Current Browsing: soil


The response of grassland productivity to soil moisture under grazing disturbance in Heihe Basin

The data include different observation data of Sunan, Gansu Province: 1) The soil properties of grassland under different management measures, soil compactness, water permeability and soil moisture content of 4-5 grazing intensity grassland; 2) The observation data of soil compactness, permeability and water content of different grazing management measures; 3) Correlation analysis data of grassland community characteristic productivity and soil moisture; 4) Correlation analysis data of height, coverage, biomass, flower shape, tiller and leaf characters of main plants with soil water content;

2020-02-20

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on June 28-29, 2012

The first dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Yingke oasis and Huazhaizi desert steppe on 28-29 June, 7, 10, 26 July, 2 August, 2012 (UTC+8). The dataset of ground truth measurements synchronizing with airborne Polarimetric L-band Multibeam Radiometer (PLMR) mission was obtained in the Linze Inland River Basin Comprehensive Research Station on 3 July, 2012. PLMR is a dual-polarization (H/V) airborne microwave radiometer with a frequency of 1.413 GHz, which can provide multi-angular observations with 6 beams at ±7º, ±21.5º and ±38.5º. The PLMR spatial resolution (beam spot size) is approximately 0.3 times the altitude, and the swath width is about twice the altitude. The measurements were conducted in the southwest part of the Zhangye Oasis, which included two sampling plots. One was located in Gobi desert with an area of 1 km × 1 km. Due to its homogeneous landscape, around 10 points were sampled to acquire the situation of soil water content. The other sampling plot was designed in farmlands with a dominant plant type of maize. Ground measurements took place along 16 transects, which were arranged parallelly with an interval of 160 m between each other in the east-west direction. In each 2.4 km long transect, soil moisture was sampled at every 80 m in the north-south direction. Steven Hydro probes were used to collect soil moisture and other measurements. For each sampling point in farmland, two measurements were acquired within an area of 1 m2, with one for the soil covered by plastic film (point name was tagged as LXPXXA) and the other for exposed soil (point name was tagged as LXPXXB). The field campaign started from 11:00 AM, but stopped at 4:00 PM on 28 June because of rain. The rest of measurements were completed from 10:30 AM to 5:30 PM on 29 June. Concurrently with soil moisture sampling, vegetation properties were measured at around 10 locations within the farmland sampling plot. Observation items included: Soil parameters: volumetric soil moisture (inherently converted from measured soil dielectric constant), soil temperature, soil dielectric constant, soil electric conductivity. Vegetation parameters: biomass, vegetation water content, canopy height. Data and data format: This dataset includes two parts of measurements, i.e. soil and vegetation parameters. The former is as shapefile, with measured items stored in its attribute table. The measured vegetation parameters are recorded in an Excel file.

2019-09-15

HiWATER: Dataset of soil parameters in the midstream of the Heihe River Basin (2012)

This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.

2019-09-15

HiWATER: BNUNET soil moisture and LST observation dataset in the midstream of the Heihe River Basin (2012)

This dataset includes soil moisture and soil temperature observations of 75 BNUNET nodes during the period from May to September 2012 (UTC+8), which is one type of WSN nodes in the Heihe eco-hydrological wireless sensor network (WSN). The BNUNET located in the observation matrix of the HiWATER artificial oasis eco-hydrology experimental area. Each BNUNET node observes the soil temperature at 4 cm, 10 cm and 20 cm depth, and soil moisture at 4 cm depth with 10 minutes interval. This dataset can be used in the estimation of surface hydrothermal variables and their validation, eco-hydrological research, irrigation management and so on. The detail description please refers to "Data introduction.docx".

