The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
2022-11-17
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
2022-11-01
This data set includes five periods of lake transparency data, including 1995, 2002, 2005, 2010 and 2015. The data sources are: Landsat 5, Landsat 7 and Landsat 8. Method of use: It is convenient to measure the spectral reflectance. On the basis of analyzing the relationship between the spectral reflectance and the transparency measured synchronously, the semi empirical method is used to select the best band combination, establish the transparency algorithm of Qinghai Tibet Plateau lakes, and obtain the water transparency. The verification of measured points shows that the relative error of water transparency estimation is 35%.
2022-10-20
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
2022-09-23
We propose an algorithm for ice crack identification and detection using u-net network, which can realize the automatic detection of Antarctic ice cracks. Based on the data of sentinel-1 EW from January to February every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking five typical ice shelves(Amery、Fimbul、Nickerson、Shackleton、Thwaiters) in Antarctica as an example, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
2022-08-17
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
2022-08-17
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
2022-04-18
Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.
2022-04-18
This data set is hyperspectral observation data of typical vegetation along Sichuan Tibet Railway in September 2019, using the airborne spectrometer of Dajiang M600 resonon imaging system. Including the hyperspectral data observed in the grassland area of Lhasa in 2019, with its own latitude and longitude. The hyperspectral survey was mainly sunny. Before flight, whiteboard calibration was carried out; when data were collected, there was a target (that is, the standard reflective cloth suitable for the grass), which was used for spectral calibration; there were ground mark points (that is, letters with foam plates), and the longitude and latitude coordinates of each mark were recorded for geometric precise calibration. The DN value recorded by Hyperspectral camera of UAV can be converted into reflectivity by using Spectron Pro software. Hyperspectral data is used to extract spectral characteristics of different vegetation types, vegetation classification, inversion of vegetation coverage and so on.
2022-04-18
The spectral characteristics of different land use types are mainly determined by spectrograph in the surface spectral data set of Qinghai Tibet Plateau. The measured ground features are mainly divided into woodland, (Alpine) shrub, (Alpine) grassland, wetland, cultivated land and bare land. It includes the field observation points in Lhasa, Linzhi, Shigatse, Ali and Naqu. The spectral characteristics of forests were measured based on the different growth stages of vegetation; The spectral characteristics of grassland were measured based on different coverage; The spectral characteristics of cultivated land were measured based on the main crop types, rape flowers and highland barley; The measurements of wetlands were conducted on the rivers, low-lying valleys and lakes; The measurements of bare lands were conducted on the desert, Gobi and roads, which have no vegetation cover. The measurement conducted from July to August in 2019, and the data is daily observation data. The data set can provide a reference for the field verification of remote sensing interpretation.
2022-04-18
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn