黄河源多年冻土分布数据是基于黄河源区多年冻土年均地温模型而建立的,以年平均地温0℃作为划分季节冻土和多年冻土的标准和界限。与目前可利用的黄河源区冻土分布图有青藏高原冻土图(1:300万)和青藏高原多年冻土本底调查项目完成的青藏高原冻土分布图(1:100万)相比,该数据集基于黄河源区实测数据,与实测数据有更高的吻合性,冻土分布图的模拟精度也最高。该数据集可用于黄河源区多年冻土分布研究的验证,也可用于冻土环境等方面的研究。
盛煜, 李静
This dataset includes daily water vapor and precipitation isotopes (δ18O and δD) and daily meteorological parameters including temperature, relative humidity, vapor concentration, air pressure, and precipitation amount at Nanjing, eastern China. Water vapor isotopes (δ18Ov and δDv) were online measured during November 2012 to December 2018 by a Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model: Picarro L2120-i) at the Station for Observing Regional Processes of the Earth System of Nanjing University (SORPES-NJU, 32.12°N, 118.95°E, 55 m above sea level) on the Xianlin Campus of the Nanjing University, about 20 km east of downtown Nanjing in the Eastern China. The uncertainties were determined to be less than 0.2‰ for δ18Ov and 1.0‰ for δDv. Precipitation isotopes were also measured by Picarro L2120-i during September 2011 to December 2018, with the analytical uncertainty of less than 0.1‰ for δ18O and 0.5‰ for δD.
庞洪喜
高质量高时空分辨率降水产品在理解全球和区域尺度的“水-碳-能”循环研究中扮演重要角色。卫星遥感为监测降水高时空变异特征提供了不可替代的手段,尤其是在自然条件恶劣的无资料地区。但由于是间接估算而来,卫星遥感降水产品不可避免地存在系统偏差和随机误差。聚焦于目前主流的遥感降水产品(GPM IMERG及其回推产品,0.1°/half-hourly,2000-present)获取过程中的潜在不足,如该产品的矫正时空尺度为1.0°/monthly,本研究在更高时空尺度上提出一套新的时空矫正算法,并引入高质量地面观测产品APHRODITE(0.25°/daily),生产了一套亚洲地区同期高质量高时空分辨率降水数据集AIMERG(0.1◦/half-hourly,2000–2015)。AIMERG降水数据集能够同时有效考虑卫星估计和地面观测的各自优势,其系统偏差和随机误差在中国地区不同时空尺度上的表现优于GPM IMERG,为亚洲地区相关领域的科学研究及生产实践提供了更为丰富且可靠的基础数据。
马自强
包含青藏高原地区气溶胶类型和气溶胶光学厚度,两类数据。 气溶胶类型数据产品是综合利用MEERA 2同化资料和主动卫星CALIPSO产品经过一系列数据预处理、质量控制、统计分析和对比分析等过程而融合得出的气溶胶类型结果。该气溶胶类型融合算法的关键是对CALIPSO气溶胶类型的判断。融合时根据CALIPSO气溶胶类型的种类和质控,并参考MERRA 2气溶胶类型得到最终气溶胶类型数据(共12种)和质量控制结果。充分考虑了气溶胶的垂直分布以及空间分布,具有较高的空间分辨率(0.625°×0.5°)和时间分辨率(月)。 气溶胶光学厚度(AOD)采用自主研发的可见光波段遥感反演方法,结合Merra-2模式数据与NASA的官方产品MOD04制作,数据覆盖时间从2000年到2019年,时间分辨率为逐日,空间分辨率为0.1度。反演方法主要采用自主研发的APRS算法,反演了冰雪上空的气溶胶光学厚度,算法考虑了冰雪地表的BRDF特性,适用于冰雪上空气溶胶光学厚度的反演。通过实测站点验证表明,数据相对偏差在35%以内,可有效提高极区气溶胶光学厚度的覆盖率和精度。
光洁, 赵传峰
泛第三极主要城市2000-2017年土地覆盖数据包含2000/2010/2017年14个城市(乌鲁木齐、西宁、兰州、达卡、加德满都、勒克瑙、德里、拉合尔、伊斯兰堡、喀布尔、杜尚别、塔什干、比什凯克、阿拉木图)30米分辨率的数据。包括植被、耕地、人造地表、水体和其它五种地类。利用GlobeLand30, MCD12Q1,Globcover2009识别了分类一致区域并保留,采用深度学习方法对分类不一致区域重新分类,融合两类区域得到最终的分类结果。 每年数据均经过人工目视解译验证。 数据应用于泛第三极城市建设用地变化、人类活动影响的研究。 数据类型:栅格。 投影方式:UTM投影。
栾文飞, 李新
