此数据集包含了阿柔冻融观测站2007-07-25至2015-4-27间的观测数据,站点位于青海省祁连县中东部地区的阿柔乡草大板村瓦王滩牧场。经纬度为100°28′E,38°03′N,海拔高度为3032.8m。试验场建在黑河上游支流八宝河南侧的河谷高地上,周围地势相对平坦开阔,自东南向西北略有倾斜下降,南北两侧约3km外是连绵的山丘和高山,符合大气边界层近地层理论中水平均匀下垫面的要求。瓦王滩牧场是当地牧民的冬季牧场,夏季牧草长势良好,植被高度在20-30cm之间。 观测项目有:大气风温湿梯度观测(2m和10m)、气压、降水、辐射四分量、多层土壤温度(10cm、20cm、40cm、80cm、120cm和160cm)、土壤水分(10cm、20cm、40cm、80cm、120cm和160cm)及土壤热通量(5cm和15cm)。 原始的采集器输出数据为0级;初步整理后,没有任何的删除,但是标出疑似有问题的数据为1级;统一整理成30分钟采样周期并经过质量控制的为2级。整理后的将数据逐月存储,命名规则为:站点名+数据级别+AMS+数据日期。建议普通用户用2级以上的数据。 数据观测起始于2007年7月25日,观测至今,之后数据见HiWATER 水文气象网观测数据(http://www.heihedata.org/hiwater/hmon),详细信息请参见下面“其他在线资源”中的“气象水文通量数据使用指南”。
胡泽勇, 马明国, 王维真, 晋锐, 黄广辉, 张智慧, 谭俊磊
2007年10月19日-25日期间,在阿柔加密观测区天然草场开展了多频率、多极化、多角度的地基微波辐射计连续观测。包括X波段地基微波辐射计观测(2007年10月20日-25日),S波段地基微波辐射计观测(2007年10月20日-25日),K波段地基微波辐射计观测(2007年10月19日-24日),Ka波段地基微波辐射计观测(2007年10月20日-24日),主要观测目标为地表的冻融状态对微波亮温的影响。本数据可为发展和验证冻/融土的微波辐射传输正向模型和参数反演算法提供基础数据。 地基微波辐射计的连续观测在阿柔样方1开展,地表类型为干枯状天然草地。地面实况观测数据包括自记观测和人工观测两部分: 1)自记观测:温度探头获得的0cm、5cm、10cm、15cm和20cm土壤温度数据,观测时段为2007年10月21日-25日;TDR探头获得的浅层(0-5cm)、5cm、10cm、15cm及20cm土壤水分,观测时段从2007年10月19日-21日,两者观测时间步长均为5分钟; 2)人工观测:包括手持式外红温度计测量的地表辐射温度;玻璃管温度计测量的0cm、5cm、10cm、15cm和20cm土壤温度;针式温度计测量的0-5cm平均土壤温度,测量时间步长为30分钟,观测时段为2007年10月19日-21日。
白云洁, 曹永攀, 郝晓华, 晋锐, 李弘毅, 李新, 李哲, 秦春, 王维真
2008年4月5日-8日期间,在阿柔加密观测区平整裸土(N38º03.639';E100º26.793';2998m)开展了多频率多极化多角度的地基微波辐射计连续观测,包括S波段地基微波辐射计观测(4月6日-8日),C波段地基微波辐射计观测(2008年4月7日-8日),K波段地基微波辐射计观测(4月5日-8日)及Ka波段地基微波辐射计观测(4月5日)。主要观测目标为地表的冻融状态对微波亮温的影响。 该场地为平整裸土,初始含水量较干约14%,后经人工均匀浇水,含水量可达30%左右。土壤水热观测场布置在微波辐射计观测场东侧,包括5cm土壤温度自动观测(10分钟观测步长);5cm,10cm,20cm和30cm土壤温度人工观测(采用针式温度计,1小时观测步长);5cm,10cm,20cm和30cm土壤水分自动观测(10分钟观测步长)。本数据可为发展冻/融土壤的微波辐射传输正向模型和微波遥感反演模型提供基础数据。 本数据集包括7个文件,分别为:S波段地基微波辐射计观测数据,C波段地基微波辐射计观测数据,K波段地基微波辐射计观测数据,Ka波段地基微波辐射计观测数据,土壤温度自动观测数据,温度人工观测数据,土壤水分自动观测数据。其中水分数据和温度数据都以Excel表格存贮。
曹永攀, 车涛, 郝晓华, 晋锐, 李哲, 王维真, 吴月茹
2007年10月17日夜间,在阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:04BJT。阿柔样方2为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 与卫星过境同步,在阿柔样方2,采用ML2X土壤水分速测仪获取土壤体积含水量;采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
2008年10月9日在阿柔加密观测区和扁都口加密观测区测量了土壤质地数据。主要观测内容为土壤质地和土壤温度。该数据可以作为该地区土壤质地的参考值。 土壤取样位置没有记录下来。测量方法为吸管法。数据以Excel格式存储。