2019-09-15

HiWATER: Observation dataset of spectral reflectance in the downstream of the Heihe River Basin

Spectral reflectance observation was carried out for the typical underlying surface and black and white cloth in the low reaches of the Heihe River Basin during the aviation flight experiment in 2014, which will provide basic data set for the preprocessing of the flight data. 1. Observation Instrument PRS-3500 portable spectrometer, with the spectral range is 350-2500 nm, and the reference board. 2. Samples and observation methods The samples including the black and white cloth, the cantaloupe, the Tamarix chinensis, the Populus euphratica, the reeds, the weeds, the Karelinia caspica, the sandy soil, the gobi, the Sophora alopecuroides and so on. Reflectance of the reference board was measure vertically for once and then objective reflectance were measured for five times for each observation objective. 3. Observation time The typical underlying surface vegetation observation was on days of 24 July, 27 July, 31 July, 2014. The black and white cloth simultaneous observation was on 29 July, 2014. 4. Data storage The observation recorded data were stored in excel and the original spectral data were stored in *.sed files derived from the spectrometer, which can be opened by the matched software of the spectrometer or by a txt.

2019-09-15

WATER: Dataset of soil moisture observations in the Linze station foci experimental area from May to Jun, 2008

The dataset of soil moisture observations was obtained by the cutting ring (50cm^3) and ML2X Soil Moisture Tachometer in the Linze station foci experimental area. Surface soil (0-5cm) was measured 2-3 times in 40 subplots of the west-east desert strip on May 24, 25, 28, Jun. 27 and Jul. 11, 2008, 2-4 times in 9 subplots of north-south strip on May 24, 25, 28, Jun. 27 and Jul. 11, 17 times from P1 to P6 strips on Jul. 4 and 8, nine times along LY06 strip on Jun. 6, 15, 29 and Jul. 11, LY07 strip on May 30, Jun. 6, 10, 15, 29 and Jul. 11 and LY08 strip on May 30, Jun. 6 and 10, and once by the cutting ring and three times by ML2X Soil Moisture Tachometer in Wulidun farmland quadrates on May 24, 25, 28, Jun. 29 and Jul. 11. Data were archived as Excel files. See the metadata record “WATER: Dataset of setting of the sampling plots and stripes in the Linze station foci experimental area” for more information of the quadrate locations.

2019-09-15

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-dataset of flux observation matrix (thermal dissipation sap flow velocity Probe) from Jun to Sep, 2012

This dataset includes observational data of sap flow from 14 June to 21 September, 2012. The study area was located in the irrigation area within the middle reaches of the Heihe River Basin, China. Sample trees were selected for installing TDP (thermal dissipation sap flow velocity probe) instruments according to their height and diameter at breast height (DBH); only Popolusgansuensis trees were selected in this study. The TDP instrument is made in China; the model type was TDP30. There were 3 TDP observation sites, i.e., TDP-1, TDP-2 and TDP-3, which were located near the LAS4_S, EC6 and EC8 sites, respectively. The order of tree heights was TDP-2 > TDP-1 > TDP-3, and the order of DBH was TDP-2 > TDP-3 > TDP-1. At each site, 3 representative trees were selected to measure the sap flow. Three TDPs were mounted on the stem of each tree, one each for the southeast, southwest and north directions; the mounting height is 1.3 meters. Each TDP had two probes. The raw TDP data included the temperature difference between the two probes at a frequency of 30 s. The released data include the 10 minute-averaged sap flow rate (cm/h), sap flow flux (cm^3/h), and daily transpiration (mm/d). The sap flow rate and the sap flow flux were calculated according to the temperature difference between the two probes; the shelter-forest transpiration per unit area (Q) was calculated based on the area of shelterbelts and density of Popolusgansuensis trees at each site. The data preprocessing steps included the following. (1) Unphysical data were excluded. (2) Missing data were filled with -6999. (3) Suspicious data, which were most likely caused by probe failure, were marked in red; confirmed bad data were excluded. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Qiao et al. (2015) (for data processing) in the Citation section.

2019-09-15

HiWATER: Simultaneous observation dataset of land surface temperature in the lower of Heihe River Basin on Aug. 01, 2014

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature for different kinds of underlying surface, including the lager areas of homogeneous vegetation with high coverage, water, and concrete floor, while the thermal imager go into the experimental areas of the low reaches. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal imager and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time On 1 August, 2014 2. Observation samples Three field samples were chosen in the fly zone, which were large areas of homogeneous vegetation (with high coverage), water, and concrete floor. 3. Observation method Surface temperature values were observed continuously for each sample using handheld infrared thermometers during the imager went into the flying area. 4. Instrument parameters and calibration The field of view of the handheld infrared thermometer is one degree and the emissivity was assumed to be 0.95. All instruments were calibrated on 31 July, 2014 using a black body. 5. Data storage All the observation data were stored in an excel.

2019-09-15

HiWATER: Dataset of ground truth measurements synchronizing with airborne PLMR mission in the Yingke oasis and Huazhaizi desert steppe on July 10, 2012

On July 10, 2012, the airborne flight and ground observation was synchronously carried out in the PLMR quadrat of Yingke Oasis and the Huazhaizi Desert. PLMR (Polarimetric L-band Multibeam Radiometer) is a dual-polarized (H/V) L-band microwave radiometer with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, and a resolution of 1 km (relative flight height of 3 km).The radiometer has 6 beams to observe synchronously, and the incident angles are ±7º,±21.5º,±38.5º, and the sensitivity is less than 1K. The flight observation mainly covers the artificial oasis eco-hydrological test area in the middle reaches. This ground-synchronized data set provides a basic ground dataset for developing and validating passive microwave remote sensing inversion soil moisture algorithms. Quadrat and sampling strategy: The observation area is located in the transition zone between the southern margin of Zhangye Oasis and Anyang beach desert, the west side of Zhang (Zhangye)-Da (Daman) highway. It is divided into two parts by the main canal of the Dragon Canal from North to South. The Southwest area is a desert quadrat with the size of 1 km×1 km. The desert is relatively homogeneous, so soil moisture of 5 points in the 1 km quadrat are collected (1 point of each corner and the center point, in the actual measurement process, several extra points can be measured along the road). The four corner points are 600 meters away from each other,except the diagonal direction. And the southwest corner point is Huazhaizi Desert Station, for the convenience of comparison with weather station data. On the northeast side, a large size quadrat of 6 km×1.6 km is selected for simultaneous observation of the oasis underlying surface.In order to obtain the brightness temperature comparison with the PLMR observation, the quadrat was chose based on the following factors :surface coverage representative, avoiding the residential and greenhouses, crossing the oasis farmland and part of the Southern desert, accessibility, and observation time(road consumption). Taking the resolution of PLMR observations into consideration, in the synchronous observation, 11 sampling lines (East-West distribution) were collected with an interval of 160 meters from the East to the West. Each line from the North to the South was separated by 21 points with an interval of 80 meters. And 4 Hydraprobe Data Acquisition System (HDAS, Reference 2) were used to measure simultaneously. Measurement contents: About 230 points of the quadrat were collected, 2 observations were performed on each point, that is, 2 observations were performed on each sampling point of the film mulched corn field, 1 inside the film (marked as a in the data record), 1 outside the film (marked as b in the data record). Since the HDAS system useed the POGO portable soil sensor, the soil temperature, soil moisture (volumetric water content), loss tangent, soil electrical conductivity, soil complex dielectric real part and imaginary part were obtained by observation. No special simultaneous sampling of vegetation was carried out on the same day. Data: The data set includes two parts: soil moisture observation and vegetation observation. The former saves the data as a vector file, the spatial position is the position of each sampling point (WGS84+UTM 47N), and the measurement information of soil moisture is recorded in the attribute file.

2019-09-14

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (cosmic-ray soil moisture)

This dataset includes the observational data that were collected by two sets of Cosmic-ray Soil Moisture Observation System (COSMOS), named crs_a and crs_b, which were installed near the Daman Superstation in the flux observation matrix from 1 June through 20 September 2012. The land cover in the footprint was maize crop, and the site was located with the cropland of the Daman Irrigation District, Zhangye, Gansu Province. Crs_a was located at 100.36975° E, 38.85385° N and 1557.16 m above sea level; Crs_b was located at 100.37225° E, 38.85557° N and 1557.16 m above sea level. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) then neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual. The procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012). 3) Calibration After the quality control and corrections were applied, soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 must be calibrated using the in situ observed soil moisture within the footprint. This procedure was previously described by Jiao et al. (2013) and Zreda et al. (2012) 4) Computing the soil moisture Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. This procedure was previously described by Jiao et al, (2013) and Zreda et al. (2012) For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Zhu et al. (2015) (for data processing) in the Citation section.

2019-09-14