北极

简介:北极地区是对气候变化最为敏感的地区之一,长期以来受到了气候变化研究的极大关注。尽管最近一段时间,全球暖化出现了一定程度的减缓甚至停滞的迹象,但北极地区的气候变化在过去几十年间却出现了明显的加速:一方面北极夏秋季的海冰覆盖正在加速融化(如图1),北极海冰覆盖面积历史低值被不断刷新,2012年九月份的海冰覆盖面积仅相当于1979到2000年多年平均海冰面积的51%,相对于上世纪八十年代初,已经有超过一半的海冰在夏天消失了,2002-2011年间海冰面积减少速度是1979-2006年间减少速度的两倍还多...

发布时间:2022-03-10

数据集:70

  • 北极巴伦支海-喀拉海秋季海冰范围 (1289-1993) AD

    1)数据内容:重建的1289-1993年北极巴伦支海-喀拉海秋季海冰范围时间序列; 2)数据来源及加工方法:冰芯、树轮代用资料;多种统计方法建模; 3)数据质量描述:年分辨率,可信度高; 4)数据应用成果及前景:历史时期北极海冰变化特征及对气候变化的响应和影响。巴伦支海-喀拉海地区是中国冬春季极端冷空气南下的关键海区,但观测资料的缺乏限制对其规律和变化机制的认识,重建长时间尺度北极海冰的变化特征对研究全球背景下北极海冰变化和对中国历史气候的影响有重要意义。

    2019-10-23 5468 查看详情

  • 南北极SAR冰盖表面冻融 V1.0(2015-2019)

    目前,基于提出的利用变化检测和决策树算法的SAR冰盖冻融探测算法,利用sentinel-1 EW SAR数据对南北极冰盖月平均冻融进行了探测。同时利用已经开发的基于大数据平台的冻融产品生产模块,国际上首次生产了南极冰盖和格陵兰冰盖冻融产品,通过自动气象站温度数据研制,冰盖冻融探测精度达到90%。目前,数据产品获取时间主要为南北极的夏季,其中南极冰盖产品为1、2、3、10、11、12月和格陵兰的产品为5、6、7、8、9、10月。

    2019-10-23 3202 查看详情

  • 北极植被光谱数据集(2018年7月)

    斯瓦尔巴群岛(又译斯瓦尔巴特、斯匹次卑尔根群岛)。位于北极地区的群岛,是挪威最北界国土范围的属地,它坐落在欧洲大陆北方,于挪威大陆与北极点两者之间。植被主要是地衣和苔藓类,仅有的树木是小极地柳和矮桦木。该地区采集的植被光谱数据集主要是基于北极斯瓦尔巴群岛新奥尔松地区283个样点的先锋植物调查,调查时间为2018年7月6-22日,采集地点包括伦敦岛,黄河站区和冰川前,为北极苔原区植物分布和变化研究提供本底信息。

    2019-10-22 6134 查看详情

  • 北极海冰融池覆盖度遥感反演数据集(2001-2022)V2.0

    夏季阳光照射下,覆盖在冰面上的积雪融化,在冰面上形成的不同形状大小的冰上水池融池。海冰表面融化造成的融池会降低海冰反照率,因而会对极区能量平衡造成显著影响,增加吸收进而加速海冰融化过程。在影响海冰反照率的因素中,融池是最重要且变化最剧烈的因素之一。随着气候的变化,夏季冰融化速度也越来越快。对地球表层的能量平衡具有重要的影响,冰融速度加快也可能使融池这种重要的自然现象成为北极海冰融化季节最显著的冰表面特征之一。融池的反照率介于海水与海冰之间,研究冰上融池也是研究北极海冰快速变化机理的一个重要组成部分。由于海冰融池和海面具有相似的微波信号特征,且受到风速、海冰融化等因素影响利用微波数据进行融池覆盖度的制图具有明显的不确定性,因此最为可靠的融池覆盖度遥感方法为利用中分辨率光学遥感数据(如MODIS)进行亚像元融池覆盖度的制图。本数据集包含利用MODIS数据进行基于动态端元反射率的亚像元分解反演的北极海冰融池覆盖度和海冰密集度。

    2019-10-20 5180 查看详情

  • 全球长时间序列逐日雪深数据集(1980-2018)