潘金梅, 赵少杰
2008年6月19日,在阿柔样方1、阿柔样方2和阿柔样方3开展Envisat ASAR同步土壤水分观测及探地雷达观测,获取各样方的土壤水分信息;探地雷达开展了1个样带的工作。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:17BJT。包括POGO便携式土壤水分传感器测量的土壤体积含水量、土壤温度、损耗正切、土壤电导率、土壤介电常数实部及虚部;针式温度计获得的0-5cm平均土壤温度。本数据可为发展和验证遥感反演地表温度及蒸散发提供基本的地面数据集。 本数据集包括4个文件或文件夹,分别为:ASAR数据、阿柔样方1观测数据、阿柔样方2观测数据、阿柔样方3观测数据。
曹永攀, 盖春梅, 韩旭军, 晋锐
2008年03月15日,在阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:35BJT。阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。为保证同步效率,仅在每个Grid的角点进行采样测量。 在阿柔样方2采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样方3采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获取土壤体积含水量;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。此外,还在阿柔样方1开展了同步探地雷达观测。本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本地面数据集。
曹永攀, 顾娟, 韩旭军, 晋锐, 李哲, 王维真, 吴月茹, 历华, 于梅艳, 赵金, Patrick Klenk, 袁小龙
2008年3月19日,针对L&K波段机载微波辐射计的航空飞行,在阿柔样带2、阿柔样带4和阿柔样带5开展了地面同步观测。各条样带均为南北朝向,每条样带上采样点间距约为100m。同步时自北向南行进。 在阿柔样带2,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样带4,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样带5,采用ML2X土壤水分速测仪获取土壤体积含水量;针式温度计获得0-5cm平均土壤温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。此外,还在阿柔样带4开展了手持式热像仪的同步观测,在阿柔样带6开展了GPR监测。
曹永攀, 顾娟, 韩旭军, 晋锐, 李哲, 王建华, 王维真, 吴月茹, 周红敏, 历华, 常存, 于梅艳, 赵金, Patrick Klenk, 孙继成, 闫业庆
本数据来自2008年7月5日在阿柔试验区样方1、阿柔样方2和阿柔样方3开展的针对Envisat ASAR数据的地面同步观测试验,观测项目包括样方调查、地物光谱、BRDF、光合数据、土壤水分和土壤温度。 获取了2008年7月5日的Envisat ASAR数据,为AP模式,VV/VH极化组合方式,过境时间约为11:14BJT。本数据可为发展和验证Envisat ASAR遥感反演土壤水分提供基本的地面数据集。 阿柔样方1、阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。 1. 样方调查:阿柔样方2和阿柔样方3。调查内容:GPS位置、物种、数量、自然高度、物候、盖度、叶绿素。(1)GPS点号,用GARMIN GPS 76记录。(2)物种采用人工识别的方法。(3)数量采用人工数的方法。(4)自然高度用卷尺测量,4-5个重复。(5)物候采样人工估计的方法。(6)盖度采用50cm×50cm的网格,网格大小为5cm×5cm,人工估计的方法。(7)叶绿素含量用SPAD 502 叶绿素仪测量,多个重复。 2. 地物光谱。观测仪器:ASD FieldSpec光谱仪,350~2 500 nm。参考板信息:20%参考板。观测目标:狼毒和牧草。数据存储:预处理后的冠层光谱数据。 3. BRDF观测仪器:ASD FieldSpec光谱仪,350~2 500 nm;参考板信息20%参考板;处理后的反射率和透射率是文本格式。 4. 光合数据测量仪器:LI-6400。测量对象:狼毒和牧草。操作规范:操作过程请参考联合试验操作规范。处理数据以Excel保存。 5. 土壤水分测量方法:WET土壤水分速测仪。测点数量:25个测量位置:在30 m×30m的格子的角点上测量。记录信息:采样时间、土壤水分(%vol)、Ecp(ms/m)、Tmp Eb、Ecb(ms/m)。 6. 土壤温度测量方法:手持式红外温度计。测点数量:25个测量位置:在30 m×30m的格子的角点上测量。记录信息:采样时间、3次重复的红外温度、地表覆盖类型描述。 数据集包括: (1)7月5日和7月6日的冠层光谱反射率数据; (2)7月5日和7月6日的光合数据; (3)7月5日的BRDF数据 (4)7月5日鱼眼相机拍摄相片 (5)7月5日红外地表温度和WET土壤水分速测仪数据 (6)7月5日样地生物量数据 (7)7月6日第三航线样方地表温度数据表
