该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含2018年6月5日至12月15日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)、物候期及覆盖度(FC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国, 张阳
该数据集包含了2018年6月11日至2018年9月18日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.372° E, 38.856° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度范围分别为(100.373297°E~100.374205°E, 38.857871°N~38.858390°N)、(100.373918° E~100.373897°E, 38.854025°N~38.854941°N)、(100.368007°E~100.369044°E, 38.850678°N~38.851580°N)。每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
本数据为小满玉米地(2012-06-25日至2012-08-24日)的LAINet数据集。 测量仪器:北京师范大学自制无线传感器网络叶面积指数观测仪 测量方式:LAINet观测系统由三类传感器节点组成,分别是(1)冠层下节点,传感器近水平向上放置,用来测量冠层透过辐射,(2)冠层上节点,传感器近似水平向上放置,用来测量太阳入射总辐射,(3)汇聚节点,用来接收并转发由(1)和(2)两类节点测量到的数据。 数据处理:从传感器接收到原始数据是按照汇聚节点进行接收的,经过预处理之后形成以天为时间单位的原始数据集。仪器对冠层透过率的观测是通过计算一天之内不同太阳高度角下冠层下透过辐射与冠层上的入射总辐射的比值而得到的。叶面积指数是基于多角度透过率数据进行反演计算得到。 LAINet数据集包括计算的原始LAI数据、经过5天平均之后的LAI数据以及测量节点的经纬度。所有数据以Excel保存。其中5天平均处理后的数据以汇聚节点编号为表单名称,每个表单(sheet)保存是一个汇聚节点下所有子节点的测量数据。原始数据记录了每个节点在所有观测日期内能够计算得到的LAI数值。以上两类数据的每个表单中,各列的含义如下:测量日期,DOY,节点1,节点2,...,节点N。
马明国
该数据集包含了2017年1月1日至2017年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
本数据为在盈科绿洲观测的植被FPAR数据集。数据观测从2012年5月25日开始,至2012年7月8日结束。 测量仪器与原理: 利用北京师范大学ACCUPAR测量冠层的FPAR。在盈科绿洲5km*5km样方内选择18个玉米样方,1个果园和1个人工白杨林样方进行测量。 其中玉米地样方测量四个PAR分量:冠层上总入射PAR,冠层下透过PAR,冠层上反射PAR和冠层下反射PAR。 对于果园和人工林,测量两个量:冠层外总入射PAR,冠层下透射PAR。 配套数据: 植被的种类、株高、垄行结构等信息。 数据格式: EXcel格式。
马明国
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月21日-22日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月21日-22日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该传感器可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:2.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月19日-20日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月19日-20日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:2.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月18日-19日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月18日-19日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:3.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
该数据集包含了2016年1月1日至2016年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
该数据集包含了2015年5月20日至2016年3月11日的黑河中游径流加密观测中4号点的河流水位观测数据。仪器维修重新与2015年5月20日安装调试完毕。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.065°,E100.433056°,海拔1431米,河道宽度58米。2012年水位观测采用HOBO压力式水位计,采集频率30分钟;2013年起采用采用SR50超声测距仪,采集频率30分钟。2014年6月25日仪器损毁,重新购置。2015年5月20日重新开始记录。数据包括以下部分: 水位观测,观测频率30分钟,单位(cm); 水文气象网或站点信息请参考Li et al. (2013), 观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2015年1月1日至2016年3月11日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。2014年底传感器出现异常,维修后3月25日调试正常。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.331667°,E 100.099722°,海拔1375米,河道宽度130米。2015年水位观测采用SR50超声波测距仪,采集频率30分钟。数据说明包括: 水位观测,观测频率30分钟,单位(cm);缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
刘绍民, 李新, 徐自为
黑河流域1km/5天合成叶面积指数(LAI)数据集提供了2010-2014年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PROSAIL模型,针对森林和山地植被采用坡面GOST模型。利用黑河上游森林和中游绿洲的地面实测数据生成的参考图,并将对应的高分辨率参考图升尺度到1km分辨率,与LAI产品进行比较,产品在农田和森林区域与参考值间均具有良好的相关性,总体精度基本满足GCOS规定的误差不超过 (0.5, 20%)的精度阈值。将本产品与MODIS、GEOV1和GLASS等LAI产品进行交叉对比,相比较参考值而言,本LAI产品精度优于同类产品。总之,黑河流域1km/5天合成LAI数据集综合利用多源遥感数据以提高LAI参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 尹高飞, 仲波, 吴俊君, 吴善龙
2012年6月15日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了21条样线(东西分布),每条线5 m间隔共23个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被小组完成了生物量、LAI、植被含水量、株高、行垄距、叶绿素等的测量。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 马明国, 李新
黑河流域河道温度同步观测的目的在于获取TASI飞行期间不同位置河道同步温度,用于支持航空飞行TASI资料反演河道温度的验证和尺度效应分析。 本次试验的观测时间为2012年7月3日和2012年7月4日,选取了黑河流域中游的肃南桥、滨河新区、黑河桥、铁路桥、乌江桥、高崖水文站、板桥、平川桥、伊家庄、刘家桥10个位置的河面温度进行了同步观测,利用两种仪器测量不同位置的河道辐射温度,包括固定自记点温计(北师大2#、北师大3#)和手持式红外温度计(寒旱所H1#、H2#、H3#、H4#,遥感所Y1#、Y2#,北师大B1#、B2#),其中铁路桥和高崖水文站使用的是固定自记点温计,自动每6秒记录一次温度,其它8个点的河流断面温度采用手持式红外温度计人工观测,每隔2米设置一个观测点,每15分钟可以对整个河流断面观测一次,同时记录每个观测点的下垫面特征。每个仪器在使用之前均进行了黑体标定。观测数据以Excel存储。
何晓波, 家淑珍
在2012年中游航空遥感试验开展期间,在飞行时同步开展黑白布的光谱观测,在飞行前后针对中游典型下垫面开展地物波谱的观测,与为CASI、SASI和TASI航空飞行资料预处理提供基础数据集。 观测仪器: 中科院遥感所SVC-HR1024地物光谱仪(350-2500nm)和中科院对地观测中心ASD Field Spec 3地物光谱仪(350-2500nm),参考板。 测量方式: 测量地物前先垂直测量参考板辐射亮度,再垂直测量地物辐射亮度,测完地物后需再次测量参考板辐亮度。 数据内容: 本数据集包括光谱仪导出的原始光谱数据,SVC光谱仪记录数据 *.sig(可用SVC-HR1024配套软件打开,也可用记事本直接打开),ASD光谱仪记录数据*.asd。还包括观测位置信息,记录表格等。 观测时间: 2012-6-15,SVC光谱仪观测EC矩阵内各种典型地物 2012-6-16,SVC光谱仪观测湿地站 2012-6-29,ASD光谱仪观测超级站和戈壁站,各种植被类型和裸土等 2012-6-29,ASD光谱仪与CASI飞行同步观测黑白布 2012-6-30,ASD光谱仪观测中游样带荒漠植被和裸土 2012-7-05,ASD光谱仪与CASI飞行同步观测黑白布 2012-7-07,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-08,ASD光谱仪与CASI飞行同步观测黑白布 2012-7-08,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-09,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-10,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-11,ASD光谱仪在大满超级站开展玉米光谱日变化观测
肖青, 马明国
本数据集为叶片气孔计Leaf Porometer在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的作物叶片气孔导度数据。 1) 测量目的 气孔导度数据测量的目的在于:获取黑河流域下垫面上作物叶片的气孔导度,作为先验知识用于作物生长模型参数、作物生物物理参数反演、蒸散发估算等用途。 2) 测量仪器 测量仪器:叶片气孔计Leaf Porometer。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦叶片气孔导度。 b. EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,测定制种玉米叶片的气孔导度。 c. 超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,测定制种玉米叶片的气孔导度。 d. 石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,测定制种玉米叶片的气孔导度。 4) 数据处理 通过数据预处理并转换为文本格式文件,得到测量作物叶片气孔导度数据。
徐凤英, 王静, 庄金鑫, 黄永生, 李新, 马明国
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件