青藏高原五大河源区冰川径流数据集覆盖时间从1971年到2015年, 时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源)。 数据以多源遥感和实测数据为基础,使用青藏高原五大河源区及其周边气象站点日尺度气象数据、UMD-1KM的全球植被产品、IGBP-DIS土壤数据库、第一、二次冰川编目数据等驱动模型,耦合了冰川模块的分布式水文模型VIC-CAS模拟形成了冰川径流数据。并使用站点实测数据对模拟结果进行了验证, 增强质量控制。 数据指标包含:冰川径流率(Rate of glacier runoff: %),总径流(Total Runoff,mm/a),雪径流率(Rate of snow runoff: %),降雨径流率 (降雨径流率:%)。
王世金
这组数据是1974-2016年期间珠峰北坡绒布流域三条绒布冰川及表碛覆盖冰川三个时间段的年均冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由三个阶段的DEM高程差数据DHPRISM2006-DEM1974(DH2006-1974)、DHSRTM2000-DEM1974(DH2000-1974)、DHASTER2016-SRTM2000(DH2016-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHPRISM2006-DEM1974, or DH2006-1974, 是2006年PRISM2006 数据和1974年DEM1974之间的高程差,即DH2006-1974 =PRISM2006 – DEM1974。PRISM2006是由2006年12月4日的光学立体像对遥感数据ALOS/PRISM生成。DEM1974是由我国早期1:50,000地形图生成的,这两期DEM都采用横轴墨卡托投影、Krasovsky1940椭球体。PRISM2006与DEM1974配准后,非冰川区高程数据精度为±0.24 m a-1。DHSRTM2000-DEM1974(DH2000-1974)是,2000年SRTM与DEM1974的高程差,两期DEM数据配准后,非冰川区高程数据精度为±0.03 m a-1。DHASTER2016-SRTM2000(DH2016-2000)是基于Brun et al. (2017) 发布的冰面高程差数据,采用与DH2006-1974、DH2000-1974一样的数据处理方法与处理过程而得到, 在非冰川区高程数据精度为±0.08 m a-1。表格中包括的数据项有:Shape_Area,冰川面积(m2)、Name冰川名,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_16表示2000-2016年间冰川每年的冰面高程变化(m a-1),EC74_2006是1974-2006年间冰川年均冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_16表示2000-2016年每条冰川年均冰川物质平衡数据(m w.e. a-1),MB74_2006表示1974-2006年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2016表示2000-2016年间每条冰川每年的冰储量变化(m3w.e. a-1),MC74_2006表示1974-2006年间每条冰川每年的冰储量变化(m3w.e. a-1), Uncerty_EC,是每条冰川冰面高程变化的最大误差范围(m a-1)、Uncerty_MB,是每条冰川冰川物质平衡的最大误差(m w.e. a-1),Uncerty_MC, 是每条冰川冰储量变化的最大误差(m3w.e. a-1)。 MinUnty_EC,是每条冰川冰面高程变化的最小误差范围,MinUnty_MB,每条冰川冰川物质平衡的最小误差(m w.e. a-1),MinUnty_MC是每条冰川冰储量变化的最小误差(m3w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
该数据提供了青藏高原内陆流域582个面积大于1平方公里的湖泊从1986-2019的年湖泊面积。 首先根据JRC和SRTM DEM数据,识别研究区内582个大于1 km2的湖泊。利用Landsat5/7/8所有覆盖湖泊的遥感影像合成每年的Landsat影像,根据NDWI指数和Ostu算法动态分割每个湖泊,并据此计算每个湖泊1986-2019年湖泊面积大小。 本研究基于Landsat卫星遥感影像,利用Google Earth Engine 处理了所有Landsat影像,建立了至今为止最全的青藏高原地区大于1平方公里的年湖泊面积数据集;开发了一套湖泊面积自动提取算法,实现单个湖泊多年面积的批量计算;该数据对分析青藏高原地区湖泊面积动态、水量平衡,及研究青藏高原湖气候变化有重要意义。
朱立平, 彭萍
2002-2018年北半球高纬地区中分辨率MODIS河湖冰覆盖度数据集是基于MODIS的归一化积雪指数数据,利用SNOWMAP算法对晴空条件下的逐日河湖冰覆盖范围进行检测,并通过对河湖面的时间、空间的连续性等一系列步骤重新确定云覆盖条件下的河湖冰覆盖范围。通过这一系列的处理后,获得少云的逐日河湖冰覆盖度数据集。该数据集中获得的湖冰物候信息与被动微波数据的信息高度一致,平均相关系数为0.91,RMSE值在0.07至0.13之间变化。
邱玉宝
This is a dataset of treeline shift rates including 143 alpine treeline sites in the Northern Hemisphere. It gives the following information for each treeline site: treeline form, study site, latitude, longitude, reference, tree species, elevation, study period and annual mean elevational shift rate (m/yr).
