泊亮温数据和冻融状态信息。以无云MODIS 光学产品为验证数据,在高亚洲不同区域,选取可可西里湖、达则错、库赛湖等三个大小不一的湖泊进行冻融判别验证,结果表明微波和光学遥感所获取的湖冰冻结和融化参数具有较高的一致性,其相关系数可达0.968 与 0.987。本数据集包含湖泊的时间序列亮温值和湖冰冻融参数,可进一步对湖泊开展特征参数反演,以及提升对高亚洲地区的湖冰冻融的理解,为高亚洲地区气候、环境变化以及高亚洲对全球气候变化响应模型提供数据基础。数据集由 2 部分数据组成,其一为 2002-2016 年高亚洲区域 51个湖泊的被动微波遥感亮温数据集,观测时间间隔为 1~2 天;其二是由湖泊亮温数据集判断所获得的湖冰冻融数据集。文件名分别为:最邻近法与像元分解的湖泊亮温数据 .zip(12 MB),2002–2016 高亚洲 51 个湖泊湖冰冻融数据集 .xls(0.1 MB)
邱玉宝
南北极冰盖冻融数据集采用微波辐射计和微波散射计两种数据获取。微波辐射计数据覆盖时间从1978年到2015年,空间分辨率为25 km;微波散射计数据覆盖时间从2000年到2015年,空间分辨率为4.45km.时间分辨率为逐日,覆盖范围为南北极冰盖。基于微波辐射计的遥感反演方法采用改进的基于小波冰盖冻融探测算法,算法考虑冰盖冻融亮温特性在时间上的变化,首先利用小波变换对格陵兰所有冰盖区域的长时间亮度温度数据进行小波多尺度分解,在不同尺度下对边缘信息进行分析。再次,采用方差分析的方法将冰盖融化和重新冻结过程产生的边缘信息从噪声中分离出来。基于已提取的冰盖长时间亮度温度变化边缘信息,利用广义高斯模型来确定干雪和湿雪分类的最优边缘阈值, 从而探测出格陵兰冰盖发生融化的区域。最后,基于空间自动纠错的原理,运用空间邻域纠错算子对由噪音引起的错误结果进行探测,并进行人工纠错。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在冻融提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明格陵兰冰盖冻融探测精度在70%以上。基于微波辐射计的遥感反演方法考虑积雪特性在时空和空间上的变化,首先提取散射计数据的DVPR时间序列数据,有效利用散射计数据的高时间分辨率,同时利用通道差去除地形带来的影响;随后利用广义高斯模型对每一个采样点时间序列的方差值进行拟,以此来区分出干湿雪点,即确定融化范围,这种广义高斯模型相比于传统的双高斯模型需要的输入参数少,得到的阈值也具有唯一性;最后利用移动窗分割算法来精确找到湿雪点的融化开始时间、 结束时间以及持续时间, 可以有效地去除融化或非融化时期的温度突变所带来的影响。长时间序列星载微波散射计数据来自QSCAT和ASCAT两个传感器。通过实测站点的验证表明南极冰盖冻融探测精度在70%以上。数据每一天存放一个bin文件,基于微波辐射计的南极冻融数据每个文件由316*332的栅格组成,格陵兰冰盖冻融数据每个文件由304*448的栅格组成;基于微波散射计的南极冻融数据每个文件由810*680的栅格组成,格陵兰冰盖冻融数据每个文件由810*680的栅格组成(0值:非融化区域,1值:融化区域)。
李新武, 梁雷
2008年全国遥感年平均地表温度和冻结指数是冉有华等(2015)基于MODIS Aqua/Terra逐日四次的5公里瞬时地表温度数据产品,发展了新的年平均地表温度和冻结指数估计方法,该方法利用上下午LST观测的平均获取日平均地表温度,方法的核心是如何恢复LST产品的缺失数据,该方法有两个特点:(1)将遥感观测到的日地表温度变幅进行了空间插值,利用插值获取的空间连续的日地表温度变幅,使一天只有一次的卫星观测数据得到应用;(2)利用了一个新的缺失数据时间序列滤波方法,即基于离散余弦变换的惩罚最小二乘回归方法。 验证表明,年平均地表温度与冻结指数的精度只与原始MODIS LST的精度有关,即保持了MODIS LST产品的精度。可用于冻土制图及相关资源环境应用。
冉有华, 李新
在黑河上游多年冻土区域,选取11个有编号的典型钻孔,使用钻孔温度插值计算得出多年冻土及季节冻土厚度值,设定0度等温面为多年冻土和季节冻土下底板。 数据包括钻孔编号、经纬度、冻土厚度及冻土类型。
张廷军, 高坛光
冻融指数作为冻土研究的重要参数,对于冻土研究具有十分重要的意义,同时也是研究气候变化的重要指标。冻融指数是日气温或地表土壤温度在给定时间的累计值。 本数据是根据中国气象局在黑河流域布设的15个常规气象台站逐日的地表温度的观测资料,计算得到的各气象台站1960-2006年逐年的地表冻融指数。
张廷军
1.数据概述: 此数据集是祁连站2011年1月1日—2011年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
韩春坛, 宋耀选, 刘俊峰, 阳勇, 卿文武, 刘章文
1.数据概述: 此数据集是祁连站2013年1月1日—2013年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 韩春坛, 宋耀选, 刘俊峰, 阳勇, 刘章文
1.数据概述: 此数据集是祁连站2012年1月1日—2012年12月31日人工观测冻土冻结深度数据集,每日08时观测。 2.数据内容: 数据内容为冻土器冻结深度数据集。冻土观测是利用灌注在橡皮内管中水的冻结深度 (长度 )作为记录的,根据埋入土中的冻土器内水结冰的部位和长度,来测定冻结层次及其上限和下限深度。以厘米(cm)为单位,取整数,小数四舍五入。每天0 8时观测 1次。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 宋耀选, 韩春坛, 刘俊峰, 阳勇