丁松爽, 盖迎春, 李弘毅, 马明国, 钱金波, 汪洋, 余莹洁, 刘思含
本数据集为在阿柔加密观测区山前缓坡上进行的冻土积雪微波辐射计连续观测数据及同步测量的土壤温度/水分数据集。 2008-3-10下午在阿柔加密观测区,选取了较平整的一片被雪覆盖的土地,粗略地确定了辐射计的视场范围,辐射计高度离地面4.5米。以车头为方位角0度,顺时针240度观测冻土,270度观测积雪。其中,冻土以高度角-40度固定角度观测,积雪以高度角-20度至-70度观测。冻土视场为人工取出该区域表面积雪获得,去除得并不是很理想,土壤表层仍残留部分冰雪,至2008-3-11中午,冰雪基本融化完。 主要观测数据包括:表层土壤水分(微波炉烘干法获得重量含水量),土壤温度(热敏电阻)及植被状况观测。观测地点的表层有枯萎的干草覆盖,土壤有机质含量较高,土壤中草的根系较多。积雪厚度在10cm以下。 土壤温度采用的是热敏电阻,热敏电阻的电阻值反应温度变化,电阻值由数据采集仪自动记录。电阻值数据格式为DataTaker 数采仪专用格式,只能有该数采仪的专用软件打开。电阻值计算温度需要用特定热敏电阻的定标系数来计算。本数据所包含的是已经计算出来的土壤温度值。 亮温数据有两种格式:一种是仪器自带软件可以打开的格式,后缀为.BRT,需要用北京师范大学车载微波辐射计(TMMR:Truck Mounted Microwave Radiometer)自带软件打开,需要使用该软件的用户可以向该数据联系人索取;另外一种是文本文件(ASCII格式),可以用任何一种文本浏览软件打开。这两种文件格式中的数据是完全相同的。文本文件中按列依次为:年、月、日、时、分、秒、6.925GHz(h)、6.925GHz(v)、10.65GHz(h)、10.65GHz(v) 、18.7GHz(h)、18.7GHz(v)、36.5GHz(h)、36.5GHz(v)、高度角、方位角。由于6.925GHz和10.65GHz 的故障问题没有参加试验,故数据中,该四列的值均为0。
常胜, 潘金梅, 彭丹青, 张志玉, 赵少杰, 郑越, 殷小军
2008年03月12日,在阿柔样方1、阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。 ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:29BJT。阿柔样方2由于靠近河谷温度较低,积雪尚未融化,因此主要开展积雪参数的同步观测试验,而阿柔样方1和阿柔样方3积雪已消融,主要开展土壤冻融状况和土壤水分的同步观测试验。 阿柔样方1、阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。环刀取土只在每个Grid的中心点开展,其余测量在每个Grid的中心点和角点展开。 在阿柔样方1,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获得土壤体积含水量;PR2土壤剖面水分速测仪获得10cm、20cm、30cm、40cm、60cm及100cm土壤体积含水量剖面;针式温度计获得0-5cm平均土壤温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。 在阿柔样方2,开展了与ASAR同步的积雪参数观测,包括卫星过境时同步的雪表面温度观测(采用热红外温度枪测量),分层雪层温度观测(采用针式温度计测量),雪粒径观测(采用手持式显微镜测量),雪密度观测(采用铝盒方式测量),以及雪表面和雪土界面同步温度测量(采用热红外温度枪测量);积雪光谱观测(采用ASD光谱仪测量);积雪反照率观测(采用总辐射表测量)。 在阿柔样方3,采用WET土壤水分速测仪测量土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;针式温度计(#5和#7)获得0-5cm平均土壤温度;手持式红外温度计(#5)获得地表辐射温度;并采用100cm^3环刀取土经烘干获得土壤重量含水量、土壤容重及体积含水量。 地表粗糙度信息可参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。此外,还在阿柔样方1开展了探地雷达同步观测。本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法,及利用GPR数据反演土壤水分及冻结深度提供基本的地面数据集。
