Current Browsing: soil


The monitoring data of soil and groundwater temperature in Hulugou Watershed from 2016 May to 2016 September

The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.

2020-06-07

Soil moisture in the upstream of the Heihe River Basin

1. The data set is the soil water content data set of the upper reaches of Heihe River Basin, and the data is the measured data of location points from 2013 to 2014. 2. The infiltration data is measured with ech2o. Including 5 layers of soil moisture content and soil temperature 3. Some instruments lack of data due to insufficient battery life, broken roads, stolen instruments and other reasons

2020-06-03

Digital soil mapping dataset of sand content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil sand content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_sand_layer1.tif: 0-5cm soil sand content; hh_sand_layer2.tif: 5-15cm soil sand content; hh_sand_layer3.tif: 15-30cm soil sand content; hh_sand_layer4.tif: 30-60cm soil sand content; hh_sand_layer5.tif: 60-100cm soil sand content;

2020-06-01

Digital soil mapping dataset of silt content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil silt content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_silt_layer1.tif: 0-5cm soil silt content; hh_silt_layer2.tif: 5-15cm soil silt content; hh_silt_layer3.tif: 15-30cm soil silt content; hh_silt_layer4.tif: 30-60cm soil silt content; hh_silt_layer5.tif:60-100cm soil silt content;

2020-06-01

Digital soil mapping dataset of clay content in the Heihe River Basin

According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil clay content in different layers are made by using the digital soil mapping method. The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_clay_layer1.tif: 0-5cm soil clay content; hh_clay_layer2.tif: 5-15cm soil clay content; hh_clay_layer3.tif: 15-30cm soil clay content; hh_clay_layer4.tif: 30-60cm soil clay content; hh_clay_layer5.tif: 60-100cm soil clay content;

2020-06-01

Soil bulk density of representative samples in the Heihe River Basin (2012-2013)

The aerosol optical thickness data of the Arctic Alaska station is based on the observation data products of the atmospheric radiation observation plan of the U.S. Department of energy at the Arctic Alaska station. The data coverage time is updated from 2017 to 2019, with the time resolution of hour by hour. The coverage site is the northern Alaska station, with the longitude and latitude coordinates of (71 ° 19 ′ 22.8 ″ n, 156 ° 36 ′ 32.4 ″ w). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is NC format. The aerosol optical thickness data of Qomolangma station and Namuco station in the Qinghai Tibet Plateau is based on the observation data products of Qomolangma station and Namuco station from the atmospheric radiation view of the Institute of Qinghai Tibet Plateau of the Chinese Academy of Sciences. The data coverage time is from 2017 to 2019, the time resolution is hour by hour, the coverage sites are Qomolangma station and Namuco station, the longitude and latitude coordinates are (Qomolangma station: 28.365n, 86.948e, Namuco station Mucuo station: 30.7725n, 90.9626e). The source of the observed data is retrieved from the radiation data observed by mfrsr instrument. The characteristic variable is aerosol optical thickness, and the error range of the observed inversion is about 15%. The data format is TXT.

2020-05-25

Soil bulk density of representative samples in the Heihe River Basin

The data set includes soil bulk density data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.

2020-05-25

Soil organic carbon concentrations of representative samples in the Heihe River Basin

The data set includes soil organic carbon concentrations data of representative soil samples collected from July 2012 to August 2013 in the Heihe River Basin. The first soil survey was conducted in 2012. After the representativeness evaluation of collected samples, we conducted an additional sampling in 2013. These samples are representative enough to represent the soil variation in the Heihe River Basin, of which the soil variation in each landscape could be accounted for. The sampling depths in field refer to the sampling specification of Chinese Soil Taxonomy, in which soil samples were taken from genetic soil horizons.

2020-05-25

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2013)

This dataset includes the observational data from 20 September, 2012, through 31 December, 2013, collected by the Cosmic-ray Soil Moisture Observation System (COSMOS), called crs, which waslocated at 100.372° E, 38.856° N and 1557 m above sea level,near the Daman Superstation in the Daman Irrigation District, Zhangye City, Gansu Province. The land cover in the footprint was a maize crop. The bottom of the probe was 0.5 m above the ground, and the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), the sample time of fast neutrons (N1ET, s), and the sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Quality control Data were deleted and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity exceeded 80% inside the probe box, (c) the samping durationwere less than 59 minutes or greater than 61 minutes and (d) the neutron count differed from the previous value by more than 20%. 2) Air pressure correction An air pressure correction was applied to the quality-controlled raw data according to the equation containedin the equipment manual. 3) Calibration After the quality control and corrections were applied, the soil moisture was calculated using the equation in Desilets et al. (2010), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture recordedby SoilNET within the footprint. 4) Soil moisture computation Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation specified in the equipment manual. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Zhu et al. (2015) (for data processing) in the Citation section.

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (cosmic-ray soil moisture of Daman Superstation, 2017)

The data set contains observation data of cosmic-ray instrument (crs) from January 1, 2017 to December 31, 2017. The site is located in the farmland of Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is cornfield. The latitude and longitude of the observation site is 100.3722E, 38.8555N, the altitude is 1556 meters. The bottom of the instrument probe is 0.5 meter from the ground, and the sampling frequency is 1 hour. The original observation items of the cosmic-ray instrument include: voltage Batt (V), temperature T (°C), relative humidity RH (%), air pressure P (hPa), fast neutron number N1C (number / hour), thermal neutron number N2C (number / hour), fast neutron sampling time N1ET (s) and thermal neutron sampling time N2ET (s). The data was released after being processed and calculated. The data includes: Date Time, P (pressure hPa), N1C (fast neutrons one/hour), N1C_cor (pressure-corrected fast neutrons one/hour) and VWC ( soil water content %), it was processed mainly by the following steps: 1) Data Screening There are four criteria for data screening: (1) Eliminating data with a voltage less than or equal to 11.8 volts ; (2) Eliminating data with a relative humidity greater than or equal to 80%; (3) Eliminating data with a sampling time interval not within 60 ± 1 minute; (4) Eliminating data with fast neutrons that vary by more than 200 in one hour. In addition, missing data is supplemented with -6999. 2) Air Pressure Correction The original data is corrected by air pressure according to the fast neutron pressure correction formula mentioned in the instrument manual, and the corrected fast neutron number N1C_cor is obtained. 3) Instrument Calibration In the process of calculating soil moisture, it is necessary to calibrate the N0 in the calculation formula. N0 is the number of fast neutrons under the situation with low antecedent soil moisture . Usually, soil samples in the source area are used to obtain measured soil moisture (or obtained by relatively dense soil moisture wireless sensors) θm (Zreda et al. 2012) and the fast neutron correction data N in corresponding time periods, then NO can be obtained by reversing the formula. Here, the instrument is calibrated according to the Soilnet soil moisture data in the source region of the instrument, and the relationship between the soil volumetric water content θv and the fast neutron is established. The data of June 26-27, and July 16-17, respectively, which have obvious differences in dry and wet conditions, were selected. The data from June 26 to 27 showed low soil moisture content, so the average of the three values of 4 cm, 10 cm and 20 cm was used as the calibration data, and the variation range was 22% to 30%; meanwhile , the data from July 16 to 17 showed high soil moisture content, so the average of the two values of 4cm and 10 cm was used as the calibration data, and the variation range was 28% - 39%, and the final average N0 was 3597. 4) Soil Moisture Calculation According to the formula, the hourly soil water content data is calculated. Please refer to Liu et al. (2018) for information of hydrometeorological network or site, and Zhu et al. (2015) for observation data processing.

2020-04-10