本数据是通过黑河上游源区内外九个站点0cm处的地表温度通过空间插值,结合冻土模拟方法获得。图中1代表季节性冻土,2代表多年冻土。 本数据为TIFF格式,投影采用WGS-84,空间范围为37.7263N-39.0976N,98.5769E-101.1608E。
葛社民
2007年10月17日夜间,在阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。阿柔样方2为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在阿柔样方2,采用ML2X土壤水分速测仪获取土壤体积含水量;采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
环北极多年冻土和地下冰分布图是1997年国际冻土协会联合多个国家的冻土研究机构编制的目前唯一的一个国际冻土数据图。该冻土图描述了北半球(20°N to 90°N)多年冻土的分布与属性及地下冰条件。通过连续性划分冻土范围,将多年冻土划分为连续(90-100%)、不连续(50-90%)、零星(10-50%)、岛状(<10%)和无多年冻土。最上层20米的地下冰丰度通过冰的体积百分比划分(>20%, 10-20%, <10% 和 0%)。发布的ESRI-shape文件源于1:10,000,000的纸质地图(Brown et al. 1997)。该图可用于全球气候变化、极地资源开发和环境保护等相关领域。中国部分如图例所示。更多信息参考文献(Heginbottom et al. 1993)。 数据的格式为ESRI shapefiles,可通过美国冰雪数据中心下载(http://nsidc.org/data/ggd318.html)。
O. Ferrians, J. A. Heginbottom, E. Melnikov
2007年10月18日,在阿柔样方1和阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:17BJT。阿柔样方1和阿柔样方2均为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 在每个采样点,采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
该数据是黑河流域2000年—2009年,季节冻土冻融状态的月平均空间分布。基于黑河流域2000—2009年栅格化气温数据,将地表土壤的冻融状态划分为三种:不冻结状态,不完全冻结状态,完全冻结状态。完全冻结是指土壤在全月都处于完全冻结状态。不完全冻结是指土壤在月内冻结天数≤30天但≥1天,且土壤有冻融循环出现。不冻结是指土壤在本月不发生冻结。数据以栅格的形式,可以在ArcGis中打开,1代表不冻结状态,2代表不王全冻结状态,3代表完全冻结
彭小清, 张廷军
冻土图的编制依据包括:(1)冻土野外调查、勘探实测资料;(2)航空像片和卫星影像判译;(3)TOPO30 1km分辨率的地面高程数据;(4)气温和地面温度资料。其中,青藏高原的冻土分布采用了南卓铜等(2002)的研究结果,利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布。以年平均地温0.5 ℃作为多年冻土与季节冻土的界限,参考《中国冰雪冻土图》(1:400万)(施雅风 等,1988)划定高原不连续多年冻土与高原岛状多年冻土的界限;另外,参考东北大小兴安岭多年冻土分区图(郭东信 等,1981)、环北极多年冻土和地下冰分布图(Brown et al. 1997)和最新野外实测资料,对东北的多年冻土界线进行了修订;西北高山多年冻土界线多采用了《中国冰雪冻土图》(1:400万)(施雅风 等,1988)中划定的界线。 根据该数据统计的中国多年冻土区面积约1.75×106km2,约占中国领土的18.25%。其中,高山多年冻土0.29×106km2,约占我国领土面积的3.03%。 更多信息参考《1:400万中国冰川冻土沙漠图》说明书(中国科学院寒区旱区环境与工程研究所,2006)
王涛
字段说明: Num_code(冻土属性编码) Combo(冻土属性) extent(冻土范围) content(含冰量) 属性对照如下: (1)冻土属性对照表: 0 (No information ) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden ) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden ) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden ) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden ) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden ) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden ) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden ) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes ) 24 - o (Ocean/inland seas ) 25 - ld (Land) (2)冻土范围对照表 c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches ( 0 - 10%) (3)含冰量对照表 h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%)