    全球雪深数据集采用被动微波遥感反演方法制作,数据覆盖时间从1980年到2018年,时间分辨率为逐日,覆盖范围为全球,空间分辨率为25,067.53 m。遥感反演方法采用动态亮温梯度算法,算法考虑积雪特性在时空和空间上的变化,建立了不同频率亮度温度差与实测雪深在空间和季节上的动态关系。长时间序列星载被动微波亮度温度数据来自SMMR、SSM/I和SSMI/S三个传感器。为保证不同传感器亮度温度在时间上的一致性,在雪深提取之前对不同传感器亮度温度进行了交叉订正。通过实测站点的验证表明全球雪深数据相对偏差在30%以内。数据据每一天存放一个txt文件,每个文件由文件头(投影方式)和1383*586的雪深矩阵组成,每个雪深代表一个25,067.53m*25,067.53m的格网。该数据的投影方式为EASE-Grid,下面是每个文件的文件头,将其加到每个文件的前面可以将数据在arcgis中显示。 ncols 1383 // 数据矩阵共1383列 nrows 586 // 数据矩阵共586 xllcorner -17334193.54 //矩阵x方向左下角网格的角落点坐标 yllcorner -7344787.75 //矩阵y方向轴左下角网格的角落点坐标 cellsize 25,067.53 //每个网格的大小 NODATA_value -1 //缺省值

    2019-07-05 14147 查看详情

  • 耦合模式比较计划第6阶段CNRM-CM6-1模式全球植被生产力月数据(1850-2014)

    该数据集为全球植被生产力数据,包含总初级生产力(GPP)和净初级生产力(NPP)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。

    2019-07-04 8078 查看详情

  • 全球AVHRR遥感植被春季返青期物候(1981-2013)

    本数据集根据最新发布的NOAA全球模拟和绘图项目(GIMMS,Global Inventory Monitoring and Modeling System)长序列(1981-2013)均一化植被指数产品,版本号3g,先将NDVI数据产品从1/12度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。

    2019-06-27 4841 查看详情

  • MODIS遥感植被春季返青期物候(2001-2014)

    本数据集根据NASA EOSDIS LP DAAC 和美国地质调查 USGS EROS共同发布的第六版MODIS均一化植被指数产品(2001-2014)。NDVI的时间分辨率是16天,空间分辨率0.05度,我们先将NDVI数据产品从0.05度空间分辨率重采样到0.5度,然后对每年的时间序列采用double-logistic方法进行平滑,并计算平滑后的曲率,选取春季曲率最大值作为植被的春季返青期,该数据可分析泛北极植被春季物候的时空特征。

    2019-06-22 4079 查看详情

  • 耦合模式比较计划第6阶段CNRM-CM6-1模式全球生态系统呼吸月数据(1850-2014)

    该数据集为全球生态系统呼吸数据,包含生态系统自养呼吸(Ra)和异养呼吸(Rh)两部分,由耦合模式比较计划第6阶段(CMIP6)中CNRM-CM6-1模式在Historical情景下模拟得到。数据时间范围为1850-2014年,时间分辨率为月,空间分辨率约为1.406°×1.389°。模拟数据详细说明可见链接http://www.umr-cnrm.fr/cmip6/spip.php?article11。

    2019-06-21 5548 查看详情

  • 三极人口&GDP数据集(1970-2006)

    数据集包括:北极地区人口及GDP数据(1990-2015)、第三极(甘肃、青海、西藏)地区县级人口及GDP数据(1970-2016)。 社会经济统计属性包括:人口(万人)、GDP(万元)、工农业生产总值(万元)、农业总产值(万元)、工业生产总值(万元) 北极人口数据主要来自经济社会局《世界人口展望:2017年修订版》按照 区域和国家划分的人口总数。 第三极数据主要参考甘肃省统计年鉴、青海省统计年鉴、西藏自治区统计年鉴;甘肃省、青海省、西藏自治区各县县志。

    2019-06-18 5106 查看详情

  • 三极地区通量30分钟数据(2000-2016)

    该数据集是三极地区9个通量站点的30分钟涡度相关通量观测数据,包括生态系统净碳交换量(NEE)、总初级生产力(GPP)和生态系统呼吸(ER)数据,时间范围覆盖2000-2016年。该数据预处理主要步骤包括野点去除(±3σ)、坐标轴旋转(三维风旋转)、Webb-Pearman-Leuning校正、异常值剔除、碳通量插补与分解等,缺失数据通过CO2通量值(Fc)与环境因子之间的非线性经验公式进行插补。

