This data includes the coverage data set of vegetation in one growth cycle in five stations of Daman super station, wetland, desert, desert and Gobi, and the biomass data set of maize and wetland reed in one growth cycle in Daman super station. The observation time starts from May 10, 2014 and ends on September 11, 2014. 1 coverage observation 1.1 observation time 1.1.1 super station: the observation period is from May 10 to September 11, 2014. Before July 20, the observation is once every five days. After July 20, the observation is once every 10 days. A total of 17 observations are made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 1.1.2 other four stations: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; Other four stations: May 10, 2014, May 20, 2014, May 30, 2014, June 10, 2014, June 20, 2014, June 30, July 10, 2014, July 20, August 5, 2014, August 17, 2014, September 11, 2014 1.2 observation method 1.2.1 measuring instruments and principles: The digital camera is placed on the instrument platform at the front end of the simple support pole to keep the shooting vertical and downward and remotely control the camera measurement data. The observation frame can be used to change the shooting height of the camera and realize targeted measurement for different types of vegetation. 1.2.2 design of sample Super station: take 3 plots in total, the sample size of each plot is 10 × 10 meters, take photos along two diagonal lines in turn each time, take 9-10 photos in total; Wetland station: take 2 sample plots, each plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 3 other stations: select 1 sample plot, each sample plot is 10 × 10 meters in size, and take 9-10 photos for each survey; 1.2.3 shooting method For the super station corn and wetland station reed, the observation frame is directly used to ensure that the camera on the observation frame is far higher than the vegetation crown height. Samples are taken along the diagonal in the square quadrat, and then the arithmetic average is made. In the case of a small field angle (< 30 °), the field of view includes more than 2 ridges with a full cycle, and the side length of the photo is parallel to the ridge; in the other three sites, due to the relatively low vegetation, the camera is directly used to take pictures vertically downward (without using the bracket). 1.2.4 coverage calculation The coverage calculation is completed by Beijing Normal University, and an automatic classification method is adopted. For details, see article 1 of "recommended references". By transforming RGB color space to lab space which is easier to distinguish green vegetation, the histogram of green component A is clustered to separate green vegetation and non green background, and the vegetation coverage of a single photo is obtained. The advantage of this method lies in its simple algorithm, easy to implement and high degree of automation and precision. In the future, more rapid, automatic and accurate classification methods are needed to maximize the advantages of digital camera methods. 2 biomass observation 2.1 observation time 2.1.1 corn: the observation period is from May 10 to September 11, 2014, once every 5 days before July 20, and once every 10 days after July 20. A total of 17 observations have been made. The specific observation time is as follows:; Super stations: May 10, 15, 20, 25, 30, 10, 15, 20, 20, 30, 30, 30, 30, 30, 7, 10, 10, 10, 10, 10, 15 2.1.2 Reed: the observation period is from May 20 to September 15, 2014, once every 10 days, and 11 observations have been made in total. The specific observation time is as follows:; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2 observation method Corn: select three sample plots, and select three corn plants that represent the average level of each sample plot for each observation, respectively weigh the fresh weight (aboveground biomass + underground biomass) and the corresponding dry weight (85 ℃ constant temperature drying), and calculate the biomass of unit area corn according to the plant spacing and row spacing; Reed: set two 0.5m × 0.5m quadrats, cut them in the same place, and weigh the fresh weight (stem and leaf) and dry weight (constant temperature drying at 85 ℃) of reed respectively. 2.3 observation instruments Balance (accuracy 0.01g), oven. 3 data storage All the observation data were recorded in the excel table first, and then stored in the excel table. At the same time, the data of corn planting structure was sorted out, including the plant spacing, row spacing, planting time, irrigation time, except for the parent time, harvesting time and other relevant information.
2020-03-14
This data set includes the continuous observation data set of soil texture, roughness and surface temperature measured by the vehicle borne microwave radiometer on November 15-16, 2013 in the farmland of jiushe, Kangning, Zhangye City, Gansu Province. The surface temperature includes the soil temperature data observed by the temperature sensor at the soil depth of 0 cm, 1 cm, 3 cm, 5 cm and 10 cm. The time frequency of conventional observation of soil temperature is 5 minutes. Data details: 1. Time: November 15-16, 2013 2. data: Bright temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 18.7 and 36.5ghz v-polarization and H-polarization data (10.65ghz band instrument damaged) Soil temperature: use the sensor installed on dt85 to measure the soil temperature of 0cm, 1cm, 3cm, 5cm and 10cm Soil texture: soil samples measured in Beijing Normal University Soil roughness: measured by roughness meter provided by northeast geography 3. Data size: 4.8m 4. Data format:. Xls
2020-03-13
On July 26, 2012, the airborne ground synchronous observation was carried out in the plmr quadrat in the dense observation area of Daman. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The flight mainly covers the middle reaches of the artificial oasis eco hydrological experimental area. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: The observation area is located in the matrix of the dense observation area of Daman, and the detailed plan with an area of 3.0KM × 2.4km is selected to carry out synchronous observation on the underlying surface of oasis. The selection of the sample is mainly based on the representativeness of the surface coverage, accessibility and observation (road consumption) time, so as to obtain the comparison of brightness and temperature with plmr observation. Considering the resolution of plmr observation, 5 splines (east-west distribution) were collected at an interval of 450 m in the east-west direction. Each line has 31 points (north-south direction) at an interval of 100 m, and 5 hydraprobe data acquisition systems (HDAS, reference 2) were used for simultaneous measurement. Measurement content: About 150 points on the quadrat were obtained, each point was observed twice, that is to say, two times were observed at each sampling point, one time was inside the film (marked as a in the data record) and one time was outside the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and imaginary part of soil complex dielectric are observed. Because the vegetation in this area has been sampled and observed once every five days, no special vegetation synchronous sampling has been carried out on that day. Data: This data set consists of two parts: soil moisture observation and vegetation observation. The former saves data in vector file format, and the spatial location is the location of each sampling point (WGS84 + UTM 47N). Soil moisture and other measurement information are recorded in attribute file.
2020-03-13
This data set includes the continuous observation data set of light temperature and surface temperature and humidity measured by the vehicle borne microwave radiometer from November 10 to 14, 2013 in aroucaochang, arouxiang, Qilian County, Qinghai Province. The surface temperature and humidity include six layers of temperature sensor at the soil depth of 1cm, 3cm, 5cm, 10cm, 15cm, 20cm and six layers of humidity sensor at the soil depth of 0-5cm. The time frequency of routine observation of soil temperature and humidity is 5 minutes. Data details: 1. Time: November 10-14, 2013 2. data: Brightness temperature: observed by vehicle mounted multi frequency passive microwave radiometer, including 6.925, 10.65, 18.7 and 36.5ghz V polarization and H polarization data Soil temperature: use the sensor installed on dt80 and dt85 to measure the soil temperature of 1cm, 5cm, 10cm, 20cm, and 1cm, 3cm, 5cm, 10cm, 15cm, which is measured by the sensor connected to dt80 Soil moisture: use h-probe sensor to measure 0-5cm soil moisture, the probe can measure 0-5cm soil temperature at the same time 3. Data size: 16.7M 4. Data format:. Xls
2020-03-13
This data set is typical specific emissivity data set of Heihe River Basin. Data observation is from March 25, 2014 to June 30, 2015. Instrument: Portable Fourier transform infrared spectrometer (102f), hand-held infrared thermometer Measurement method: 102f was used to measure the radiation values of cold blackbody, warm blackbody, observation target and gold plate. Using the radiation value of the cold and warm blackbody, the 102f is calibrated to eliminate the influence of the instrument's own emission. By using the iterative inversion algorithm based on smoothness, the specific emissivity and the object temperature are inversed. The specific emissivity range is 8-14 μ m, and the resolution is 4cm-1. This data set contains the original radiation curves (in ASCII format) and recording files of cold blackbody, warm blackbody, measured target and gold plate obtained by 102f.
2020-03-13
This data set was acquired by L & K band airborne microwave radiometer on July 8, 2008 in Linze flight area. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 10:00 (Beijing time, the same below) and landed at 13:38. 10: At 23-13:10, the flight altitude was about 1900m and the flight speed was about 230-250km / hr. Among them, 12:21-12:27 low flying Linze reservoir line 1-6 has a relative altitude of 100m and a flight speed of 190km / hr. 12: 56-13:08 low flying desert marking twice (line 1-7, first North to south, then south to North). The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
2020-03-10
This data set was acquired by K & Ka band airborne microwave radiometer on March 29, 2008, in the Binggou watershed flight zone. Among them, K-band frequency is 18.7ghz, zenith angle observation, no polarization information; Ka band frequency is 36.0ghz, scanning imaging, scanning range ± 12 °, vertical polarization observation. The plane took off from Zhangye airport at 8:49 (Beijing time, the same below) and landed at 12:54. 9: At 25-12:08, 18 routes were flown according to the scheduled design, with a flight altitude of about 5000m and a flight speed of about 220-250km / hr. The original data is divided into two parts: microwave radiometer data and GPS data. The K-band of microwave radiometer belongs to non imaging observation, and the digital value obtained from instantaneous observation is recorded in the text file. Ka band belongs to imaging observation, which is different from L band and K band data. The original record of Ka band is hexadecimal text file. In data processing, the hexadecimal file needs to be converted to decimal system first, and then 112 data (the angle difference of each two data points is 24 / 112 = 0.214 degrees) are collected uniformly within the scanning range of 24 degrees. GPS data record the latitude and longitude of the flight and the aircraft attitude parameters. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, microwave observation and GPS record can be linked to match the geographical coordinate information for microwave observation. When processing Ka band data, the angle scanning effect should also be considered, and 112 data in the scanning period should be given geographical coordinate information respectively. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of K-band is consistent with that of observation footprint. The reference resolution is: x = 0.24h; the resolution of Ka band is 39m. After the above steps, we can get the products that users can use directly.