National Snow and Ice Data Center(NSIDC), 吴立宗
该图是施雅风先生和米德生编制的《中国1:400万冰雪冻土图》,地图编制的工作地图为《中华人民共和国汉语拼音版》,保留了地图的水系及山脉注记,并增加了一些山文注记。编绘冻土图的依据是:冻土调查和勘探的实际资料、遥感资料的判译、影响冻土形成和分布的气温条件及地形特征。冰川雪线高度以等值线表示其变化趋势。季节性积雪与季节性结冰是综合依据了全国1600个气象观测台站资料和多年考察结果以等值线加注记和符号表示、冷生(冰缘)现象选择具有代表性且经实地观察到的给予示意性的表示。多年冻土和非多年冻土范围界线,依据考察现场资料经计算而编制成图,其综合程度较高(特普费尔著,1982) 《中国冰雪冻土图》反映了冰川、积雪、冻土及冰缘分布的规模、类型、特征,以及在科学研究上的价值和生产实践中利用、防治的前景。表现了我们三十年来在冰川冻土科研方面的成果。
施雅风, 米德生
该数据集对扫描图《中国400万冰雪冻土图》(施雅风、米德生,1988)进行几何校正,然后通过数字化,综合考虑海拔和纬度,结合多年冻土的连续性将冻土划分为:高纬度多年冻土的大片多年冻土、岛状融区多年冻土和岛状多年冻土;高海拔多年冻土和高山多年冻土(包括阿尔泰山,天山,祁连山、横断山、喜马拉雅山及中国东部的太白山、黄岗梁和长白山)和高原多年冻土(青藏高原),高原多年冻土(青藏高原)又分为大片多年冻土和岛状多年冻土;季节冻土、瞬时冻土和无冻土区。
施雅风, 米德生
该图是Li Xin等2008年为了重新统计中国的多年冻土面积,在分析现有中国冻土图的基础上编制而成的,由三部分组成,其中青藏高原部分采用模拟的青藏高原冻土图(南卓铜,2002)、东北部分来自《1:400万中国冰川冻土沙漠图》(中国科学院寒区旱区环境与工程研究所,2006),其他部分采用中国冻土区划及类型图(1:1000万)(周幼吾 等,2000)。 更多信息参考文献(中国科学院寒区旱区环境与工程研究所,2006;南卓铜,2002;周幼吾 等,2000;Li et al, 2008)。
李新, 南卓铜, 周幼吾
中国长序列地表冻融数据集——决策树算法(1987-2009)是利用被动微波遥感 SSM/I亮度温度资料通过决策树分类提取得到。 该数据集采用EASE-Grid投影方式(等积割圆柱投影,标准纬线为±30°),空间分辨率25.067525km,提供逐日的中国大陆主体部分的地表冻融状态分类结果。数据集按年份存放,共由23个文件夹组成,从1987到2009。每个文件夹里包含当年的逐日地表冻融分类结果,为ASCII码文件,命名规则为:SSMI-frozenYYYY***.txt,其中YYYY代表年,***代表儒略日(001~365/366)。冻融分类结果txt文件可直接用文本程序打开察看,还可用ArcView + Spatial Analyst扩展模块或者Arcinfo的Asciigrid命令打开。 提取地表冻融的原始数据来源于由美国国家雪冰数据中心(NSIDC)处理的1987 年以来的逐日被动微波数据,这一数据集采用EASE-Grid(等面积可扩充地球网格)作为标准格式。 中国地表冻融长时间序列数据集——决策树算法(1987-2009)属性由该数据集的时空分辨率、投影信息、数据格式组成。 时空分辨率:时间分辨率为逐日,空间分辨率为25.067525km,经度范围为60°~140°E,纬度为15°~55°N。 投影信息:全球等积圆柱EASE-Grid投影,关于EASE-Grid投影的详细信息见数据准备中关于这种投影的说明。 数据格式:数据集由1987到2009共23个文件夹组成,每个文件夹里包括当年的逐日地表冻融分类结果,按日存储为txt文件。文件命名规则:例如SMI-frozen1994001.txt代表1994年第1天的地表冻融分类结果。该数据集的ASCII码文件是由头文件和主体内容构成。头文件包括行数、列数、x-轴左下点坐标、y-轴左下点坐标、栅格大小、无数据区标值等6行描述信息组成;主体内容为根据行数列数组成的二维数组,以列为优先进行排列,数值为整数型,从1到4,1代表冻结,2代表融化,3代表沙漠,4代表降水。因为该数据集中的所有ASCII码文件所描述的空间为我国全国范围,所以这些文件的头文件是不变的,现将头文件摘录如下(其中xllcenter, yllcenter和cellsize单位为m): ncols 308 nrows 166 xllcorner 5778060 yllcorner 1880060 cellsize 25067.525 nodata_value 0 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT}
晋锐, 李新
冻土环境对青藏铁路工程建设的影响及工程的环境效应项目属于国家自然科学基金“中国西部环境与生态科学”重大研究计划,负责人为中国科学院寒区旱区环境与工程研究所马巍研究员,项目运行时间为2002.1-2004.12。 该项目汇交数据: 1、北麓河活动层场地监测数据 (1) 北麓河活动层场地检测说明 (2) 北麓河下垫面场地水分数据2002.9.28-2003.8.10(Excel文件) * 场地1-草原的水分数据 * 场地2-草皮铲除的水分数据 * 场地3-天然草皮的水分数据 * 场地4-碎石的水分数据 * 场地5-保温的水分数据 (3)北麓河下垫面场地温度数据0207-0408 Excel文件 * 道碴地表的温度数据 * 保温材料的温度数据 * 铲除植被地表的温度数据 * 草垫地表的温度数据 * 砂砾地表的温度数据 2、工程对生态环境影响调查数据:风火山、沱沱河、五道梁,样方调查内容:植物类型、多度、群落盖度、总盖度、地上生物量以及土壤结构;采用TDR时域反射仪测定土壤不同深度水分含量;在每个样方点于 0-100cm 深度内分层采集土壤样品一组。采用EKKO100地质雷达探测仪,在每个样方带上以及平行公路方向连续采样1-1.5km,以查清冻土上限深度。 3、预测数据:分别设定未来50年温度上升1度和2度,初始地表温度为-0.5,-1.5,-2.5,-3.5,-4.5度,来预测不同深度和时间的冻土温度。 4、青藏铁路高温高含冰量冻土统计:地段、铁路里程、总里程(Km)、冻土类型里程数、多年冻土平均地温分区里程数、高温高含冰量冻土、高温低含冰量冻土、低温高含冰量冻土、低温低含冰量冻土、融区。
马巍, 吴青柏
该数据是对中国冰川冻土沙漠图(1:400万)中冻土分布图的数字化,该图中考虑与全球冻土分类系统的统一,将多年冻土分为五类,包括: (1)不连续多年冻土:连续系数50%-90% (2)岛状多年冻土:连续系数<50% (3)高原不连续多年冻土:连续系数50%-90% (4)高原岛状多年冻土:连续系数50%-90% (5)山地多年冻土。 冻土图的编制依据包括:(1)冻土野外调查、勘探实测资料;(2)航空像片和卫星影像判译;(3)TOPO30 1km分辨率的地面高程数据;(4)气温和地面温度资料。其中,青藏高原的冻土分布采用了南卓铜等(2002)的研究结果,利用青藏公路沿线76个钻孔实测年平均地温数据,进行回归统计分析,获取年平均地温与纬度、高程的关系,并基于该关系,结合GTOPO30高程数据(美国地质调查局地球资源观测与科技中心领导下发展的全球1km数字高程模型数据)模拟得到整个青藏高原范围上的年平均地温分布。以年平均地温0.5 ℃作为多年冻土与季节冻土的界限,参考《中国冰雪冻土图》(1:400万)(施雅风 等,1988)划定高原不连续多年冻土与高原岛状多年冻土的界限;另外,参考东北大小兴安岭多年冻土分区图(郭东信 等,1981)、环北极多年冻土和地下冰分布图(Brown et al. 1997)和最新野外实测资料,对东北的多年冻土界线进行了修订;西北高山多年冻土界线多采用了《中国冰雪冻土图》(1:400万)(施雅风 等,1988)中划定的界线。 根据该数据统计的中国多年冻土区面积约1.75×106km2,约占中国领土的18.25%。其中,高山多年冻土0.29×106km2,约占我国领土面积的3.03%。 更多信息参考《1:400万中国冰川冻土沙漠图》说明书(中国科学院寒区旱区环境与工程研究所,2006)。
王涛, 施雅风, 郭东信
本数据集采用SMMR(1978-1987)、SSM/I(1987-2009)和SSMIS(2009-2015)逐日亮温数据,由双指标(TB,37v,SG)冻融判别算法生成,分类结果包含冻结地表、融化地表、沙漠及水体四种类型。数据覆盖范围为中国大陆主体部分,空间分辨率为25.067525 km,EASE-Grid投影方式,以ASCIIGRID格式存储。 该数据集中的所有ASCII码文件可以直接用文本程序(如记事本)打开。除了头文件,主体内容为数值表征地表冻融的状态:1代表冻结,2代表融化,3代表沙漠,4代表降水。如果要用图示来显示的话,我们推荐用ArcView + 3D 或 Spatial Analyst 扩展模块来读取,在读取过程中会生成grid格式的文件,所显示的grid文件就是该ASCII码文件的图形表达。读取方法: [1] 在ArcView软件中添加3D或Spatial Analyst扩展模块,然后新建一个View; [2] 将View激活,点击File菜单,选择Import Data Source选项,弹出Import Data Source选择框,在此框中的Select import file type:中选择ASCII Raster,自动弹出选择源ASCII文件的对话框,点击寻找该数据集中的任一个ASCII文件,,然后按OK键; [3] 在Output Grid对话框中键入的Grid文件名字(建议使用有意义的文件名,以便以后自己查看)和点击存放此Grid文件的路径,再次按Ok键,然后按Yes(要选择整型数据),Yes(把生成grid文件调入到当前的view中)。生成的文件可以按照Grid文件标准进行属性编辑。这样就完成了显示将ASCII文件显示成Grid文件的过程。 [4] 批处理时,可以使用ARCINFO的ASCIIGRID命令,编写成AML文件,再用Run命令在Grid模块中完成: Usage: ASCIIGRID <in_ascii_file> <out_grid> {INT | FLOAT} 本数据的生产得到自然科学基金项目:中国西部环境与生态科学数据中心(90502010)、中国西部地区陆面数据同化系统研究(90202014)以及冻土主被动微波辐射传输模拟及其辐射散射特性研究(41071226)的支持。
晋锐, 李新
该数据集来自对1997年俄罗斯科学院地理研究所出版的《世界雪冰资源地图集》纸质地图的数字化,具体包括了俄罗斯的冻土范围、冻土温度、地下冰厚度等信息。更多信息参考文献(Kotlyakov et al, 2002)。数据以ESRI的Shape格式存储,用户也可通过美国冰雪数据中心下载(http://nsidc.org/data/ggd600.html)。
Tatiana Khromova, Victor Kotlyakov