    2019-06-18 5407 查看详情

  • 北极地区高程数据集

    数字高程模型(Digital Elevation Model),简称DEM,是通过有限的地形高程数据实现对地面地形的数字化模拟(即地形表面形态的数字化表达),它是用一组有序数值阵列形式表示地面高程的一种实体地面模型。 北极地区指北极圈66°34′以内的区域和格陵兰岛在北极圈以外的部分。高程数据包括北极数字dem及山影数据(hillshade),tif格式。范围为66°N~90°N,空间分辨率为0.008°×0.008°。 数据下载自NASA全球高程数据 DEM描述的是地面高程信息,它在测绘、水文、气象、地貌、地质、土壤、工程建设、 通讯、军事等国民经济和国防建设以及人文和自然科学领域有着广泛的应用。

    2019-03-14 7747 查看详情

  • 北极1:100万水系数据集(2014)

    北极1:100万水系数据集包括北极范围内不同等级的线型河流(Arctic_River)、多边形水系(Arctic_Water_poly)矢量空间数据及相关属性数据:名称(Name)、类型(Type)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。

    2019-03-09 3575 查看详情

  • 北极1:100万机场数据集(2014)

    北极1:100万机场分布数据集包括北极范围内机场(Arctic_Airport)及机场跑道(Arctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。

    2019-03-09 3979 查看详情

  • 北极1:100万居民点数据集(2014)

    北极1:100万居民点数据集包括北极范围内所有居民点(Arctic_Resident)、首都居民点(Arctic_Capitals)、城市人口大于75k的居民点(Cities_up_to_75K)等矢量空间数据及相关属性数据:城市名称(ENG_NAME)、城市人口(CITY_POP)等属性。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。

    2019-03-08 4413 查看详情

  • 北极1:100万山脉数据集(2014)

    北极1:100万山脉数据集包括北极范围内山脉(Arctic_Mountains)矢量空间分布数据及相关属性数据:名称(Name)、山脉所在国家名称(CNTRY_NAME)、山脉所在国家简称(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。

    2019-03-07 3424 查看详情

  • 北极1:100万行政边界数据集(2014)

    北极行政边界数据集包括北极范围内国家的国界(Arctic_National),省界(Arctic_Provincial)、县界(Arctic_Prefecture)矢量空间数据集及其对应的名称、类型相关属性数据:(LOCAL_NAME)、(ENG_NAME)、(CNTRY_NAME)、(TYPE)、(CNTRY_CODE)、(CONTINENT) 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)

    2019-03-06 4575 查看详情

  • 北极1:100万道路数据集(2014)

    北极1:100万道路数据集包括北极范围内主要道路(Arctic_Major_Routes)、次要道路(Arctic_Minor_Routes)和铁路(Arctic_railway)矢量空间数据及相关属性数据:道路名称(Name)、类型(Type)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。

    2019-03-04 3479 查看详情

  • 北极(AMAP)和(AHDR)区域边界数据

    北极的两个区域是由北极监测和评估方案工作组和北极人类发展报告确定的。 AMAP北极的地理覆盖范围从高北极地区一直延伸到加拿大、丹麦王国(格陵兰和法罗群岛)、芬兰、冰岛、挪威、俄罗斯联邦、瑞典和美国的亚北极地区,包括相关海域。阿拉斯加北极包含所有《阿拉伯国家、加拿大北部60°N与魁北克省北部和拉布拉多,格陵兰岛,法罗群岛,和冰岛,北县的挪威、瑞典和芬兰。俄罗斯的局势很难用简单的语言来描述。 人口学家划定的区域包括:摩尔曼斯克大爆炸区、涅涅茨人、亚马朗涅茨人、泰梅尔和楚科塔自治州、科米共和国的沃库塔市、克拉斯诺亚尔斯基克雷的诺里尔斯克和伊戈尔卡,以及萨哈共和国边界最接近北极圈的地区。

    2019-02-02 7518 查看详情

  • ERA-Interim 全球地面气温再分析数据集(1979-2016)

    全球ERA-Interim 地面气温再分析数据集(1979-2016)是欧洲中长期天气预报中心(ECMWF)采用ECMWF IFS预报系统(T255,60层),经过窗口为12小时的四维变分同化系统(4DVAR)同化全球不同地区和来源的地表和上层大气的常规观测和卫星遥感资料(TOVS,GOES,Meteosat等)获得。该地面气温(2米气温)数据覆盖时间从1979年1月到2016年12月,时间分辨率为6小时,水平分辨率0.75°,覆盖全球,投影方式为等经纬度投影。数据每个月存放一个NetCDF格式文件,包含经度(longitude)、纬度(latitude)、时间(time)、气温(t2m,单位:K)四个变量,纬向241个格点,经向480个格点。

    2018-08-25 10817 查看详情