LU Xiaoming, Eryuan Liang
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要指标。但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行监测,可填补观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集。数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
田帮森, 邱玉宝
利用2004年2月至2008年10月ICESat R633卫星测高数据使用重复轨道平面拟合方法,获取南极Lambert Glacier/Amery Ice Shelf system区域的高程变化,使用IJ05 R2模型进行GIA 改正、投影面积变形改正,进而得到 30km*30km 分辨率的表面高程变化率,通过粒雪密度模型将结果转换为物质变化,和重力卫星 GRACE 重力卫星时变模型所得南极物质变化进行比较。
谢欢, 李荣兴
近年来,随着南极冰盖消融的加速,在冰盖表面形成了大量冰面融水。深入理解南极冰盖冰面融水的时空间分布,掌握冰面融水动态变化,对于研究南极冰盖物质平衡具有重要意义。本数据集是基于Landsat影像提取的2000-2019年南极冰盖典型消融区(南极半岛亚历山大岛)30m冰面融水数据集。本数据集投影为极地方位投影,数据集格式为矢量(shp)和栅格(tif),时间集中在每年的12月至次年2月(南半球夏季)。
杨康
这组数据是1974-2013年期间喜马拉雅山脉西段纳木那尼峰地区年均冰川物质平衡变化和冰储量变化数据集,采用ESRI 矢量多边形格式存储,是由两个阶段的DEM高程差数据DHSRTM2000-DEM1974(即DH2000-1974)、DHTanDEM2013-SRTM2000(DH2013-2000),结合冰川覆盖专题矢量数据、冰密度 850 ± 60 kg m−3计算而来。DHSRTM2000-DEM1974(DH2000-1974), 是2000年SRTM DEM2000数据和1974年1:50,000的DEM1974之间的高程差,即DH2000-1974 =SRTM2000 – DEM1974。DEM1974是由我国1974年航拍照片绘制1:50,000地形图生成的,两期DEM数据配准后,非冰川区高程数据精度为±0.13 m a-1。DHTanDEM2013-SRTM2000(DH2013-2000),是基于2013年10月17日一对TerraSAR-X和TanDEM-X (TSX/TDX)雷达数据与2000年SRTM DEM数据、采用差分干涉技术(D-InSAR)获取,在非冰川区高程数据精度为±0.04 m a-1。 表格中包括的数据项有: Area,冰川面积(m2)、GLIMS_Id表示冰川编号,EC74_00表示1974-2000年间平均每条冰川每年的冰面高程变化(m a-1),EC00_13表示2000-2013年间冰川每年的冰面高程变化(m a-1),MB74_00表示1974-2000年间每条冰川年均冰川物质平衡数据(m w.e. a-1),MB00_13表示2000-2013年每条冰川年均冰川物质平衡数据(m w.e. a-1),MC74_2000表示1974-2000年间每条冰川每年冰储量变化(m3 w.e. a-1),MC00_2013表示2000-2013年间每条冰川每年的冰储量变化(m3 w.e. a-1), Uncerty_MB是每条冰川年均冰川物质平衡数据误差(m w.e. a-1), Uncerty_MC表示每条冰川每年的冰储量变化的最大误差范围(m3 w.e. a-1)。该组数据可用于喜马拉雅山脉与高亚洲地区冰川变化、冰川消融水文水资源效应及其气候原因。
叶庆华