该数据是中国冻土区划及类型图(1:1000万)(邱国庆等,2000;周幼吾 等,2000)的数字化,采用了区划和类型双系列体系,在同一份图上同时用区划体系和类型体系来反映在各个级别上冻土形成和分布的共性与个性。 区划体系包括三个冻土大区:(1)中国东部冻土大区;(2)中国西北冻土大区;(3)中国西南(青藏高原)冻土大区。在三个大区的基础上,又进一步划分出16个区及下面的若干亚区。冻土区划界线的划分中,I大区和III大区的界线主要参考了李炳元(1987)的结果;II大区和III大区的界线就是青藏高原的北界,即昆仑山—阿尔金山—祁连山北侧和山麓线;I大区和II大区的界线在贺兰山—狼山一带。二级区的界线,在II大区和III大区中以地貌条件为依据进行划分,在I大区则以气温年较差A与年平均气温T的比值为主要划分依据,并考虑到各地的冻结深度。 类型体系基于冻土连续性、冻土存在的时间和季节冻结深度,划分为8个类型,各类型界线主要取自《中国冰雪冻土图》(1:400万)(施雅风 等,1988)并参考了一些新资料,而季节冻土界线则主要以气象站资料为依据。各类型的定义如下: (1)大片多年冻土:连续系数为90%-70%; (2)大片-岛状多年冻土:连续系数为70%-30%; (3)稀疏岛状多年冻土:连续系数为<30%; (4)山地多年冻土; (5)中深季节冻土:可能达到的最大季节冻结深度>1m; (6)浅季节冻土:可能达到的最大季节冻结深度<1m; (7)短时冻土:保存时间不足一个月; (8)非冻土。 根据该数据计算的中国多年冻土区面积约2.19×106km²,约占中国领土的22.83%。其中,高山多年冻土0.42×106km²,约占我国领土面积的4.39%。季节冻土面积约4.76×106km²,约占我国领土的49.6%,瞬时冻土面积约1.86×106km²,占我国领土的19.33%。 更多信息参考文献(周幼吾 等,2000)。
郭东信, 邱国庆
数据集包括: 1、permaice(冻土类型图) 2、subsea(海底界线矢量图)3、treeline(林线矢量图)4、nhipa(栅格图)5、llipa(栅格图) Permaice包括属性字段:Num_code(冻土属性编码) Combo(冻土属性)extent(冻土范围)content(含冰量) 属性对照如下:(1)冻土属性对照表: 0 (No information ) 1 - chf (Continuous permafrost extent with high ground ice content and thick overburden) 2 - dhf (Discontinuous permafrost extent with high ground ice content and thick overburden ) 3 - shf (Sporadic permafrost extent with high ground ice content and thick overburden ) 4 - ihf (Isolated patches of permafrost extent with high ground ice content and thick overburden ) 5 - cmf (Continuous permafrost extent with medium ground ice content and thick overburden ) 6 - dmf (Discontinuous permafrost extent with medium ground ice content and thick overburden ) 7 - smf (Sporadic permafrost extent with medium ground ice content and thick overburden ) 8 - imf (Isolated patches of permafrost extent with medium ground ice content and thick overburden) 9 - clf (Continuous permafrost extent with low ground ice content and thick overburden ) 10 - dlf (Discontinuous permafrost extent with low ground ice content and thick overburden ) 11 - slf (Sporadic permafrost extent with low ground ice content and thick overburden ) 12 - ilf (Isolated patches of permafrost extent with low ground ice content and thick overburden) 13 - chr (Continuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 14 - dhr (Discontinuous permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 15 - shr (Sporadic permafrost extent with high ground ice content and thin overburden and exposed bedrock ) 16 - ihr (Isolated patches of permafrost extent with high ground ice content and thin overburden and exposed bedrock) 17 - clr (Continuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 18 - dlr (Discontinuous permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 19 - slr (Sporadic permafrost extent with low ground ice content and thin overburden and exposed bedrock) 20 - ilr (Isolated patches of permafrost extent with low ground ice content and thin overburden and exposed bedrock ) 21 - g (Glaciers) 22 - r (Relict permafrost) 23 - l (Inland lakes ) 24 - o (Ocean/inland seas ) 25 - ld (Land) (2)冻土范围对照表 c = continuous (90-100%) d = discontinuous (50- 90%) s = sporadic (10- 50%) i = isolated patches ( 0 - 10%) (3)含冰量对照表 h = high (>20% for "f" landform codes) (>10% for "r" landform codes) m = medium (10-20%) l = low (0-10%) ------------------------------------------------------------ Projection of the shapefiles is: PROJCS["Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area", GEOGCS["GCS_Sphere_ARC_INFO", DATUM["Sphere_ARC_INFO", SPHEROID["Sphere_ARC_INFO",6370997.0,0.0]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Lambert_Azimuthal_Equal_Area"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",180.0], PARAMETER["latitude_of_center",90.0], UNIT["Meter",1.0]] Projection for the raster (*.byte) files is: Projection: Lambert Azimuthal Units: meters Spheroid: defined Major Axis: 6371228.00000 Minor Axis: 6371228.000 Parameters: radius of the sphere of reference: 6371228.00000 longitude of center of projection: 0 latitude of center of projection: 90 false easting (meters): 0.00000 false northing (meters): 0.00000
O. Ferrians, J. A. Heginbottom, E. Melnikov, Tingjun Zhang, 冉有华
青藏高原冻土图(1:300万)(李树德和程国栋,1996)是中国科学院兰州冰川冻土研究所(今中科院寒区旱区环境与工程研究所)冻土工程国家重点实验室根据多年从事冻土考察研究的第一手资料及前人研究论文、文献、并详细研究与参阅了航空像片、卫星影像及青藏公路沿线多年冻土图(1:60)万(童伯良 等,1983)、祁连山地貌图(1:100万)(中国科学院地理研究所,1985)、青藏高原自然景观图(1:300万)(中国科学院地理研究所,1990)、青藏高原第四纪冰川遗迹分布图(1:300万)(李炳元和李吉均,1991)、南水北调西线工程通天河-雅砻江调水区冻土遥感图(1:50万)(中国科学院兰州冰川冻土研究所,1995)、中国冰雪冻土图(1:400万)(施雅风和米德生,1988),在100万航测地形图上进行编绘,然后缩编成1:300万青藏高原冻土图。后经由中科院寒区旱区环境与工程研究所南卓铜等数字化完成。 数据包括: 1)数字化的青藏高原冻土分布图 2)青藏高原冻土图扫描图 数字化后的冻土分布图中的冻土类型包括: 0, Seasonally frozen ground;季节冻土 1, permafrost;多年冻土 2, island permafrost;岛状多年冻土 3, continuous permafrost;片状多年冻土
程国栋, 李树德, 南卓铜, 童伯良
中国冰冻圈是指中国范围内,大气圈、水圈、生物圈、岩石圈的冻结部分。中国冰冻圈资源与环境信息系统是对中国冰冻圈资源与环境数据进行管理与分析的综合性信息系统。建立中国冰冻圈资源与环境信息系统一方面是满足地球系统科学的需要,为研制地理信息系统支持下的冻土、冰川以及雪盖对全球变化的响应与反馈模型提供参数与验证数据;另一方面系统整理和抢救宝贵的冰冻圈数据,为其提供一个科学、高效、安全的管理与分析工具。 中国冰冻圈资源与环境信息系统包含三个不同空间的基础数据库。其中青藏高原基础数据库主要以青藏高原为研究区域,范围在东经70—105°,北纬20—40°之间,主要包含以下类型的数据: 1、冰冻圈数据。包括: 冻土类型; 积雪深度分布; 第四纪冰川遗迹图; 2、自然环境与资源。包括: 水文:地表水; 基础地质:第四纪地质、水文地质; 地表特性:植被类型; 气象站观测数据:气温、地表温度、降水量; 3、社会经济资源: 青藏高原及毗邻地区气象台站分布图; 4、高原冻土对全球变化的响应模型(Fgmodel):预测了2009年、2049年和2099年的多年冻土分布数据。 详情请查看数据中的文档“中国冰冻圈资源与环境信息系统设计.doc”、“中国冰冻圈资源与环境信息系统数据字典.DOC”、“数据库-青藏高原.DOC”和“数据库-青藏高原 附表.DOC”。
李新
蒙古共和国冻土及冻土分区图是从《蒙古共和国国家地图集》(Sodnom and Yanshin, 1990)数字化而来。 该数据集描述了多年冻土和季节冻土的分布与一般属性以及蒙古共和国特有的低温现象。具体数字化了两个图版。第一个图版的比例尺是1:12,000,000,描述了四个一般的冻土区,包括:(1)连续和不连续多年冻土;(2)岛状和稀疏岛状多年冻土;(3)零星多年冻土;(4)季节冻土。第二个图版的比例尺是1:4,500,000,描述了14个不同的地形类型,地形类型根据高程、年平均气温、多年冻土厚度和融化深度,以及季节冻土的冻结深度划分。6类蒙古共和国特有的低温现象的位置也包括在内,分别为:多年生冻胀丘(pingo)、冰锥、热喀斯特、冻土滑坡(detachment failures)、融冻泥流、冷生夷平(cryoplatation processes)作用。 数据的格式为ESRI shapefiles,用户也可通过美国冰雪数据中心下载(https://nsidc.org/data/ggd648)。
A. L.Yanshin, Sodnom
该数据是对青藏公路沿线多年冻土图(1:60万)(童伯良 等,1983)的数字化,青藏公路沿线多年冻土图是1981年由中国科学院寒区旱区环境与工程研究所(原中国科学院兰州冰川冻土研究所)童伯良、李数德、卜觉英、邱国庆等编制的,其目的在于反映公路沿线多年冻土层分布的基本规律及其与主要自然环境因素的生成关系总貌。 编制该图的基础资料包括有:青藏公路沿线1:200000水文地质和工程地质调查和图件(青海省第一水文地质工程地质大队、地质科学院地质力学所);中国科学院冰川冰土研究所自1960年以来在青藏公路沿线的西大滩、昆仑山垭口盆地、清水河、风火山、沱沱河、桑马盆地、布曲河、土门格拉、两道河等九个地点的冻土研究成果;格尔木—拉萨输油管线的钻探资料以及工作区的航测地形资料。以1:200000万地形图当工作底图,编绘成多年冻土图,再缩编成1:600000的成图,以保证图的精确性。为了弥补沿线更大范围内资料的不足,把公路沿线九个冻土研究点上探明的冻土特征规律应用于地质地理条件类同的地段,同时利用航片补充编图区的冻融地质作用和冻土特征。 青藏公路沿线多年冻土图(1:60万)包括青藏公路沿线年平均气温等值线图(1:720万)和青藏公路沿线多年冻土图(1:60万),其中青藏公路沿线多年冻土图中又包含多年冻土类型、岩性、冻土现象、贯通融区类型、冻土工程分类、地质构造断裂等信息。本数据仅对多年冻土信息进行了数字化,其空间范围北起青藏公路的大西滩,南至桑雄,长达近800公里,宽约40-50公里。 本数据集包括:矢量化的青藏公路沿线多年冻土图和《青藏公路沿线多年冻土图》扫描图,其中青藏公路沿线多年冻土图的属性信息如下: A-1;Continuous permafrost;大片多年冻土区;>0°C;残留多年冻土层、隔年层 A-2;Continuous permafrost;大片多年冻土区;0~-0.5°C;0-25m A-3;Continuous permafrost;大片多年冻土区;-0.5~-1.5°C;25-60m A-4;Continuous permafrost;大片多年冻土区;-1.5~-3.5°C;60-120m A-5;Continuous permafrost;大片多年冻土区;<-3.5°C;>120m B-1;Island permafrost ground;岛状多年冻土;季节冻土(Seasonal Frozen Ground); B-2;Continuous permafrost;大片多年冻土区;>0°C;残留多年冻土层、隔年层 B-3;Island permafrost extent;岛状多年冻土区;0~-0.5°C;0-25m B-4;Island permafrost extent;岛状多年冻土区;-0.5~-1.5°C;25-60m B-5;Island permafrost extent;岛状多年冻土区;-1.5~-3.5°C;60-120m
童伯良, 李树德, 卜觉英, 邱国庆
该数据源是1991-1996年,俄罗斯出版1:250的《Geocryological Map of Russia and Neighbouring Republics》系列图,该图采用俄语标注,共16幅。1998年,Zaitsev等将其翻译为英文。这次数字化,将选择其中的7个主题进行数字化,分别为:1)Distribution of frozen and unfrozen ground,2)Mean annual temperature of unfrozen ground at the depth of zero annual amplitude” might be awkward as we do not know where is the depth of zero amplitude, and lack data, generally. 3)Thickness of permafrost,4)Depth from the surface and thickness of relict permafrost, 5)Distribution of permafrost containing cryopegs, 6)Thickness of permafrost containing cryopegs, 7)Distribution of permafrost with depth。 