白艳芬, 曹永攀, 盖春梅, 顾娟, 韩旭军, 晋锐, 李哲, 梁继, 马明国, 舒乐乐, 王建华, 王旭峰, 吴月茹, 徐瑱, 曲伟, 常存, 窦燕, 马忠国, 于梅艳, 赵金, 姜腾龙, 肖鹏峰, 刘燕, 张璞, Patrick Klenk, 袁小龙
2008年03月14日夜间,在阿柔样方2和阿柔样方3开展了Envisat ASAR数据的地面同步观测试验。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为23:21BJT。阿柔样方2和阿柔样方3均为4Grid×4Grid,每个Grid为30m×30m。为保证同步效率,仅在每个Grid的角点进行采样测量。 在阿柔样方2采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;手持式热红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样方3采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;ML2X土壤水分速测仪获取土壤体积含水量;针式温度计获得0-5cm平均土壤温度;手持式热红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 地表粗糙度信息可参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本数据集。
曹永攀, 顾娟, 晋锐, 李新, 李哲, 马明国, 舒乐乐, 王建华, 王旭峰, 吴月茹, 朱仕杰, 常存
2008年7月14日,在阿柔样方1、阿柔样方2和阿柔样方3开展了Envisat ASAR数据地面同步观测试验,观测项目主要包括土壤水分和土壤温度。 Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:31BJT。本数据可为发展和验证Envisat ASAR遥感反演土壤水分提供基本的地面数据集。阿柔样方1、阿柔样方2和样方3均为4Grid×4Grid,每个Grid为30m×30m。 1. 土壤水分测量方法:阿柔样方1,POGO便携式土壤水分传感器;阿柔样方2,POGO便携式土壤水分传感器;阿柔样方3,POGO便携式土壤水分传感器;。测点数量:25个测量位置:在30 m×30m的格子的角点上测量。测量变量包括:土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部 2. 土壤温度 测量方法:阿柔样方1,手持式红外温度计(北师大3#和北师大5#);阿柔样方2,手持式红外温度计(北师大1#和北师大4#);阿柔样方3,手持式红外温度计(北师大2#和北师大6#)。测点数量:25个,两组同时测量,一组从1到25,一组从25到1。测量位置:在30 m×30m的格子的角点上测量。记录信息:采样时间、2次重复的红外温度最大值、最小值、平均值以及地表覆盖类型描述。 并针对草地,裸土和狼毒花进行了红外波谱测量,采用仪器为红外波谱仪102F。 本数据集包括: (1)ASAR影像数据文件夹 (2)红外波谱仪102F预处理数据 (3)同步试验地表温度记录表 (4)同步土壤水分(POGO)测量记录表
高洪春, 李红星, 刘超, 冉有华, 任华忠, 余莹洁
2008年03月16日22:33-17日15:00在阿柔样方3北侧开展多角度地基散射计连续观测,主要观测阿柔草场地表冻融循环引起的后向散射系数时间序列变化特征。 具体包括针式温度计获得的0-5cm平均土壤温度;玻璃管地温计测量的5cm和10cm处土壤温度;POGO便携式土壤水分传感器测量的土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;以及100cm^3环刀取土经烘干获得的土壤重量含水量、土壤容重及体积含水量。本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。 本数据集包括2个文件,分别为:散射计观测场地面观测数据和散射计观测数据,都以Excel格式存储。
刘增灿, 秦伟, 曹永攀, 韩旭军, 晋锐, 马明国
2008年5月31日在阿柔样方1和阿柔样方3进行了机载红外广角双模式成像仪WiDAS(Wide-angle Infrared Dual-mode line/area Array Scanner)航空飞行的地面同步观测。WiDAS由4个CCD相机、1个中红外热像仪(AGEMA 550)和1个热红外热像仪(S60)组成, 能同时获取可见光/近红外(CCD)波段5个角度、中红外波段(MIR)7个角度和热红外波段(TIR )7个角度的数据。地面同步观测变量主要包括地表辐射温度与土壤水分。 地表辐射温度采用固定自记点温计连续测量,采样间隔为0.05s,仪器比辐射率设定为1.0。数据以文本文件存储(.dat格式),每个文本文件中的前7行为说明性的头文件,包括,数据采集日期、记录的起始时间、记录时间间隔等.另外,包括Time、TObj、Tint、TBox、Tact等5列数据,其中Time:从开始记录起的时间,换算成实际时间的话需要该值加起始时间;TObj:目标温度;TInt:探头内部温度;TBox:腔体温度;Tact:根据给定的发射率换算出来的实际温度,由于仪器比辐射率设定为1.0,所以该值和TObj是一样的,需要用户根据实际地物发射率进行修正。 利用TDR测量的土壤水分数据,测量深度为0-12cm和0-20cm。在样方内来回采样。数据以Excel格式保存。包括土壤温度,土壤介电常数,土壤电导率等数据。