环北极不同类型多年冻土区NDVI变化数据集(1982-2015),时间分辨率为每5年一期,覆盖范围为整个环北极国家, 空间分辨率为8km,以多源遥感、模拟、统计和实测数据为基础, 使用GIS方法和生态学方法结合, 量化了北半球多年冻土对生态系统的调节服务功能, 其所有数据进行了质量控制。利用环北极不同类型多年冻土区划,借助1982-2015年期间NDVI值,使用GIS方法,计算了1982-2015年期间环北极不同类型多年冻土区的NDVI变化,形成了“1982-2015环北极不同类型多年冻土区NDVI变化数据集”。同时,综合多个文献,对其数据进行了质量控制。
王世金
同济大学沈云中教授卫星重力团队利用GRACE Level-1B卫星重力数据解算了2002年至2016年的格陵兰区域质量变化时间序列,空间分辨率为1度×1度,时间分辨率为1个月。该时间序列的参考时间为2004年1月与2009年12月之间的中间时刻。 在数据处理过程中,采用ICE5G模型扣除冰后回弹GIA影响,同时利用德国地学研究中心最新发布的AOD1B RL06去混频模型,回加了GAD质量变化贡献。
沈云中
该数据集包含了2019年6月1日至2019年9月20日的黑河水文气象观测网下游混合林站叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是胡杨与柽柳混合。观测在混合林站(101.1335E, 41.9903N)旁开展,样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
在高寒网各野外站和泛第三极地区境外台站的长期观测数据基础上,建立泛第三极地区气象、水文及生态要素系列数据集;通过重点区域的强化观测与样地和样点验证,完成气象要素、湖泊水量与水质、地上植被生物量、冰川冻土变化等数据产品的反演;基于物联网技术,研制建立多站联网的气象、水文、生态数据管理平台,实现联网数据实时获取与远程控制及共享。 2019年中国高寒地区地表过程与环境观测网络水文数据集,主要收集:藏东南站、珠峰站、玉龙雪山站、纳木错站、阿里站、天山站等六个站 点实测水文(径流、水位、水温等)数据。 藏东南站:流量数据,包含2019年4次利用M9测流数,有平均流速、流量和最大水深等数据;相对水位数据采用hobo压力式水位仪测量,包含2019年全年日均相对水位和水温数据。 纳木错站:流量数据,包括2019年4次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据,水位数据采用hobo压力式水位仪测量,包含2019年原始1小时的水压、水温和电量,通过水压可以计算相对水位; 珠峰站:绒布河流量,包括2019年6-9月13次利用国产LS-1206B手持流速仪测量数据,包含河宽和流量数据; 阿里站:流量数据:包括2019年利用河锚M9不定期测量的22次数据,相对水位数据采用hobo压力式水位仪测量,包含2019年全年每小时水位和水温数据; 天山站:水位数据:包括3个点2019年的日平均水位 玉龙雪山站: 包括木家桥2019年1-10月流量数据
朱立平, 彭萍
1990-2015年中亚大湖区土地覆被数据集,数据范围包括5个国家:哈萨克斯坦、吉尔吉斯斯坦、塔吉克斯坦、乌兹别克斯坦和土库曼斯坦。数据来源于欧空局,精度为300m。全球土地覆盖数据库使用的坐标参考系统是基于世界大地测量系统84 (WGS84)参考椭球面的地理坐标系统(GCS)。 数据共分为22个类别,在每个类别中还有亚类。分类类型使用联合国粮食及农业组织(FAO)开发的土地覆盖分类系统(LCCS)定义,其目的是尽可能与GLC2000、GlobCover 2005和2009产品兼容。
杨宇
山区受到复杂地形影响,其活动层厚度表现出极强的空间异质性。本数据集利用探地雷达方法和其他传统方法系统勘察了黑河上游活动层厚度。数据采集覆盖了不同海拔、地表类型、土壤质地和地形信息,因此具有较强的代表性。根据与其他直接测量活动层厚度方法对比后得到探地雷达测量的活动层厚度数据误差约为8cm,具有非常高的可信度。该数据集可为了解该区域活动层厚度提供详实的野外数据,验证陆面模型,尤其是冻土研究,提供验证数据集。
曹斌
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件