1、该数据包括两个矢量图层:(1)冻土分布层(permofrostpermafrost distribution)(2)冻土温度层(permafrost_temperature)(3)冻土厚度图(permafrost thickness)(4)冻土形成条件(permafrost formation conditions)(5)纠正图像(Correction Image) 2.冻土层分布图包括以下几个字段:AREA,PERIMETER,FROZEN_,FROZEN_ID:POLY_,POLY_,RINGS_OK,RINGS_NOK,A,冻土层:FROZEN_SOI,温度。冻土层和FROZEN_SOI是冻土类型的中英文表示。 4、冻土层属性: Frozen-Soil 冻土层 温度水域 Continuous Predominantly unfrozen 连续大片非冻土 1-5 Continuous permafrost 连续多年冻土 -3- -5 Continuous unfrozen ground 连续非冻土 4-6 Discontinuous permafrost 不连续多年冻土 0.5- -2 Predominantly continuous permafrost 大片连续多年冻土 -1- -3 Predominantly unfrozen ground 大片非冻土 1-3 5、投影信息: PROJCS["Asia_North_Equidistant_Conic", GEOGCS["GCS_North_American_1927", DATUM["North_American_Datum_1927", SPHEROID["Clarke_1866",6378206.4,294.9786982]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]], PROJECTION["Equidistant_Conic"], PARAMETER["False_Easting",0.0], PARAMETER["False_Northing",0.0], PARAMETER["longitude_of_center",100.0], PARAMETER["Standard_Parallel_1",15.0], PARAMETER["Standard_Parallel_2",58.3], PARAMETER["latitude_of_center",60.0], UNIT["Meter",1.0]]
Yershow
哈萨克斯坦1:1000万冻土类型图,数据包括三个shp矢量图层: 1、线状ranges.shp,表示冻土范围; 2、面状kaz_perm.shp,冻土层 3、一个属性说明word文档。 kaz_perm属性表包括四个字段ID,REGION,SUBREGION,M_RANGE。 主要的属性对照: 一、Area I. Altai-TienShan 二、Region: High mountains I.1. Altai、I.2. Saur-Tarbagatai、I.3.Dzhungarskyi 、 I.4. Northern Tien Shan、I.5. Western Tien Shan Intermountain depressions I.6. Zaysanskyi、I.7. Alakulskyi、I.8. Iliyskyi II. Western Siberian 二、Region: Planes II.1. Northern Kazakhstanskyi V. Western Kazakhstanskaya III. Kazakh small hills area IV. Turanskaya: IV.1. Turgayskyi IV.2. Near Aaralskyi IV.3. Chuysko-Syrdaryinskyi IV.4. South-Balkhashskyi V. Western Kazakhstanskaya: V.1. Mugodzhar-Uralskyi V.2. Near Caspian V.3. manghyshlak-Ustyrtskyi 三、Sub-region: I.1.1. Western Altai I.1.2. South Altai I.1.3. Kalbinskyi I.2.1. Tarbagatayskyi I.2.2. Saurskyi I.3.1. Nortern Dzhungarskyi I.3.2. Western Dzhungarskyi I.3.3. Southern Dzhungarskyi I.4.1. Kirgizskyi Alatau I.4.2. Zailiyskyi-Kungeyskyi I.4.3. Ketmenskyi I.4.4. Bayankolskyi I.5.1. Karatauskyi I.5.2. Talaso-Ugamskyi 图层投影信息为: GEOGCS["GCS_WGS_1984", DATUM["WGS_1984", SPHEROID["WGS_1984",6378137.0,298.257223563]], PRIMEM["Greenwich",0.0], UNIT["Degree",0.0174532925199433]] 区域的不同代表冻土不同的属性,具体属性信息可从word文档中得知。
Sergei Marchenko
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件