黄春林, 盖春梅, 韩旭军, 晋锐, 李丽, 辛晓洲, 周梦维
2008年4月1日,在阿柔加密观测区开展了两次航空遥感飞行,早上针对冻结地表搭载的传感器为L&K波段机载微波辐射计(飞行时间8:06~11:17BJT),中午针对融土搭载的传感器为L波段机载微波辐射计和热像仪(飞行时间12:48~16:35BJT)。 地面同步观测在阿柔样带2、阿柔样带3、阿柔样带4、阿柔样带5及阿柔样带6展开。每条样带均为南北朝向,各样带上采样点间距约为100m。早上地面同步时自北向南行进,下午同步时自南向北行进。 在阿柔样带2,阿柔样带4及阿柔样带6的每个采样点,采用POGO便携式土壤水分传感器获得土壤温度、土壤体积含水量、损耗正切、土壤电导率、土壤复介电常数实部及虚部;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样带3,采用ML2X土壤水分速测仪获取土壤体积含水量;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 在阿柔样带5,采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;针式温度计获得0-5cm平均土壤温度;手持式红外温度计获得3次地表辐射温度;并采用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。 此外,还在阿柔样带4开展了手持式热像仪的同步观测。本数据可为发展和验证被动微波遥感反演土壤水分及冻融状态算法提供基本地面数据集。 本数据集包括7个文件或文件夹,分别为:L&K波段机载微波辐射计、L波段机载微波辐射计和热像仪、阿柔样带2数据、阿柔样带3数据、阿柔样带4数据、阿柔样带5数据及阿柔样带6数据。
盖春梅, 顾娟, 韩旭军, 郝晓华, 胡泽勇, 黄春林, 晋锐, 李哲, 梁继, 马明国, 舒乐乐, 王维真, 吴月茹, 朱仕杰, 历华, 常存, 窦燕, 马忠国
2007年10月18日,在阿柔样方1和阿柔样方2开展了Envisat ASAR数据的地面同步观测试验。Envisat ASAR数据为AP模式,VV/VH极化组合方式,过境时间约为11:17BJT。阿柔样方1和阿柔样方2均为3Grid×3Grid,每个Grid为30m×30m,共计25个采样点(包含中心点和角点)。 在每个采样点,采用WET土壤水分速测仪测量获得土壤体积含水量、电导率、土壤温度及土壤复介电常数实部;手持式红外温度计获得地表辐射温度;并用100cm^3环刀取土经烘干获得重量含水量、土壤容重及体积含水量。同时还对植被一些参数进行了相关调查,主要包括植被高度、覆盖度、植被含水量。地表粗糙度信息请参见“黑河综合遥感联合试验:阿柔加密观测区地表粗糙度数据集 ”元数据。 本数据可为发展和验证主动微波遥感反演土壤水分及冻融状态算法提供基本的地面数据集。
白云洁, 郝晓华, 晋锐, 李弘毅, 李新, 李哲
本数据集主要包括2008年3月10日-6月19日期间在上游寒区水文试验区阿柔加密观测区展的探地雷达观测和TDR水分观测。本数据可为发展和验证利用GPR数据反演土壤水分及冻结深度提供基本的地面数据集。 本数据集的观测时间,地点及内容如下: (1)2008 年3月10日,阿柔样方1,GPR (2)2008 年3月11日,阿柔样方2和3,GPR+TDR (3)2008 年3月12日, 阿柔样方1,GPR (4)2008 年3月14日,阿柔样方2 ,GPR (5)2008 年3月15日,阿柔样方1,GPR+TDR (6)2008 年3月16日,阿柔样带L6,GPR+TDR (7)2008 年3月17日,阿柔样带L6,GPR+TDR (8)2008 年3月18日, 阿柔样带L6, GPR+TDR (9)2008 年3月19日,阿柔样带L6,GPR+TDR (10)2008 年3月20日,阿柔样带L6,GPR (11)2008 年3月21日, 阿柔样方3 ,GPR+TDR (12)2008 年5月31日,阿柔样方1和3 ,GPR (13)2008 年6月20日, 阿柔样方1,GPR
李哲, 于梅艳, 赵金, Patrick Klenk, 袁小龙, 晋锐
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件