2020-03-09
This data set was acquired by L & K band airborne microwave radiometer on July 4, 2008, in the Biandukou-Linze flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 9:48 (Beijing time, the same below) and landed at 14:14. 10: At 16-11:40, the flight altitude was 3100-3500m and the flight speed was about 230-250km / hr. 12: 16-12:18 low flying Linze reservoir line 1-6, relative altitude 100m, flight speed 190km / hr. 12: At 26-13:42, he worked in Linze photography area, with a flight altitude of about 2000m and a flight speed of about 250km / hr. 13: 49-13:51 fly low again to Linze reservoir line 1-6. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
2020-03-09
This data set was acquired by the L & K band airborne microwave radiometer on the morning of April 1, 2008, in the A'rou flight zone. The frequency of L-band is 1.4GHz, and the backsight is 35 degrees to obtain dual polarization (H and V) information; the frequency of K-band is 18.7ghz, and there is no polarization information. The plane took off from Zhangye airport at 8:06 (Beijing time, the same below) and landed at 11:17. 8: 50-10:13 fly from north to south, observe and reserve 10 routes, flight height is about 4100m, flight speed is about 260km / hr. 10: At 20-10:35, Jiafei 6-8 and 6-9 lines completed the observation. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are non imaging observations. The digital values obtained from the instantaneous observation are recorded in the text file, and the longitude and latitude as well as the aircraft attitude parameters are recorded in the GPS data. When using microwave radiometer to observe data, it is necessary to convert the digital value recorded into the bright temperature value according to the calibration coefficient (the calibration coefficient file is filed with the original observation data). At the same time, through the clock records of microwave radiometer and GPS, we can connect the microwave observation with GPS record and match the geographic coordinate information for the microwave observation. Due to the coarse observation resolution of microwave radiometer, the effects of aircraft yaw, roll and pitch are generally ignored in data processing. According to the target and flight relative altitude (H), after calibration and coordinate matching, the observation information can also be gridded. The resolution (x) of L band and K band is consistent with that of observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24h. After the above steps, we can get the products that users can use directly.
2020-03-09
Advanced along orbit scanning radiometer (AATSR) is an advanced tracking scanning radiometer sensor mounted on the European Space Agency ENVISAT satellite. It is one of many high-precision and stable infrared radiometers for retrieving sea surface temperature (SST). Its accuracy can reach 0.3k, and it can also be used to record meteorological data. AATSR is a multi-channel imaging radiometer. Its main goal is to provide global ocean surface temperature with high accuracy and stability for monitoring the earth's climate change. At present, there are 38 ENVISAT AATSR images in Heihe River Basin. The acquisition time is 2008-05-17 (2 scenes), 2008-05-27 (2 scenes), 2008-05-30 (2 scenes), 2008-06-02 (2 scenes), 2008-06-12 (2 scenes), 2008-06-15 (2 scenes), 2008-06-18 (2 scenes), 2008-06-21 (2 scenes), 2008-07-04 (2 scenes), 2008-07-072008-07-102008-07-172008-07-202008-07-232008-07-262008-08-022008-08-052008-08-082008 -08-11,2008-08-14,2008-08-21,2008-08-24,2008-08-27,2008-08-30,2008-09-06,2008-09-12,2008-09-15,2008-09-18,2008-09-25。 The product level is L1B, which has been corrected by radiation but not by geometry. The ENVISAT AATSR remote sensing data set of Heihe comprehensive remote sensing joint test was obtained through the China EU "dragon plan" project (Project No.: 5322) (see the data use statement for details).
2020-03-09
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn