该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤pH数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤容重数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
该数据集包含了2012年7月至2013年8月采集的黑河流域典型土壤样点的土壤有机碳数据。2012年组织开展了第1次野外土壤调查采样。2013年在对已有土壤剖面样点进行定量评估的基础上,重点对已有剖面点代表性较差的景观区域进行土壤环境分析,形成补充性调查方案,组织开展了第2次土壤调查采样。黑河流域典型土壤样点采集方式为代表性采样,所采集样点覆盖了黑河流域的上游、中游、下游地区,涵盖了黑河流域的典型景观类型,能够反映黑河流域土壤属性整体的空间分布规律。野外土壤样品采集的深度参照中国土壤系统分类,以诊断层和诊断特性为基础,采取土壤剖面的土壤发生层样品。
宋效东, 张甘霖
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站气象要素梯度观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在2m处;翻斗式雨量计安装在塔西侧约8m处,架高2.5m;四分量辐射仪安装在12m处,朝向正南;两个红外温度计安装在12m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处,其中两块(Gs_2、Gs_3)埋设在棵间,一块(Gs_1)埋设在植株下面;平均土壤温度传感器TCAV埋设在地下2cm、4cm处,朝向正南,距离塔体2m处;土壤温度探头埋设在地表0cm和地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;土壤水分传感器分别埋设在地下2cm、4cm、10cm、20cm、40cm、80cm、120cm和160cm处,在距离气象塔2m的正南方;光合有效辐射仪安装在12m处,探头朝向是垂直向上;另有四个光合有效辐射仪分别架设在冠层上方和冠层内,冠层上方安装在12m(探头垂直向上和向下方向各一个)、冠层内安装在0.3m(探头垂直向上和向下方向各一个)高处,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_160cm)(单位:百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_160cm)(单位:摄氏度) 、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、冠层上向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒)和冠层下向上与向下光合有效辐射(PAR_D_up、PAR_D_down)(单位:微摩尔/平方米秒)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;2018.9.17-11.7由于采集器的问题,气象梯度部分的数据缺失;由于采集器通道问题,平均土壤温度TCAV数据在11月7日后数据不正确。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
李新, 车涛, 徐自为, 任志国, 谭俊磊
黑河流域上游土壤容重,孔隙度,含水量,水分特征曲线,饱和导水率,颗粒分析,入渗率,以及采样点位置信息。 1、数据为2014年针对2012年补充取样,用环刀取原状土; 2、该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米),单位:g/cm3 。 3、土壤孔隙度,根据土壤容重与土壤孔隙度的关系得到;, 4、土壤入渗分析数据集,数据为2013-2014年野外实验测量数据。 5、入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量,得到一定负压下的近似饱和导水率。 6、土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 7、饱和导水率是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。 8、土壤含水量数据是用ECH2O进行测量,包括5层的土壤含水量、土壤温度。 9、水分特征曲线采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。
贺缠生
该数据集包含2018年6月5日至12月15日黑河流域地表过程综合观测网中游大满超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(GCC)、物候期及覆盖度(FC)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
该数据集包含了2018年1月1日至2018年12月31日黑河流域地表过程综合观测网中游大满超级站宇宙射线观测系统数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米田。观测点的经纬度是100.3722E, 38.8555N,海拔1556m。仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。剔除及缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国, 张阳
该数据集包含2018年6月13日至11月16日黑河流域地表过程综合观测网中游阿柔超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
该数据集包含了2018年1月1日至2018年12月31日黑河水文气象观测网上游阿柔超级站气象要素梯度观测系统数据。站点位于青海省祁连县阿柔乡草达坂村,下垫面是亚高山山地草甸。观测点的经纬度是100.4643E, 38.0473N,海拔3033m。空气温度、相对湿度、风速传感器分别架设在1m、2m、5m、10m、15m、25m处,共6层,朝向正北;风向传感器架设在10m处,朝向正北;气压计安装在2m处;翻斗式雨量计安装在阿柔超级站28m观测塔上;四分量辐射仪安装在5m处,朝向正南;两个红外温度计安装在5m处,朝向正南,探头朝向是垂直向下;光合有效辐射仪安装在5m处,朝向正南,探头朝向是垂直向上;土壤部分传感器埋设在塔体正南方向2m处,其中土壤热流板(自校正式)(3块)均埋设在地下6cm处;平均土壤温度传感器TCAV埋设在地下2cm、4cm处;土壤温度探头埋设在地表0cm和地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复;土壤水分传感器分别埋设在地下2cm、4cm、6cm、10cm、15cm、20cm、30cm、40cm、60cm、80cm、120cm、160cm、200cm、240cm、280cm、320cm处,其中4cm和10cm这两层有三个重复。 观测项目有:风速(WS_1m、WS_2m、WS_5m、WS_10m、WS_15m、WS_25m)(单位:米/秒)、风向(WD_10m)(单位:度)、空气温湿度(Ta_1m、Ta_2m、Ta_5m、Ta_10m、Ta_15m、Ta_25m和RH_1m、RH_2m、RH_5m、RH_10m、RH_15m、RH_25m)(单位:摄氏度、百分比)、气压(Press)(单位:百帕)、降水量(Rain)(单位:毫米)、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒)、平均土壤温度(TCAV)(单位:摄氏度)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_2cm、Ms_4cm_1、Ms_4cm_2、Ms_4cm_3、Ms_6cm、Ms_10cm_1、Ms_10cm_2、Ms_10cm_3、Ms_15cm、Ms_20cm、Ms_30cm、Ms_40cm、Ms_60cm、Ms_80cm、Ms_120cm、Ms_160cm Ms_200cm、Ms_240cm、Ms_280cm、Ms_320cm)(单位:体积含水量,百分比)、土壤温度(Ts_0cm、Ts_2cm、Ts_4cm_1、Ts_4cm_2、Ts_4cm_3、Ts_6cm、Ts_10cm_1、Ts_10cm_2、Ts_10cm_3、Ts_15cm、Ts_20cm、Ts_30cm、Ts_40cm、Ts_60cm、Ts_80cm、Ts_120cm、Ts_160cm Ts_200cm、Ts_240cm、Ts_280cm、Ts_320cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;平均土壤温度TCAV在2.16-3.31和4.15-5.20之间,由于传感器线头接触不良,数据缺失;11-12月份土壤热通量出现一些错误值。(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-6-10 10:30;(6)命名规则为:AWS+站点名称。 黑河综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Liu et al. (2011)。
刘绍民, 李新, 车涛, 徐自为, 张阳, 谭俊磊
该数据集包含2018年5月16日至11月6日黑河流域地表过程综合观测网下游混合林站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
该数据集包含了2018年6月11日至2018年9月18日的黑河水文气象观测网中游大满超级站叶面积指数观测数据。站点(100.372° E, 38.856° N)位于甘肃省张掖市大满灌区内,海拔1556m,下垫面是玉米。观测样方共计3个,每个样方大小约30m×30m,经纬度范围分别为(100.373297°E~100.374205°E, 38.857871°N~38.858390°N)、(100.373918° E~100.373897°E, 38.854025°N~38.854941°N)、(100.368007°E~100.369044°E, 38.850678°N~38.851580°N)。每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
刘绍民, 屈永华, 徐自为, 李新
该数据集包含了2018年6月16日至2018年10月18日的黑河水文气象观测网下游四道桥(包括柽柳与胡杨林)叶面积指数观测数据。站点位于内蒙古额济纳旗四道桥,海拔870 m,下垫面是柽柳与胡杨。观测在四道桥超级站(101.1374E, 42.0012N)和混合林站(101.1335E, 41.9903N)旁开展,样方共计2个,每个样方大小约30m×30m,每个样方内布设5个冠层下节点和1个冠层上节点。 本数据集由叶面积指数无线传感网(LAINet)获取,该仪器原始观测数据为仪器自动获取的每个节点逐日逐小时的光照数据(Level0),利用LAINet软件对原始观测数据进行处理,逐节点计算每天LAI(Level1),进一步对无效值识别与填充,并7天滑动平均消除天气变化对LAI计算的影响(Level2),对有多个LAINet节点的观测子区,节点的均值为该子区的最终观测值(Level3)。 本次发布的数据集为处理后的Level3产品,数据以*.xls格式存储。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018),观测数据处理请参考Qu et al. (2014)。
屈永华, 徐自为, 李新
该数据集包含2018年6月15日至11月7日黑河流域地表过程综合观测网下游四道桥超级站的物候相机观测数据,该仪器由北京师范大学自主研发并进行处理。物候相机集成数据获取与数据传输功能。该物候相机采用垂直向下的方式采集数据,拍摄数据分辨率为1280*720,可指定拍摄时间频率。对于绿度指数物候期计算,需要根据感兴趣区域计算相对绿度指数(GCC, Green Chromatic Coordinate公式为GCC=G/(R+G+B), R、G、B为图像红、绿、蓝三通道像元值),然后进行无效值填充和滤波平滑,最后根据生长曲线拟合确定关键物候期参数,如生长季起始日、顶峰、生长季结束日等;对于覆盖度,首先进行数据预处理,选择光照不太强的图像,然后将图像分割为植被和土壤,计算每张图像的植被像素占计算区域内的比例作为该图像对应的覆盖度,在时间序列数据提取完成以后,再按用户指定的时间窗口对原始覆盖度数据进行平滑滤波,滤波后的得结果为最终的时间序列覆盖度。本数据集包括相对绿度指数(Gcc)。 黑河流域地表过程综合观测网或站点信息请参考Liu et al. (2018)。
屈永华, 徐自为, 李新
本数据为小满玉米地(2012-06-25日至2012-08-24日)的LAINet数据集。 测量仪器:北京师范大学自制无线传感器网络叶面积指数观测仪 测量方式:LAINet观测系统由三类传感器节点组成,分别是(1)冠层下节点,传感器近水平向上放置,用来测量冠层透过辐射,(2)冠层上节点,传感器近似水平向上放置,用来测量太阳入射总辐射,(3)汇聚节点,用来接收并转发由(1)和(2)两类节点测量到的数据。 数据处理:从传感器接收到原始数据是按照汇聚节点进行接收的,经过预处理之后形成以天为时间单位的原始数据集。仪器对冠层透过率的观测是通过计算一天之内不同太阳高度角下冠层下透过辐射与冠层上的入射总辐射的比值而得到的。叶面积指数是基于多角度透过率数据进行反演计算得到。 LAINet数据集包括计算的原始LAI数据、经过5天平均之后的LAI数据以及测量节点的经纬度。所有数据以Excel保存。其中5天平均处理后的数据以汇聚节点编号为表单名称,每个表单(sheet)保存是一个汇聚节点下所有子节点的测量数据。原始数据记录了每个节点在所有观测日期内能够计算得到的LAI数值。以上两类数据的每个表单中,各列的含义如下:测量日期,DOY,节点1,节点2,...,节点N。
马明国
该数据集包含了2017年1月1日至2017年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
本数据为盈科绿洲农田、湿地、戈壁、沙漠与荒漠观测的一个生长周期内的植被覆盖度数据集。数据观测从2012年5月25日开始到9月14日结束,7月下旬之前每5天观测1次,之后10天观测1次。 测量仪器与原理: 采用数码相机拍照的方法测量了盈科绿洲的农田、湿地、戈壁、沙漠与荒漠的典型地物的植被覆盖度。样方的设计、照片拍摄方法和数据处理方法都经过一定的分析和考虑。 具体分几条进行描述: 0. 测量仪器:简易观测架搭配数码相机,将数码相机置于支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1. 样方设置和“真值”获取:玉米等低矮植被样方大小10×10米,果树样方30米×30米。每次测量时沿两条对角线依次拍照,共取9张照片(当地表覆盖非常均一时也有少于9张的情况),均匀分布在样方内。9张相片处理得到各自覆盖度之后取平均,最终得到一个样方的覆盖度“真值”。 2. 拍摄方法:针对低矮植被如玉米,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;针对较高植被如果树,在树冠下面从下向上拍摄照片,叠加配合对树冠下地表低矮植被从上向下的拍摄,得到植株附近的覆盖度,再拍摄植株之间非树冠投影区域的低矮植被,计算植株间隙的覆盖度。最后通过树冠投影法,获得树冠的平均面积。根据垄行距离计算植株树冠下与植株间隙的面积比例,加权获得整个样方的覆盖度。 3. 数据处理方法:采用一种自动分类方法,具体见“参考文献”第3条文献(Liu et al., 2012)。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 配套数据: 在记录表中文字记录了植被的种类、株高、垄宽、行宽、拍摄高度信息,同时附有数码相机拍摄的场景照片和田埂照片(农田)。 数据处理: 基于数字图像里面的分类方法,对植被和非植被像元分类后得到相片代表样方的植被覆盖度。
穆西晗, 黄帅, 马明国
本数据为在盈科绿洲观测的植被FPAR数据集。数据观测从2012年5月25日开始,至2012年7月8日结束。 测量仪器与原理: 利用北京师范大学ACCUPAR测量冠层的FPAR。在盈科绿洲5km*5km样方内选择18个玉米样方,1个果园和1个人工白杨林样方进行测量。 其中玉米地样方测量四个PAR分量:冠层上总入射PAR,冠层下透过PAR,冠层上反射PAR和冠层下反射PAR。 对于果园和人工林,测量两个量:冠层外总入射PAR,冠层下透射PAR。 配套数据: 植被的种类、株高、垄行结构等信息。 数据格式: EXcel格式。
马明国
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2013年5月19日开始,9月15日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 超级站:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.1.2其它四个站:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 其它四个站:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2013年5月20日-9月15日, 7月31日以前每5天观测一次,7月31后每10天观测一次,共做了18次观测,具体观测时间如下; 玉米:2013-5-20、2013-5-25、2013-5-30、2013-6-5、2013-6-10、2013-6-16、2013-6-22、2013-6-27、2013-7-2、2013-7-7、2013-7-12、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.1.2芦苇:观测时间段2013年5月20日-9月15日,每10天观测一次,共做了12次观测,具体观测时间如下; 芦苇:2013-5-20、2013-6-5、2013-6-16、2013-6-27、2013-7-7、2013-7-17、2013-7-27、2013-8-3、2013-8-13、2013-8-25、2013-9-5、2013-9-15 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
耿丽英, 家淑珍, 李艺梦, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月21日-22日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月21日-22日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该传感器可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:2.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月19日-20日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月19日-20日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:2.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月18日-19日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月18日-19日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:3.5M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
该数据集包含了2016年1月1日至2016年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的2012年6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 徐自为, 李新, 车涛, 谭俊磊, 任志国
该数据集包含了2015年5月20日至2016年3月11日的黑河中游径流加密观测中4号点的河流水位观测数据。仪器维修重新与2015年5月20日安装调试完毕。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.065°,E100.433056°,海拔1431米,河道宽度58米。2012年水位观测采用HOBO压力式水位计,采集频率30分钟;2013年起采用采用SR50超声测距仪,采集频率30分钟。2014年6月25日仪器损毁,重新购置。2015年5月20日重新开始记录。数据包括以下部分: 水位观测,观测频率30分钟,单位(cm); 水文气象网或站点信息请参考Li et al. (2013), 观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2015年1月1日至2016年3月11日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。2014年底传感器出现异常,维修后3月25日调试正常。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39.331667°,E 100.099722°,海拔1375米,河道宽度130米。2015年水位观测采用SR50超声波测距仪,采集频率30分钟。数据说明包括: 水位观测,观测频率30分钟,单位(cm);缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
刘绍民, 李新, 徐自为
黑河流域1km/5天合成叶面积指数(LAI)数据集提供了2010-2014年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PROSAIL模型,针对森林和山地植被采用坡面GOST模型。利用黑河上游森林和中游绿洲的地面实测数据生成的参考图,并将对应的高分辨率参考图升尺度到1km分辨率,与LAI产品进行比较,产品在农田和森林区域与参考值间均具有良好的相关性,总体精度基本满足GCOS规定的误差不超过 (0.5, 20%)的精度阈值。将本产品与MODIS、GEOV1和GLASS等LAI产品进行交叉对比,相比较参考值而言,本LAI产品精度优于同类产品。总之,黑河流域1km/5天合成LAI数据集综合利用多源遥感数据以提高LAI参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 尹高飞, 仲波, 吴俊君, 吴善龙
该套数据是新发展的陆面生态水文模式CLM_LTF的模拟结果。该模式在NCAR发展的陆面过程模式CLM4.5之上,耦合了地下水侧向流动模块,并且考虑了人类灌溉作用。 模式运行时间是1981-2013年,空间分辨率为30弧秒(0.0083度),时间步长为1800秒,模拟范围为黑河流域。1981-2012年大气强迫使用的是由中国科学院青藏高原研究所青藏高原多圈层数据同化与模拟中心开发的中国区域高时空分辨率地面气象要素驱动数据集,2013年大气强迫使用的是国家气象信息中心制作的高分辨率的风压湿温降水辐射数据集。地表覆盖数据为MICLCover黑河流域1公里土地覆盖格网数据集,灌溉数据见寒区旱区科学数据中心“黑河流域1981-2013年30弧秒分辨率月尺度地表水及地下水灌溉量数据集”。模式输出为月平均数据。 文件说明如下: 地下水埋深数据:Heihe_ZWT.nc 2cm土壤湿度数据:Heihe_H2OSOI_2CM.nc 100cm 土壤湿度数据:Heihe_H2OSOI_100CM.nc 蒸散发数据:Heihe_evaptanspiration.nc 数据为netcdf格式。有3个维度,依次为month, lat, lon. 其中month为月份,数值为0-395,代表1981-2013年逐个月份,lat为网格纬度信息,lon为网格经度信息。 数据储存在data变量中,地下水埋深数据单位为m, 土壤湿度数据单位为m^3/m^3, 蒸散发数据单位为mm/month
谢正辉
黑河水文数据:黑河分水历程的调查资料。 调查方法:现场调研、访谈、资料搜集及电子化; 内容概述:本资料包含清华大学对黑河分水历程调查所获得的文献、文档及调研报告资料,主要包括分水方案制定当事人周侃先生的访谈记录。 时空范围:1950-2010;黑河流域
王忠静, 郑航
2012年6月15日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了21条样线(东西分布),每条线5 m间隔共23个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被小组完成了生物量、LAI、植被含水量、株高、行垄距、叶绿素等的测量。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 马明国, 李新
黑河流域河道温度同步观测的目的在于获取TASI飞行期间不同位置河道同步温度,用于支持航空飞行TASI资料反演河道温度的验证和尺度效应分析。 本次试验的观测时间为2012年7月3日和2012年7月4日,选取了黑河流域中游的肃南桥、滨河新区、黑河桥、铁路桥、乌江桥、高崖水文站、板桥、平川桥、伊家庄、刘家桥10个位置的河面温度进行了同步观测,利用两种仪器测量不同位置的河道辐射温度,包括固定自记点温计(北师大2#、北师大3#)和手持式红外温度计(寒旱所H1#、H2#、H3#、H4#,遥感所Y1#、Y2#,北师大B1#、B2#),其中铁路桥和高崖水文站使用的是固定自记点温计,自动每6秒记录一次温度,其它8个点的河流断面温度采用手持式红外温度计人工观测,每隔2米设置一个观测点,每15分钟可以对整个河流断面观测一次,同时记录每个观测点的下垫面特征。每个仪器在使用之前均进行了黑体标定。观测数据以Excel存储。
何晓波, 家淑珍
在2012年中游航空遥感试验开展期间,在飞行时同步开展黑白布的光谱观测,在飞行前后针对中游典型下垫面开展地物波谱的观测,与为CASI、SASI和TASI航空飞行资料预处理提供基础数据集。 观测仪器: 中科院遥感所SVC-HR1024地物光谱仪(350-2500nm)和中科院对地观测中心ASD Field Spec 3地物光谱仪(350-2500nm),参考板。 测量方式: 测量地物前先垂直测量参考板辐射亮度,再垂直测量地物辐射亮度,测完地物后需再次测量参考板辐亮度。 数据内容: 本数据集包括光谱仪导出的原始光谱数据,SVC光谱仪记录数据 *.sig(可用SVC-HR1024配套软件打开,也可用记事本直接打开),ASD光谱仪记录数据*.asd。还包括观测位置信息,记录表格等。 观测时间: 2012-6-15,SVC光谱仪观测EC矩阵内各种典型地物 2012-6-16,SVC光谱仪观测湿地站 2012-6-29,ASD光谱仪观测超级站和戈壁站,各种植被类型和裸土等 2012-6-29,ASD光谱仪与CASI飞行同步观测黑白布 2012-6-30,ASD光谱仪观测中游样带荒漠植被和裸土 2012-7-05,ASD光谱仪与CASI飞行同步观测黑白布 2012-7-07,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-08,ASD光谱仪与CASI飞行同步观测黑白布 2012-7-08,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-09,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-10,ASD光谱仪在大满超级站开展玉米光谱日变化观测 2012-7-11,ASD光谱仪在大满超级站开展玉米光谱日变化观测
肖青, 马明国
本数据集为叶片气孔计Leaf Porometer在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的作物叶片气孔导度数据。 1) 测量目的 气孔导度数据测量的目的在于:获取黑河流域下垫面上作物叶片的气孔导度,作为先验知识用于作物生长模型参数、作物生物物理参数反演、蒸散发估算等用途。 2) 测量仪器 测量仪器:叶片气孔计Leaf Porometer。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦叶片气孔导度。 b. EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,测定制种玉米叶片的气孔导度。 c. 超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,测定制种玉米叶片的气孔导度。 d. 石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,测定制种玉米叶片的气孔导度。 4) 数据处理 通过数据预处理并转换为文本格式文件,得到测量作物叶片气孔导度数据。
徐凤英, 王静, 庄金鑫, 黄永生, 李新, 马明国
生物生产力是指生物及其群体甚至更大尺度(包括生态系统及生物圈)生命有机体的物质生产能力,它随环境不同而发生变化,因此,它又成为环境变化和地球系统健康与否的指示物。植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间单位面积上由光合作用产生的有机物质总量(GPP)中扣除自养呼吸(Autotrophic Respiration,Ra)后的剩余部分。黑河流域的NPP产品主要围绕光能利用率模型的重要参数PAR以及FPAR进行了算法的改进和产品生产.提出了区分直射与散射辐射的FPAR反演模型以及基于静止与极轨卫星相结合的PAR反演方法。最终,利用光能利用率模型,生产黑河流域净初级生产力数据集。算法提高了数据产品的时空分辨率,产品精度也有了明显提高。
李丽, 仲波, 吴俊君, 吴善龙, 辛晓洲
本数据集为2012年06月14日在试验区5×5Km中13个涡动站点附近开展的作物物候和田间管理调查数据。 1.1 调查目的 为涡动、气象、生物物理参数试验提供配套数据集。 1.2调查地点与内容 调查地点:石桥九社(EC3)、小满南街(EC16)、五星五社(EC13)、小满五社(EC14)、石桥二社(EC5)、中华六社(EC11)、石桥六社(EC2)、EC6、金城五社(EC7)、金城六社(EC8)、康宁一社(EC9)、康宁二社(EC10)和金城四社(EC12)。 调查作物类型为制种玉米,调查内容包括两部分:作物物候和田间管理。其中作物物候数据包括作物类型、品种、播种日期、播种方式、株距、行距、垄向、田块面积、出苗期、三叶期、七叶期等,田间管理数据包括耕作时间、翻耕时间、灌溉时间、灌溉量、施肥时间、施肥类别、施肥量等。 1.3调查方式 该调查采用逐户调查方式,现场找到预调查田块主人,根据预先设计的调查内容,开展田块中作物的物候特征和田间管理方式的问卷调查。 作物物候及田间管理调查数据组织及格式详见“作物物候与田间管理调查数据说明文档”。 数据的文件格式为Excel2007格式,数据文件包括黑河综合遥感联合试验:中游人工绿洲生态水文试验区作物物候调查数据.xlsx和黑河综合遥感联合试验:中游人工绿洲生态水文试验区作物田间管理调查数据.xlsx。
盖迎春, 庄金鑫, 马春峰, 庄金鑫, 李新
本数据集包含了2012年05月22日(夏灌二轮)、2012年06月18日(夏灌三轮)、2012年07月16日(秋灌一轮)和2012年8月8日(秋灌二轮)渠道流量测量数据。 1.1 观测目的 针对斗渠和毛渠渠道流量观测,获取进入最小灌溉单元(社)的实际水量,为灌溉优化配水试验提供参考数据;为涡动、生物物理参数等其他观测试验提供水量数据;为盈科灌区各斗渠调查数据提供参考。 1.2观测仪器与原理 观测仪器:便携式流速仪(Flowatch),产地:瑞士,流速观测精度:0.1m/s;水尺,观测精度:1cm。 观测原理:该仪器属于机械式流速仪,根据水轮转速来计算流体流速。利用流速仪观测0.6倍渠道中心水位流速,通过观测点渠道工程断面参数和水位计算出的流体断面面积,从而计算出渠道流量。 1.3 观测地点与观测内容 观测点包括:盈科灌区的盈一分支三斗(石桥村六社、上二社和下二社)、四斗(石桥村七社、八社和九社)和五斗(石桥村一社)以及大满灌区的五星支渠四斗三农一毛、二毛、三毛(超级站位置)、四毛、五毛、六毛、七毛(五星四社),观测时间为: 夏灌二轮: 2012-5-22:观测盈一分支四斗:获取石桥九社灌溉量; 2012-5-23:观测盈一分支四斗:获取石桥八社灌溉量; 2012-5-24至2012-5-25:观测盈一分支四斗;获取七社灌溉量; 2012-5-26至2012-5-28:观测盈一分支五斗;获取石桥一社灌溉量; 2012-5-28至2012-5-29:观测盈一分支三斗,获取石桥下二社灌溉量; 2012-5-29至2012-5-30:观测盈一分支三斗,获取石桥上二社灌溉量; 2012-5-30至2012-6-2:观测盈一分支三斗,获取石桥六社灌溉量; 2012-6-6:观测五星支渠四斗三农一毛、二毛、三毛、四毛和五毛流量; 2012-6-7:观测五星支渠四斗三农六毛和七毛流量。 夏灌三轮: 2012-6-18至2012-6-19:观测盈一分支四斗:获取石桥九社灌溉量; 2012-6-19至2012-6-20:观测盈一分支四斗:获取石桥八社灌溉量; 2012-6-20至2012-6-21:观测盈一分支四斗;获取七社灌溉量; 2012-6-22至2012-6-24:观测盈一分支五斗;获取石桥一社灌溉量; 2012-6-24至2012-6-26:观测盈一分支三斗,获取石桥下二社灌溉量; 2012-6-26至2012-6-27:观测盈一分支三斗,获取石桥上二社灌溉量; 2012-6-27至2012-6-30:观测盈一分支三斗,获取石桥六社灌溉量; 2012-7-1至2012-7-2:观测五星支渠四斗三农一毛、二毛、三毛、四毛、五毛、六毛和七毛流量; 秋灌一轮: 2012-7-16至2012-7-18:观测盈一分支四斗:获取石桥九社灌溉量; 2012-7-18至2012-7-19:观测盈一分支四斗:获取石桥八社灌溉量; 2012-7-19至2012-7-21:观测盈一分支四斗;获取七社灌溉量; 2012-7-21至2012-7-24:观测盈一分支五斗;获取石桥一社灌溉量; 2012-7-24至2012-7-25:观测盈一分支三斗,获取石桥下二社灌溉量; 2012-7-25至2012-7-27:观测盈一分支三斗,获取石桥上二社灌溉量; 2012-7-27至2012-7-31:观测盈一分支三斗,获取石桥六社灌溉量; 2012-7-27至2012-7-28:观测五星支渠四斗三农一毛、二毛、三毛、四毛、五毛、六毛和七毛流量; 秋灌二轮: 2012-8-8至2012-8-9:观测盈一分支四斗:获取石桥九社灌溉量; 2012-8-9至2012-8-10:观测盈一分支四斗:获取石桥八社灌溉量; 2012-8-10至2012-8-12:观测盈一分支四斗;获取七社灌溉量; 2012-8-13至2012-8-15:观测盈一分支五斗;获取石桥一社灌溉量; 2012-8-15至2012-8-17:观测盈一分支三斗,获取石桥下二社灌溉量; 2012-8-17至2012-8-19:观测盈一分支三斗,获取石桥上二社灌溉量; 2012-8-19至2012-8-22:观测盈一分支三斗,获取石桥六社灌溉量; 2012-8-24至2012-8-25:观测五星支渠四斗三农一毛、二毛、三毛、四毛、五毛、六毛和七毛流量; 观测内容:渠道平均流速(m/s),渠道水位(m),水温(℃),渠道工程断面(调查)。当渠道流量稳定时,渠道平均流速与水位观测频率为1次/小时;当渠道流量较稳定时,渠道平均流速与水位观测频率为2次/1小时;当渠道流量发生很大变化时,每次较大变化都对渠道平均流速与水位进行观测。 1.4数据处理 渠道流量观测原始数据为Excel格式数据,原始数据中包括渠道流速、渠道断面面积、水位和水温。通过数据预处理流程将原始数据转换为渠道流量和进入每个社的灌溉量。数据处理过程详见“渠道流量测量数据处理文档”。
盖迎春, 马春锋, 庄金鑫, 徐凤英, 李新
本数据集包括甘肃省张掖市民乐县荒漠2013年11月24日-25日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月24日-25日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏,18.7GHz H极化损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:2.3M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
差分GPS定位测量目的是通过与国家高等级控制点坐标联测,使多个测区统一到相同坐标系下并实现精确绝对定位,在2000国家大地坐标系下,完成黑河中游通量观测矩阵、葫芦沟小流域、天姥池小流域和大野口流域观测系统和靶标的精确定位。为实现航空、航天光学影像和SAR影像及机载LiDAR数据的几何纠正和绝对定位,完成地面控制点的布设和高精度测量。其中中游区域,在东、南、西、北、中5个方向各联测1个国家高等级控制点。 测量仪器: 有TRIMBLE R8 GNSS系统3套。 测量原则: 对于控制网加密点,采用与测区外围四个象限的高等级已知点网状联接且均匀分布于测区。对于地面控制点(GCP),采用地面布设靶标与选取独立地物的明显特征点(如房屋角点,道路交点、拐点等)且均匀分布于测区。测量时对于精度要求高的地面点,采用分别测量多次(至少三次)求平均值的原则。 测量方法: 试验区控制网加密,采用GPS静态测量与国家高等级控制网进行联测并解算,测量时多台GPS接收机在不同测站上进行静止同步观测,其观测时间严格按照控制网测量规范。 试验区地面点精确定位,采用GPS-RTK定位技术并利用国家高等级控制点来校正到当地坐标系,坐标采集时等流动站获得固定解再进行测量且单次测量持续观测时间为5S。 测量位置: (1)通量观测矩阵 通量观测矩阵核心区17个站点、LAS塔、WATERNET、SoilNET、BNUNET节点;CASI飞行区域地面控制点;雷达覆盖区域地面角反射器位置;激光雷达飞行区地面靶标位置。 (2)葫芦沟小流域 激光雷达飞行区地面靶标位置。 (3)天姥池小流域 激光雷达飞行区地面靶标位置。 (4)大野口流域 卫星影像几何校正地面控制点。 数据格式: GPS静态测量,原始数据格式为“.DAT”和“.T01”(或“.T02”)文件(或转换的RENIX数据)和“外业记录”。GPS-RTK测量,原始项目为“.job”文件(或转换的“.dc”文件)。 该试验结果以导出“.csv”数据格式提交,该文件可用Excel软件查看与编辑。 测量时间: 2012-6-19至2012-7-30
刘向锋, 马明国
在2012年中游航空遥感试验开展期间,在中游的不同下垫面进行了“密闭箱-气相色谱法”测量土壤呼吸,选取了农田、果园、湿地、荒漠、戈壁、沙漠6个不同的下垫面进行测量。 观测仪器: 中科院寒区旱区环境与工程研究所同化箱。 测量方式: 同化箱由两部分组成:底座和箱体。底座采用PVC材料制成,下端埋于土壤中。箱体部分是由不锈钢制的立方体,一边开口。测量时将箱体盖在底座上,利用注射器抽取箱内的气体样品,将抽取的气体注射到气体采样袋中,运回实验室分析CO2的浓度,在中科院植物所利用气相色谱法进行测量。根据浓度的变化来计算土壤呼吸速率。每个测量点设3个重复。在盖上箱子密封5分钟后开始采第1次样,然后每间隔10分钟采一次样,总共采4次。 数据内容: 数据内容包含头文件信息和每10天1次的3次重复观测结果及平均数。 观测地点: 戈壁(EC19)、湿地(EC22)、荒漠(EC21)、沙漠(EC20)、果园(EC17)、玉米(EC15) 观测时间: 2012-6-16;2012-6-28;2012-7-9;2012-7-18;2012-7-30;2012-8-11;2012-8-21;2012-9-2;2012-9-13;2012-9-22。
马明国, 李香兰
本数据集为两部分,第一部分为2008年,2010年,2011年,2012年5×5km试验区渠道流量、种植结构、田间管理和社会经济数据;另一部分为盈科灌区和大满灌区2012年春灌一轮、夏灌一轮、夏灌二轮、夏灌三轮、秋灌一轮、秋灌二轮灌溉数据以及两个灌区的种植结构、田间管理和社会经济数据。 1.1数据收集目的 第一部分数据收集目的是提供年时间序列(2008、2010、2011、2012)的作物种植结构和灌溉水量的变化,尤其是为2012年黑河生态水文试验加强观测提供配套数据集,第二部分数据收集的目的是为灌溉配水优化模型的应用提供数据(灌溉量数据)和参数(种植结构、田间管理和社会经济)。 1.2数据收集的地点与内容 收集大满灌区数据,包括党寨水管站、花儿水管站、大满水管站、小满水管站、碱滩水管站、廿里堡水管站和下段,数据内容包括配水时间、支口水量、斗口水量、灌溉面积、支渠渠道水利用率、水价、水费,数据收集的时间段包括: 2012年3月16至2012年4月4日,春灌数据; 2012年4月4日至2012年5月14日,夏灌一轮数据; 2012年5月20日至2012年6月24日,夏灌二轮数据; 2012年5月16日至2012年7月6日,夏灌三轮数据; 2012年7月15日至2012年8月2日,秋灌一轮数据; 2012年8月10日至2012年8月26日,秋灌二轮数据。 收集盈科灌区数据,包括长安水管站、上秦水管站、党寨水管站、梁家墩水管站、石庙水管站、小满水管站、新墩水管站、沿沟水管站,数据收集的时间段和数据内容如下: 灌溉数据:收集2008,2010,2011和2012年小满镇、长安乡上头闸村灌溉数据;2012年长安水管站、上秦水管站、党寨水管站、梁家墩水管站、石庙水管站、小满水管站、新墩水管站、沿沟水管站灌溉数据,数据内容包括:测水时间、斗口测水水位、流量、历时、水量、灌溉面积。 机井数据:收集了2012年长安水管站、梁家墩水管站、上秦水管站机井数据,数据内容包括开井时间、机井深度、机井提水量、灌溉面积。 社会经济数据:收集2012年长安乡、小满镇、梁家墩、上秦(各社)社会经济数据,数据内容包括人口数量、人均农业收入、人均非农业收入、人均生活用水量、人均居住面积和平均文化程度。 田间管理调查数据:收集2012年长安乡、小满镇、梁家墩、上秦(各社)田间管理调查数据,数据内容包括肥料名称、施肥时间、施肥量、农药名称、农药喷药时间和农业喷洒量。 种植结构数据:收集了2008,2010,2011和2012年小满镇,长安乡上头闸村种植结构数据;2012年长安水管站、梁家墩水管站、上秦水管站种植结构数据,数据内容包括作物名称、播种时间、收获时间、种植面积、灌溉定额、田间水利用率、作物产量、作物产值。 1.3数据收集方式 通过与盈科水管所和大满水管所合作的方式完成数据收集工作,所有数据都由盈科水管所和大满水管所委托各自管辖的水管站来完成具体的数据收集任务,最后将收集到的数据汇交到两个水管所。经由水管所负责人审核之后,以纸质形式提交给我们。 所有调查数据集的数据组织和数据格式详见“数据文档”。
盖迎春, 徐凤英, 李新
2012年7月7日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积1.6 km×1.6 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了11条样线(东西分布),每条线80 m间隔共21个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约230个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被参数观测选择在一些具有代表性的土壤水分采样点开展,完成了株高和生物量(植被含水量)的测量。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 马明国, 李新
本数据集包括黑河中游盈科/大满灌区5.5km×5.5km观测矩阵(缩略图中红色框)内10个WATERNET节点的2013年观测数据。10个WATERNET节点均包含4cm和10cm两层Hydro Probe II探头,观测土壤水分、土壤温度、电导率及复介电常数等主要变量;在4m高度架设有SI-111红外温度探头观测下垫面地表红外辐射温度。常规观测的时间频率为10分钟,为保证SI-111与遥感的准确同步,每天的00:00-04:30、08:00-18:00和21:00-24:00进行1分钟加密观测。本数据集可为异质性地表关键水热变量的遥感估算及其遥感真实性检验,生态水文研究,灌溉优化管理等研究提供时空连续的观测数据集。 详细内容请参见“2013年黑河中游WATERNET数据文档20141231.docx”
晋锐, 亢健, 李新, 马明国
本数据集为利用开路式土壤碳通量测量系统LI-8100(LI-COR,Lincoln,NE,USA)在大满超级站定点测量的土壤呼吸速率。 1) 测量目的 土壤呼吸速率测量的目的在于:利用LI-8100测定土壤呼吸日变化特征,为评估干旱区农田生态系统碳循环和碳平衡提供科学依据与参数。 2) 测量仪器与方式 测量仪器:开路式土壤碳通量测量系统LI-8100(LI-COR,Lincoln,NE,USA)。 测量方式:土壤呼吸室放置在PVC圈(直径10 cm,高度5 cm)上,PVC圈插入土壤1~2 cm,在测定的前1 d安置。采用全自动观测,利用太阳能板进行供电,采用仪器自带数据采集仪,自动记录观测数据。 3) 测量时间 土壤呼吸速率主要在玉米的主要生长季进行持续观测,具体时间为2012年6月19日一9月15日。 4) 数据处理 定期从数据采集仪上拷贝出观测数据(*.81x),通过LI-8100(M) PC Client v2.0.0软件预处理转换为文本格式文件,得到土壤呼吸数据。
王静, 黄永生, 李元, 李新, 马明国
本数据集利用LI-6400光合仪,观测了黑河流域中游绿洲区的主要农作物小麦和玉米。观测地点分别位于临泽平川和小满五星村超级站。观测日期从五月中旬开始到九月份。本数据集包括观测期内的小麦和玉米的LI-6400的原始观测数据和预处理后的数据。 1) 测量目的 光合数据测量可以用于植物生理生态特性研究以及生态水文模型的模拟和验证。 2) 测量仪器与原理 测量仪器:LI-6400便携式光合作用测量仪。 测量原理:利用红外气体分析法来测量CO2浓度变化,通过测量样品室和参比室之间CO2的浓度差从而获得叶片的净生产力。 3) 测量时间与地点 小麦观测地点:临泽平川小麦试验场 观测时间:2012-05-17,2012-06-08至6-13日 玉米观测地点:五星村超级站 观测时间:2012-05-19至2012-09-15 4) 数据处理 LI-6400原始文件是文本格式的文件,经过格式转换为excel格式的文件。为保留原始数据,未对数据进行删改。测量时每个时段数据存为一个文件,并以日期+类型+时刻命名,每片叶子重复读数3次;每片叶子添加一个remark。
王海波
本数据为在盈科绿洲观测的植被LAI数据集。数据观测从2012年5月25日开始,至2012年7月7日结束。 测量仪器与原理: 利用LAI2000测量冠层的LAI。在盈科绿洲5km*5km样方内选择18个玉米样方,1个果园和1个人工白杨林样方进行测量。 在每个样方内测量一次冠层上入射,测量多次冠层下透射,然后取均值,通过间隙率模型反演得到冠层LAI。 配套数据: 植被的种类、株高、垄行结构、场景照片等信息。 数据格式: Excel格式。
李云, 汪艳, 马明国
机场荒漠红外温度系统架设目的在于为航空TASI、WiDAS和L波段飞行提供地面定标观测数据。 观测地点: 选择张掖机场旁的大面积、均质和平坦的荒漠作为观测点,植被为稀疏低矮的灌丛。该观测点坐标:38°46'41.30"N,100°41'48.10"E。 测量仪器: 观测探头为一个垂直对地的S1-111红外温度探头和一个正南天顶角35度对天观测的SI-111红外温度探头(2012年新购置仪器,其出厂时默认的地表发射率为1,试验期间未进行黑体定标),Campell CR1000数采自动记录,探头架高4米,仪器朝向正南。 测量时间: 仪器从2012年6月10日起开始正常观测,至今进行不间断地24小时观测,5秒钟记录一次数据,输出5秒钟和1分钟2组值。 数据内容: 地表温度(TarT_Sur,未进行地表比辐射率、背景温度的校正),对天空温度(TarT_Atm,未进行天空背景比辐射率校正)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
2012年6月29日,在黑河中游的样带区域,利用运12飞机,搭载CASI传感器,开展了可见光/近红外高光谱航空遥感数据获取飞行试验。飞行相对高度2000米(海拔高3500米),CASI传感器波长范围分别为380-1050纳米,空间分辨率分别为1米。利用同步测量的地面数据和大气数据,经过几何和6S大气校正,得到地表反射率产品。参考样带区域地表覆盖类型实地调查数据,利用分层分类方法对两条航空飞行样带进行地表覆盖分类制图。
肖青, 刘良云
在2012年中游试验期间,在气象站点附近对土壤剖面进行分层取样并带回实验室进行土壤参数的测量,测量的土壤参数包括:土壤质地、孔隙度、容重、饱和导水率、土壤有机质含量。土壤参数是陆面过程模型和植被模型中重要的参数,这些观测数据可以为模型在黑河中游的应用提供支持。 观测地点: 矩阵中的1-17号气象站(4号点除外),神沙窝站,戈壁站,荒漠站,以及WATERNET的50个观测点。气象站的土壤采样坐标如下表所示。 名称 x y 1号点 100.3582 38.89322 2号点 100.3541 38.88697 3号点 100.3763 38.89057 5号点 100.3506 38.87577 6号点 100.3597 38.8712 7号点 100.3652 38.87677 8号点 100.3765 38.87255 9号点 100.3855 38.87241 10号点 100.3957 38.87569 11号点 100.342 38.86994 12号点 100.3663 38.86516 13号点 100.3785 38.86077 14号点 100.3531 38.85869 16号点 100.3641 38.8493 17号点 100.3697 38.84512 15号点(超级站) 100.3721 38.85547 戈壁站 100.3058 38.91801 花寨子站 100.3189 38.7652 神沙窝站 100.4926 38.78794 测量仪器测量仪器: 土壤质地:Microtrac激光粒度仪 孔隙度:环刀法 容重:环刀法 饱和导水率:定水头法 土壤有机质: 总有机碳分析仪(TOC-VCPH) 测量时间: 2012年5月20日 至 2012年7月10日 数据内容: 土壤质地、孔隙度、容重、饱和导水率、土壤有机质含量。
马明国, 王旭峰, 王海波, 于文凭
在2012年夏季LiDAR和WIDAS飞行期间,地面同步开展地面基站差分GPS的连续观测,获取同步的GPS静态观测数据,用于支持航空飞行数据的同步解算。 测量仪器: TRIMBLE R8 GNSS系统2套。 中国中纬ZGP8001套 测量时间和地点: 2012年7月19日,EC矩阵LiDAR飞行,在MJWXB(毛家湾西北)和SBMZ(什八民子)两个基站同时观测 2012年7月25日,上游葫芦沟小流域和天姥池小流域LIDAR飞行,在XT夏塘观测,中游张掖城区校验场LIDAR飞行,在MJWXB(毛家湾西北)观测 2012年7月26日,上游葫芦沟小流域和天姥池小流域LIDAR飞行,在XT夏塘观测,中游张掖城区校验场LIDAR飞行,在HCZ(火车站)观测 2012年8月1日,上游东西支WIDAS飞行,在YNG(野牛沟)观测 2012年8月2日,中游EC矩阵试验区WIDAS飞行,在HCZ(火车站)观测 2012年8月3日,中游EC矩阵试验区WIDAS飞行,在MJWXB(毛家湾西北)观测 数据格式: 差分预处理前原始数据格式。
刘向锋, 马明国
黑河流域250m/1km月合成植被覆盖度(FVC)数据集提供了2011-2014年的月FVC合成结果,该数据利用MODIS的植被指数产品MOD13A2和MOD13Q1,基于像元二分法生产。
仲波, 吴俊君
2012年7月10日,在黑河中游的30*30公里核心观测区域、临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。飞行高度为2500米。TASI传感器波长范围为8-11.5微米,空间分辨率为3米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
本数据为利用2012年6月29日的航飞高光谱数据反演得到黑河流域中游核心试验区(5.5km*5.5km)的反照率产品,空间分辨率为5m.
肖青, 闻建光
2012年8月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。小沙漠地区飞行绝对航高2900米,平均点云密度 点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
2012年8月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。小沙漠地区飞行绝对航高2900米,平均点云密度 点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
2012年6月28-29日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积2.4 km×2.4 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了16条样线(东西分布),每条线80 m间隔共31个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被参数观测选择在一些具有代表性的土壤水分采样点开展,完成了株高和生物量(植被含水量)的测量。 注:28号观测从11:00AM左右开始,完成约1/3工作量,由于PLMR仪器问题和降雨的双重原因,4:00PM被迫停止观测。剩余工作量29号10:30AM-5:30PM完成。观测日期正值该区域内农田大面积灌溉,导致观测人员前行困难,田块难以进入,观测点位与预设点位有偏差。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 李新
本数据集包含HiWATER黑河中游人工绿洲试验区共计5个PLMR飞行日的土壤水分遥感反演产品,飞行日期分别为:2012年6月30日,7月7日,7月10日,7月26日,8月2日。利用三角度(7°,21.5°,38.5°)双极化共六个通道的PLMR亮温观测,并结合Levenberg-Marquardt优化算法,对土壤水分(SM)、植被含水量(VWC)和地表粗糙度参数(Hr)同时进行三参数反演,得到空间分辨率700m的土壤表面体积含水量(单位cm3/cm3,代表约5cm深度的平均含水量)。本数据集格式为asc,投影为UTM(中央经线47°N)。土壤水分的反演结果通过生态水文无线传感器网络和人工土壤水分同步观测数据进行了验证,结果表明土壤水分产品的总体精度在0.05cm3/cm3左右,其中7月7日与7 月10日的反演精度可达0.04cm3/cm3左右。利用PLMR亮温反演得到的黑河中游绿洲土壤水分数据集,可为流域陆面/水文模型及数据同化提供数据集,对于揭示绿洲灌溉空间格局以及发展土壤水分产品的尺度转换算法也有重要意义。
李大治, 晋锐, 亢健, 李新
本数据集为用卷尺在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的植被株高数据。 1) 测量目的 株高数据测量的目的在于:获取黑河流域下垫面上植被的株高,作为先验知识用于植被反演和生态水文模型。 2) 测量仪器 测量仪器:卷尺。 3) 测量地点与内容 a、 大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦株高。 b、 EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点(下垫面均为制种玉米)的株高。 c、 超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地(下垫面为制种玉米)的株高。 d、 石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地(下垫面为制种玉米)的株高。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
王静, 徐凤英, 庄金鑫, 黄永生, 李新, 马明国
在2012年中游航空遥感试验开展期间,对黑河中游CASI+SASI飞行航带范围内土地覆盖开展调查,目的在于获取主要的植被类型和种植结构数据,用于实现植被遥感产品的真实性检验。 观测仪器: 高精度手持GPS(定位精度2-3米)和数码相机。 测量方式: 借助Goole Earth,可以大致看出中游有植被的范围, 设计具体路线,然后选择小满镇五星村的5*5公里为主要详细调查范围,实验调查可行的基础上,对中游其他做大面积调查,在尽可能到达的路线内具体调查种植结构类型。调查的方式是尽量选择大面积均质的植被类型或者农田进行调查,记录坐标位置、拍摄下垫面照片。 数据内容: 数据内容包含经纬度,植被类型,大概的种植面积,作物的物侯期等信息。 观测地点: 重点为中游人工绿洲试验区CASI飞行区域,还包括CASI在中游样带飞行区域和黑河中游2区(甘州、肃州)5县(山丹、民乐、临泽、高台、金塔)。 观测时间: 本次调查时间从2012年6月25日开始,8月6日结束。
张苗
本数据集为在张掖市大满水分控制实验场、EC站点、超级站和石桥一社样地测量的作物生物量数据。 1) 测量目的 生物量数据测量的目的在于:获取黑河流域下垫面上作物的生物量,作为先验知识用于植被生物物理参数反演和生态水文模型校正和验证。 2) 测量仪器与原理 测量仪器:天平(精度0.1g)、烘箱。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量小麦生物量。 b. EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,测定制种玉米的生物量。 c.超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,测定制种玉米的生物量。 d.石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,测定制种玉米的生物量。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
徐凤英, 王静, 马春峰, 黄永生, 李新, 马明国
在EC17号点果园设置的红外温度系统,可以为航空飞行数据反演地表温度产品提供果园地表温度的连续地面观测数据。 观测地点: 选择甘肃省农科院张掖试验场的大面积、均质的果园作为观测点,位于EC17号点旁,主要观测植被为苹果树冠层。该观测点坐标为:38°50'41.70"N,100°22'11.40"E。 测量仪器: 观测探头为一个垂直对地的S1-111红外温度探头(2012年新购置仪器,其出厂时默认设置的地表发射率为1,试验期间未进行黑体定标)。Campell CR850数采自动记录,果树高度4米,冠幅4×4米,探头架高4.55米。位于EC17西南方向4米处。 测量时间: 仪器从2012年8月3日起开始正常观测,截至2012年9月27日,进行不间断地24小时观测,1分钟记录一次数据,1分钟输出一组数据。 数据内容: 地表温度观测数据(Target_C_Avg,未进行地表比辐射率、背景温度的校正),SI-111仪器自身的表体温度(SBT_C_Avg)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
本数据集包括甘肃省张掖市甘州区沙漠公园荒漠2013年11月22日-24日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月22日-24日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:7.4M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
植被叶绿素含量的测量是为了获取不同EC站点以及不同类型植被叶绿素的含量,并实现遥感反演的叶绿素产品的真实性检验。 观测仪器: 野外采样,室内丙酮萃取法测量。 测量方式: 为了分析株高对叶绿素含量的影响,根据玉米株高记录选择不同的样方进行采样,总共选择了11个玉米样方。为了比较不同植被类型的叶绿素含量,又选取了通量矩阵内EC1下的三种蔬菜类型以及湿地的芦苇样方。总共选取了19个不同的样方进行分析,所采样方交于河西学院生命科学学院实验室,进行叶绿素萃取,分别提取出所选样方的叶绿素a、叶绿素b以及总叶绿素的含量。 数据内容: 叶绿素a、叶绿素b以及总叶绿素的含量 观测时间: 2012年7月8号
家淑珍
本数据包括大满超级站、湿地、沙漠、荒漠和戈壁五个站点植被一个生长周期内的覆盖度数据集以及大满超级站玉米和湿地芦苇两种植被一个生长周期内的生物量数据集。观测时间自2014年5月10日开始,9月11日结束。 1覆盖度观测 1.1观测时间 1.1.1超级站:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.1.2其它四个站:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 其它四个站:2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 1.2观测方法 1.2.1测量仪器与原理: 采用数码相机拍照的方法测量,将数码相机置于简易支撑杆前端的仪器平台,保持拍摄的竖直向下,远程控制相机测量数据。观测架可以用来改变相机的拍摄高度,面向不同类型植被实现有针对性的测量。 1.2.2样方的设计 超级站:共取3块样地,每块样地样方大小10×10米,每样地每次测量时沿两条对角线依次拍照,共取9-10张照片; 湿地站:共取2块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 其它3个站:选取1块样地,每块样地样方大小10×10米,每样地每次测量拍9-10张照片; 1.2.3拍摄方法 针对超级站玉米和湿地站芦苇,直接采用观测架观测,保证观测架上的相机距离植被冠层的高度远大于植被冠幅,在方形样方内沿着对角线采样,然后做算术平均。在视场角度不大(<30°)的情况下,视场内包括大于2个整周期的垄行,相片的边长与垄行平行;其它三个站点由于植被比较低矮,直接用相机垂直向下拍照(未使用支架)。 1.2.4 覆盖度计算 覆盖度计算由北京师范大学完成,采用一种自动分类方法,具体见 “建议参考文献”第1条文献。通过RGB颜色空间转换到更容易区分绿色植被的Lab空间,对绿度分量a的直方图进行聚类,分离出绿色植被和非绿色背景2组分,获得单张相片的植被覆盖度。该方法的优点在于其算法简单、易于实现而且自动化程度和精度较高。今后还需要更多的快速、自动、准确的分类方法,最大限度发挥数码相机方法的优势。 2生物量观测 2.1观测时间 2.1.1玉米:观测时间段2014年5月10日-9月11日, 7月20日以前每5天观测一次,7月20后每10天观测一次,共做了17次观测,具体观测时间如下; 超级站:2014-5-10、2014-5-15、2014-5-20、2014-5-25、2014-5-30、2014-6-10、2014-6-15、2014-6-20、2014-6-25、2014-6-30、2014-7-5、2014-7-10、2014-7-15、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.1.2芦苇:观测时间段2014年5月20日-9月15日,每10天观测一次,共做了11次观测,具体观测时间如下; 2014-5-10、2014-5-20、2014-5-30、2014-6-10、2014-6-20、2014-6-30、2014-7-10、2014-7-20、2014-8-5、2014-8-17、2014-9-11 2.2观测方法 玉米:选取3块样地,每块样地每次观测选取代表样地平均水平的三株玉米分别称每株玉米的鲜重(地上生物量+地下生物量)和相应的干重(85℃恒温烘干),根据种植的株距和行距计算单位面积玉米的生物量; 芦苇:设置2个0.5mÍ0.5m的样方,齐地刈割,分别称取芦苇的鲜重(茎叶)和干重(85℃恒温烘干)。 2.3观测仪器 天平(精度0.01g)、烘箱。 3数据的存储 所有观测数据先手薄记录后整理到Excel表中存储,同时整理了玉米种植结构数据,包括种植的株距、行距,种植时间、灌水时间、除父本时间以及收割时间等相关信息。
于文凭, 耿丽英, 李艺梦, 谭俊磊, 马明国
在2012年中游航空遥感试验开展期间,对黑河中游核心观测区利用航飞CASI数据结合地面调查获得了高分辨率的土地覆盖数据。 分类方法: 基于CASI航空遥感数据,采用分层分类方法对该区域进行分类。树木、草地、裸地+建筑用地类别:综合运用基于像素与基于对象的分类方法。各种农作物类别:对于难以区分的类别,通过结合地面调查点,目视解译得到。 数据内容: 土地覆盖类型,包括玉米、韭菜、白杨、菜花、菜椒,土豆,青笋,果园,西瓜,四季豆,梨园,阴影,非植被和未分类14种地表类型。 观测地点: 黑河中游核心观测区,5*5矩阵。 观测时间: 本次调查时间从2012年6月25日。
张苗
2012年7月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。中游地区飞行相对高度1500米(海拔高度2700米),平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
在2012年中游航空遥感试验开展期间,在EC矩阵核心观测区开展移动式土壤呼吸5天1次的连续观测。 观测仪器: 中科院地球环境所LI8100移动式土壤呼吸测定仪。 测量方式: 使用已购置好的PVC管制作成土壤呼吸环,所制作土壤呼吸环总长10cm,于正式测定前嵌插入土壤,之后至少静置24小时;嵌入土壤4cm,地面保留高度6cm。基准面样点测定时间集中在上午9-12点,每样地设置三个重复样,根据涡动编号进行标记。 数据内容: 数据内容包含头文件信息和每5天1次的3次重复观测结果及平均数。 观测地点: EC矩阵核心试验区内EC01-EC17号站点地块内,每样地设置3个重复样,其中EC15大满超级站在3个重复基础上加密了9个重复样。 观测时间: EC01、EC03、EC05、EC10、EC11、EC12、EC13、EC14、EC17观测时间为2012年6月6日至8月20日每5天1次。 EC02、EC04、EC06、EC07、EC08、EC09、EC16为2012年7月1日至8月20日每5天1次。 观测期间部分观测点刚好灌水,该点当次则不观测。
李元, 时伟宇, 宋怡
2012年6月26日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了21条样线(东西分布),每条线5 m间隔共21个点(南北方向),使用3台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约440个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。因该区域植被开展了例行的5天一次采样观测,因此当日未开展专门的植被同步采样。 数据: 本数据集保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
2012年8月2日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积1.6 km×1.6 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了11条样线(东西分布),每条线80 m间隔共21个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约230个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。当日未开展植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
本数据集为采用叶绿素仪(SPAD)在张掖市大满水分控制实验场、EC站点、超级站和石桥样地测量的玉米叶片叶绿素数据。 1) 测量目的 叶绿素数据测量的目的在于:获取黑河流域下垫面上作物叶片的叶绿素含量,作为参数应用于植被辐射传输模型,以及其他生物物理参数的反演。 2) 测量仪器与原理 测量仪器:叶绿素仪(SPAD)。 3) 测量地点与内容 a.大满小麦水分控制实验场 分别在2012-5-17、2012-5-23、2012-5-29、2012-6-3、2012-6-9、2012-6-14、2012-6-24、2012-7-5、20127-12测量12个水分处理的小麦叶片叶绿素含量。 b.EC站点 分别在2012-5-14、2012-5-21、2012-5-25、2012-5-31、2012-6-7、2012-6-13、2012-6-23、2012-6-28、2012-7-3、2012-7-13、2012-7-18、2012-7-23、2012-8-3、2012-8-12、2012-8-28测量EC-2、EC-3、EC-5、EC-6、EC-7、EC-8、EC-9、EC-10、EC-11、EC-12、EC-13、EC-14、EC-15、EC-16共14个EC站点,制种玉米叶片叶绿素含量。 c.超级站样地 分别在2012-5-22、2012-5-28、2012-6-5、2012-6-11、2012-6-18、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-31、2012-8-9、2012-8-15、2012-8-22、2012-9-3、2012-9-11测量超级站样地,制种玉米叶片叶绿素含量。 d.石桥样地 分别在2012-5-17、2012-5-22、2012-5-28、2012-6-4、2012-6-11、2012-6-17、2012-6-25、2012-7-1、2012-7-8、2012-7-15、2012-7-22、2012-7-30、2012-8-8、2012-8-16、2012-8-27、2012-9-9测量石桥样地,制种玉米叶片叶绿素含量。 4) 数据处理 在实验现场用观测手簿记录观测数据,然后整理成excel表。
徐凤英, 王静, 庄金鑫, 刘素华, 黄永生, 李新, 马明国
2012年7月3日在临泽站附近PLMR样带进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 此次航空飞行航线设计依据临泽站附近的3个点位代表的典型地表类型,兼顾部分中子管观测,设计西北-东南方向三条航线,航线互相之间间隔200 m,设计航高300 m左右,PLMR地面分辨率100 m。根据航线及PLMR观测特点,在航线两侧设计地面3条观测样带,每条样带约长6 km。从西往东分别为L1、L2和L3。其中L1和L2以中间一条航线为中心,相隔80 m;L2和L3之间相隔200 m。每条样带上观测点南北间隔40 m,使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样带上约4500个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被参数观测选择在一些具有代表性的土壤水分采样点开展,完成了株高和生物量(植被含水量)的测量。 注:观测日期正值该区域内农田大面积灌溉,导致观测人员前行困难,田块难以进入,观测点位与预设点位有偏差。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 马明国, 李新
2012年6月4日在大满加密观测区超级站附近的TerraSAR-X样方进行了卫星过境地面同步观测。TerraSAR-X卫星搭载X波段的合成孔径雷达(SAR),该日过境影像为HH/VV极化,标称分辨率3 m,入射角介于22-24°,过境时间为19:03(北京时间),主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证主动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 选择了超级站东南边的6个自然地块,面积约为100 m×100 m。样方西北角的一个地块为西瓜地,其他为玉米。样方的选择依据是:(1)考虑了不同植被种类,即西瓜和玉米;(2)样方的大小考虑到了可见光像元,100 m见方的大小可以保证至少4个30 m像元落在其中;(3)样方的位置选在超级站附近,交通便利,北面有超级站的观测,东西两侧各有一个WATERNET节点,为今后融入这些观测提供了可能;(4)此外,在样方四周,也有一些明显地物点,能够保证今后对SAR影像的几何纠正比较准确。 考虑到影像的分辨率,同步观测中,以5 m为间隔,采集了23条样线(东西分布),每条线5 m间隔共24个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量,通过测绳上的刻度和移动样线来控制采样间隔以弥补不能使用手持GPS的不足。 测量内容: 获取了样方上约550个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b);西瓜地虽然也覆膜,但考虑到并非水平铺设,只测量非覆膜位置土壤水分(两次数据记录中标记均为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。植被小组完成了生物量、LAI、植被含水量、株高、行垄距、叶绿素等的测量。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中;植被采样信息记录在EXCEL表格中。
王树果, 李新
2012年7月19日,在黑河中游的核心试验区获取了机载激光LIDAR数据,可以提供高空间分辨率(米级)和高精度(20cm)的地表高程信息。 通过对机载激光雷达数据处理分别生成了DEM,DSM和点云密度图,在此基础上将DSM与DEM直接相减,得到黑河流域中游核心试验区植被高度产品,产品总体精度为88%。
肖青, 闻建光
在EC矩阵4号村庄点边上的屋顶上架设一套地表温度和上行/下行短波观测系统,目的在于为航空TASI、WiDAS和L波段飞行提供地面定标观测数据。 观测地点: 选择甘肃省张掖市甘州区小满镇石桥村一社大面积、均质的土房屋顶作为观测点。观测点位于房顶上,相对平坦、且比较均一,周边没有高大树木的遮挡,距EC4号点西南约20米,该观测点坐标:38°52′38.50″N,100°21′27.00″E。 测量仪器: 观测探头为一个垂直对地的S1-111红外温度探头(2012年新购置仪器,其出厂时默认的地表发射率为1,试验期间未进行黑体定标)。2个CMP3型反照率表(一个朝上、一个朝下)组成,探头架高1.0米,Campell CR850数采自动记录。 探头朝向: 仪器支臂长度3m,与房子边缘平行,方位角156°,东偏南66° 测量时间: 仪器从2012年6月23日起开始正常观测,到9月20日拆除,期间进行不间断地24小时观测,5秒钟记录一次数据,输出5秒钟和1分钟2组值。 数据内容: 地表温度观测数据、上行/下行短波辐射数据,可以计算出最终的反照率。其中温度观测数据主要包括:SI-111红外温度探头的传感器自身表体温度(SBT_C)、传感器观测到的地表温度(Target_C,未进行地表比辐射率、背景温度的校正)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
本数据集包括甘肃省张掖市甘州区五星村农田2013年11月17日-18日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、5cm,10cm,20cm四层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月17日-18日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz 波段损坏) 土壤温度:使用安装在dt80上的传感器测量1cm,5cm,10cm,20cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:3.6M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
本数据集包括甘肃省张掖市康宁九社农田2013年11月15日-16日车载微波辐射计观测亮温、同步测量的土壤质地,粗糙度和地表温度连续观测数据集。地表温度包括温度传感器在土壤深度0cm,1cm、3cm,5cm,10cm五层观测的土壤温度数据。土壤温度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月15日-16日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、18.7和36.5GHz V极化和H极化数据(10.65GHz波段仪器损坏) 土壤温度:使用安装在dt85上的传感器测量0cm,1cm,3cm,5cm,10cm土壤温度 土壤质地:取土样在北京师范大学测量 土壤粗糙度:使用东北地理所提供的粗糙度仪测量 3. 数据大小:4.8M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
2012年7月26日在大满加密观测区PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于大满加密观测区矩阵内,选择了面积3.0 km×2.4 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以450 m为间隔,采集了5条样线(东西分布),每条线100 m间隔共31个点(南北方向),使用5台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约150个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。因该区域植被开展了例行的5天一次采样观测,因此当日未开展专门的植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 马明国, 李新
二坝水库红外温度和水面温度观测系统架设目的在于为航空TASI、WiDAS和L波段飞行提供水体表面温度的数据。 观测地点: 选择张掖城东14km,甘州区碱滩镇二坝村旁的二坝水库作为观测点。该观测点坐标:38°54'57.14"N,100°36'57.39"。 测量仪器: 观测内容包括一个垂直对水面的SI-111红外温度探头,一个正南天顶角35度对天观测的SI-111红外温度探头(2012年新购置仪器,其出厂时默认设置的地表发射率为1,试验期间未进行黑体定标)。2个漂浮在水面以下0cm109SS-L温度传感器,数采为Campell CR-1000,自动采集,GPRS无线传输至综汇系统。探头架高3米,离岸距离3.4m。 测量时间: 仪器从2012年5月27日起开始正常观测,至9月27日进行不间断地24小时观测,5秒钟记录一次数据,输出5秒钟和1分钟2组值。 数据内容: 垂直水体表面温度(TarT_Sur,未进行地表比辐射率、背景温度的校正)、对天空温度(TarT_Atm,未进行天空背景比辐射率的校正),水面0cm直接测量温度(WaterT_1,WaterT_2)。数据最终被存储为1天1个独立文本文件,数据命名方式:数据格式+观测点名称+数据采样时间+日期+时间.dat。详细的数据表头信息见数据内的数据表头说明。
马明国
2012年7月10日在盈科绿洲与花寨子荒漠PLMR样方进行了机载飞行地面同步观测。PLMR(Polarimetric L-band Multibeam Radiometer)是双极化(H/V)的L波段微波辐射计,中心频率1.413 GHz,带宽24 MHz,分辨率1 km (相对航高3 km),有6个beam同时观测,入射角为±7º,±21.5º,±38.5º,灵敏度<1K。飞行主要覆盖中游人工绿洲生态水文试验区。本地面同步数据集可为发展和验证被动微波遥感反演土壤水分算法提供基本地面数据集。 样方及采样策略: 观测区位于张掖绿洲南缘-安阳滩荒漠过渡带,张(张掖)-大(大满)公路西侧,南北跨龙渠干渠,分为两部分,西南方向为1 km×1 km的荒漠样方,由于荒漠较为均质,在此1 km样方内采集5个点(四周各1点及中心点,实际测量过程中,可在沿路行走过程中多测几个点)的土壤水分,四个角点除对角线方向外,互相间隔600 m,西南角角点为花寨子荒漠站,便于与气象站数据比较。在东北侧,选择了面积1.6 km×1.6 km的大样方针对绿洲下垫面开展同步观测。样方的选择依据主要是考虑地表覆盖代表性、尽量避开民居和大棚、穿越绿洲农田以及南边的部分荒漠、可达性、观测(路途消耗)时间,以期获得与PLMR观测的亮度温度的比较。 考虑到PLMR观测的分辨率,同步观测中,东西方向以160 m为间隔,采集了11条样线(东西分布),每条线80 m间隔共21个点(南北方向),使用4台Hydraprobe Data Acquisition System (HDAS,参考文献2)同时测量。 测量内容: 获取了样方上约230个点,每个点2次观测,即对覆膜玉米地,在每个采样点进行2次观测,1次膜内(数据记录中标记为a),1次膜外(数据记录中标记为b)。由于HDAS系统采用POGO便携式土壤传感器,观测获得土壤温度、土壤水分(体积含水量)、损耗正切、土壤电导率、土壤复介电实部及虚部。当日未开展专门的植被同步采样。 数据: 本数据集包括土壤水分观测和植被观测两部分,前者保存数据格式为矢量文件,空间位置即为各采样点位置(WGS84+UTM 47N),土壤水分等测量信息记录在属性文件中。
王树果, 李新
2012年6月30日,在黑河中游的30*30公里核心观测区域、临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5微米,空间分辨率为3米。飞行高度为2500米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
中游人工绿洲生态水文实验区地表温度同步观测的目的在于获取不同地表特征的日变化温度数据和热红外传感器飞行期间大棚薄膜、屋顶、道路、沟渠、水泥地等下垫面的同步地表温度,用于支持航空飞行TASI资料反演地表温度的验证和尺度效应分析。 1、观测时间、内容以及观测方式 2012年6月25日:沟渠和沥青公路使用手持式红外温度计进行观测,观测频率为5min一次。 2012年6月26日:沟渠和沥青公路使用手持式红外温度计进行观测,观测频率为5min一次;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年6月29日:水泥地使用手持式红外温度计进行观测,在TASI传感器进入观测上空时进行连续观测;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年6月30日:沥青公路、沟渠、裸土、西瓜地和田埂使用手持式红外温度计进行观测,TASI传感器进入观测上空时进行连续观测,其他时间每5min观测一次;大棚薄膜和水泥地使用固定自记点温计进行观测,观测频率为1s一次。 2012年7月10日:沥青公路、沟渠、裸土、西瓜地和田埂使用手持式红外温度计进行观测,TASI传感器进入观测上空每1min观测一次,其他时间每5min观测一次;水泥地使用固定自记点温计进行观测,观测频率为6s一次。 2012年7月26日:沥青公路、水泥地、裸土和西瓜地使用手持式红外温度计进行观测,WiDAS传感器进入观测上空进行连续观测,其他时间每5min观测一次;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2012年8月2日:玉米地和水泥地使用手持式红外温度计进行观测,其中玉米地观测根据WiDAS飞行的航带选择观测点,共选取了12个航带,每个航带下选择一个观测点在WiDAS传感器进入观测上空进行连续观测;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2012年8月3日:玉米地和水泥地使用手持式红外温度计进行观测,其中玉米地观测根据WiDAS飞行的航带选择观测点,共选取了14个航带,每个航带下选择3个观测点在WiDAS传感器进入观测上空进行连续观测;水泥地和大棚薄膜使用固定自记点温计进行观测,观测频率为6s一次。 2、观测仪器参数及标定 固定自记点温计的视场角约10°, 塑料薄膜架设高度约0.5m,水泥地面的架设高度约1m,均采用垂直观测;手持式红外温度计视场角为1°,观测比辐射率设为0.95。所有观测仪器在使用过程中分别于2012年7月6、2012年8月5和2012年9月20进行了3次标定。 3、数据的存储 所有观测数据均用Excel格式存储。
耿丽英, 家淑珍, 王宏伟, 王海波, 吴桂平, 陈书林, 彭莉, 董存辉
2012年7月19日,在黑河中上游的核心观测区域,利用运12飞机,搭载Leica公司ALS70,开展了lidar航空遥感飞行试验。ALS70激光波长为1064纳米,多次回波(1,2,3和末次)。中游地区飞行相对高度1500米(海拔高度2700米),平均点云密度4点/平方米。通过参数检校、点云自动分类和人工编辑等步骤,最终形成DEM和DSM数据产品。
肖青, 闻建光
2012年7月4日,在黑河中游的30*30公里核心观测区域、临泽测区和黑河河道,利用运12飞机,搭载TASI传感器开展了热红外高光谱航空遥感数据飞行试验。TASI传感器波长范围为8-11.5微米,空间分辨率为3米。飞行高度为1000米。航空测量获取的数据,利用同步测量的坐标数据和大气数据,经过几何和大气校正,得到大气校正后的地表辐亮度,并进行温度发射率分离,得到地表温度数据。
肖青, 闻建光
通过数据编程,2012年5月中旬获取了大野口流域WorldView-2立体像对数据。同年7-8月,在流域GPS差分大地控制网基础上,测得27个GPS像控点及检查点数据。在全野外GPS地面控制点基础上,利用数字摄影测量软件系统,对WorldView-2影像自带RPC文件进行校正。在立体模型上通过影像自动匹配技术,匹配60个均匀分布的高精度影像连接点快速提取黑河流域上游大野口子流域1米、2米数字高程模型(DEM)。同时,在阴坡森林覆盖区、大野口水库等重点区域进行DEM进行编辑,在地形特征变化大的地方测量一定数量的特征点、线数据,极大地提高了成果精度。通过外业控制点、模型保密点组成的检查点进行定量DEM验证,其高程中误差分别为1.9米和1.2米,达到1:2000比例尺2级高山地2米精度要求。
张彦丽, 马明国
通过数据编程,2012年5月中旬获取了大野口流域WorldView-2立体像对数据。同年7-8月,在流域GPS差分大地控制网基础上,测得27个GPS像控点及检查点数据。在全野外GPS地面控制点基础上,利用数字摄影测量软件系统,对WorldView-2影像自带RPC文件进行校正。在立体模型上通过影像自动匹配技术,匹配60个均匀分布的高精度影像连接点快速提取黑河流域上游大野口子流域1米、2米数字高程模型(DEM)。基于共线条件方程,利用数字微分纠正原理,选取立体像对中的正视影像生成大野口流域数字正射影像DOM。
张彦丽, 马明国
我们生产了2012年黑河流域1KM分辨率的地表光合有效辐射(PAR),太阳辐射(SSR)和净辐射(NR)产品。时间分辨率从瞬时,到逐时和逐日累计。同时也生产了逐日的辅助数据,包括气溶胶光学厚度、水汽含量、NDVI、雪盖和地表反照率。其中,PAR和SSR通过结合静止气象卫星和极轨卫星MODIS产品,用查找表的方法来直接反演。NR通过分析地表净短波辐射和净辐射之间的关系来计算。半小时一次的瞬时产品被加权平均和积分得到逐时和日累计产品。 最终的数据产品以HDF格式打包。HDF文件里有数据以及数据集的详细说明。放了方便使用,简介文档里给出了一段读取HDF格式的IDL代码和一个HDF专业软件! 如果在您的论文中用到了此数据,请引用以下三篇参考文献!
黄广辉
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤有机碳含量空间分布数据产品。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据集内容: hh_soc_layer1.tif:0-5cm 土壤有机碳含量; hh_soc_layer2.tif:5-15cm 土壤有机碳含量; hh_soc_layer3.tif:15-30cm 土壤有机碳含量; hh_soc_layer4.tif:30-60cm 土壤有机碳含量; hh_soc_layer5.tif:60-100cm 土壤有机碳含量;
宋效东, 张甘霖
利用ETWatch模型与系统完成黑河流域2014年1公里分辨率月尺度地表蒸散发数据与中游绿洲30米分辨率月尺度地表蒸散发数据集,该数据集为栅格影像数据,它的时间分辨率是逐月尺度,空间分辨率为1公里尺度(覆盖整个流域)与30米尺度(覆盖中游绿洲区),单位为毫米。数据类型包括月、季、年数据。 数据的投影信息如下: Albers 等积园锥投影, 中央经线:110度, 第一割线:25度, 第二割线:47度, 坐标西偏:4000000 meter。 文件命名规则如下: 1)1公里分辨率遥感数据集 每月累计ET值文件命名:heihe-1km_2014m01_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,m01表示1月份,eta表示实际蒸散数据,tif表示数据为tif格式; 每季累计ET值文件命名:heihe-1km_2014s01_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,s01表示1-3月,为第一季度,eta表示实际蒸散数据,tif表示数据为tif格式; 每年累计值文件命名: heihe-1km_2014y_eta.tif 其中heihe表示黑河流域,1km表示分辨率为1公里,2014表示2014年,y表示年,eta表示实际蒸散数据,tif表示数据为tif格式。 2)30米分辨率遥感数据集 每月累计ET值文件命名:heihe-midoasis-30m_2014m01_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,m01表示1月份,eta表示实际蒸散数据,tif表示数据为tif格式; 每季累计ET值文件命名:heihe-midoasis-30m_2014s01_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,s01表示1-3月,为第一季度,eta表示实际蒸散数据,tif表示数据为tif格式; 每年累计值文件命名: heihe-midoasis-30m_2014y_eta.tif 其中heihe表示黑河流域,midoasis表示中游绿洲区,30m表示分辨率为30米,2014表示2014年,y表示年,eta表示实际蒸散数据,tif表示数据为tif格式。
吴炳方
一、数据描述: 数据包含2015年7~9月葫芦沟小流域流域河水和地下水DOC、DIC值。采样频率两周一次。 二、采样地点: (1)河水采样点有两个。 河水取样点一位置为黑河上游葫芦沟小流域出口水文断面处,经纬度为99°52′47.7″E,38°16′11″N。 河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (2)地下水分泉水和井水取样点。 泉水取样点位置为流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N。 井水取样点位置东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法: 样品DOC、DIC值是利用OIAurora 1030W TOC 仪器测试,检测范围:2ppb C-30,000ppm C。
马瑞, 胡雅璐
一、数据描述 葫芦沟土壤温度监测深度分布为20cm、50cm、100cm、200cm、300cm。地下水温度监测深度为10m。观测频率为1小时/次。观测数据时间范围为2016年5月17日~2016年9月18日。 二、采样地点 葫芦沟小流域土壤温度监测点设置在流域三角洲中部,其地理坐标为99°52′45.38″E, 38°15′21.27″N。
马瑞, 胡雅璐
一、数据描述 数据包含2015年7~9月葫芦沟小流域降水、河水和地下水δ2H、δ18O,采样频率2周/次。 二、采样地点 (1)降水采样点位于中科院寒区与旱区研究所生态水文站内,经纬度为99°53′06.66″E, 38°16′18.35″N; (2)河水取样点一位置为黑河上游葫芦沟小流域出口流量堰处,经纬度为99°52′47.7″E,38°16′11″N。河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (3)地下水分泉水和井水取样点。泉水取样点位置位于流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N; 井水取样点位于东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法 样品δ2H、δ18O值是利用PICARRO L2130-i超高精度液体水和水汽同位素分析仪测定,其结果用相对于国际标准物质V-SMOW的测试精度分别δ值表示,测定精度分别0.038‰、0.011‰。
马瑞, 邢文乐
一、数据描述: 数据包含2015年7~9月葫芦沟小流域流域河水和地下水阴阳离子样品,进行测试分析。采样频率两周一次。 二、采样地点: (1)河水采样点有两个,河水取样点一位置为黑河上游葫芦沟小流域出口流量堰处,经纬度为99°52′47.7″E,38°16′11″N。河水取样点二位置为黑河上游葫芦沟Ⅱ号区出口,经纬度为99°52′58.40″E, 38°14′36.85″N。 (2)地下水分泉水和井水取样点,泉水取样点位置为流域出口东侧20m处,经纬度99°52′50.9″E, 38°16′11.44″N。井水取样点位置东西支沟交汇处附近,经纬度99°52′45.38″E, 38°15′21.27″N。 三、测试方法: 样品阳离子是采用电感耦合等离子体发射光谱仪(ICP-AES)进行测试,测试精度为0.05mg/L ,阴离子是采用离子色谱仪(ICS1100)进行测试,测试精度为0.002mg/L 。
马瑞, 胡雅璐
一、数据描述: 数据包含了2016年5月4日~2016年9月3日葫芦沟小流域二号集水区出口河水流量数据。 二、采样地点: 河水流量监测断面坐标位于二号集水区出口,红墙附近,坐标为99°52′58.40″E,38°14′36.85″N。
马瑞, 胡雅璐
该数据集包含了2012年6月12日至11月22日的黑河中游径流加密观测中的降水比对观测数据。降水比对场位于甘肃省张掖市甘州区长安乡上头闸村即通量观测矩阵的1号点。观测点的经纬度是N38°53'36.06",E100°21'28.92",海拔1559米。数据说明包括以下部分: 降水量分别采用5种不同高度、不同类型雨量计观测,观测频率1d。数据涵盖时间段6月12日至11月24日,单位(cm); 雨量计分别为:1、地面防溅雨量计(0.0米,称重式自计雨量计);2、人工标准雨量计(0.7米,人工观测);3、虹吸式自己雨量计(1.0米,纸质自动记录);4、称重式雨量计(1.5米,带防风隔栅自动记录);5、翻斗式雨量计(1.5米,自动记录)。 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2012年6月17日至11月24日的黑河中游径流加密观测中8号点的河流水位和流速观测数据。观测点位于甘肃省张掖市高台县黑河桥,河道宽度210米。河床为泥沙,断面稳定。观测点的经纬度是N39°23'22.93",N 99°49'37.29",海拔1347米。数据说明包括以下两部分: 水位观测:采用SR50超声测距仪,数据涵盖时间段6月17日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
何晓波, 张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
本数据集包括黑河上游八宝河流域25个WATERNET传感器网络节点自2015年1月至2015年12月的观测数据。4cm和20cm土壤水分/温度是每个节点的基本观测;部分节点还包括10cm土壤水分/温度、地表红外辐射温度观测、雪深和降水观测等观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“2015年黑河上游八宝河WATERNET数据文档20160501.docx”
晋锐, 亢健, 李新, 马明国
黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2015年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。在黑河中游农田、森林区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(RMSE=0.105)。与MODIS MOD13A2产品的时间序列对比分析,充分显示了时间分辨率从16天提高到5天时,稳定的高精度的植被指数对植被生长细节的细致描述。总之,黑河流域1km/5day合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 柳钦火, 仲波, 杨爱霞
黑河流域2015年1km/5天合成叶面积指数(LAI)数据集提供了2015年的5天LAI合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。多源遥感数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。质量评估及分级的目的是为LAI反演时最优数据集的选择及反演算法流程设计提供依据。叶面积指数产品反演算法设计为区分山地平地、区分植被类型使用不同模型的神经网络法反演。基于全球DEM图和地表分类图,针对草地和农作物等连续植被采用PROSAIL模型,针对森林和山地植被采用坡面GOST模型。利用黑河上游森林和中游绿洲的地面实测数据生成的参考图,并将对应的高分辨率参考图升尺度到1km分辨率,与LAI产品进行比较,产品在农田和森林区域与参考值间均具有良好的相关性,总体精度基本满足GCOS规定的误差不超过 (0.5, 20%)的精度阈值。将本产品与MODIS、GEOV1和GLASS等LAI产品进行交叉对比,相比较参考值而言,本LAI产品精度优于同类产品。总之,黑河流域1km/5天合成LAI数据集综合利用多源遥感数据以提高LAI参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 尹高飞, 仲波, 吴俊君, 吴善龙
黑河流域1km/5天合成植被覆盖度(FVC)数据集提供了2015年的5天FVC合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。将全国划分为不同植被区划、地类,分别计算植被指数(NDVI)与FVC的转换系数,采用计算的转换系数查找表和1km/5天合成NDVI产品生产区域1km/5天合成FVC产品。黑河流域1km/5天合成FVC产品通过高分辨率数据可以直接获得植被覆盖比例,减轻低分辨率数据异质性的影响;另外,选择植被生长变化的典型时期,通过对每一个像元时间序列植被指数进行拟合得到每个像元对应的生长曲线参数;再配合土地利用图和植被分类图,寻找区域的代表性均一像元用于训练植被指数的转换系数。通过与黑河流域高分辨率ASTER参考FVC结果相比,首先联合地面实测数据,利用尺度上推方法,将黑河流域ASTER产品聚合到 1km 尺度得到ASTER聚合FVC数据,并与Geoland2项目发布的基于SPOT VEGETATION遥感数据的FVC产品(简称GEOV1 FCOVER)进行间接比较,根据三种数据FVC时间序列曲线图,结果表明:GEOV1的结果较ASTER 影像联合地面实测的结果偏高,黑河流域1km/5天合成FVC产品结果位于两者之间,在实验区内黑河流域1km/5天合成FVC产品优于GEOV1产品。总之,黑河流域1km/5天合成FVC数据集综合利用多源遥感数据以提高FVC参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
穆西晗, 阮改燕, 仲波, 柳钦火
该数据集包含了2015年1月1日至2015年12月31日的黑河中游径流加密观测中2号点的河流水位观测数据。观测点位于甘肃省张掖市312国道黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N38.996667°,E100.427222°,海拔1485米,河道宽度,70米、20米。水位观测采用SR50超声测距仪,采集频率30分钟。数据包括以下部分: 水位观测,观测频率30分钟,单位(cm); 2015年2号点-312桥断面受到频繁人为扰动,断面上下游1km里范围内堤坝修建,水文断面面积不稳定导致水位流量曲线紊乱,测量期间未能获取稳定的流量水位曲线。 水位观测以2015年1月1日0:00时人工观测水位为标准,后期河道下切水文断面变化。导致测量基准水位发生改变出现负值; 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2015年1月1日至2015年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区大满超级站内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和SW(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 李新, 徐自为
该数据集包含了2012年6月13日至2013年9月6日的黑河水文气象观测网中游径流加密观测中1号点的河流水位观测数据。观测点位于甘肃省张掖市213省道黑河桥,分为两个河道,河床为砂砾石,断面不稳定。观测点的经纬度是N38°54'43.55",E100°20'41.05",海拔1546米,河道宽度330米。213桥分为两个断面,东面的为1号,西面的为2号。由于河道断面人为影响频繁无法获取稳定的水位流量曲线于2013年9月6日停止观测。水位观测采用SR50超声测距仪,采集频率30分钟。数据说明包括以下部分: 水位的观测频率30分钟,单位cm;数据涵盖时间段2012年6月13日-2013年9月6日;流量观测,单位(m3 s-1);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。1号点-213桥断面受到频繁人为扰动,水文断面面积不稳定导致水位流量曲线紊乱,流量数据有待进一步观测。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月19日至2013年12月31日的黑河中游径流加密观测中2号点的河流水位和流速观测数据。观测点位于甘肃省张掖市312国道黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N38°59′51.71″,E100°24′38.76″,海拔1485米,河道宽度,70米、20米。水位观测采用SR50超声测距仪,采集频率30分钟。数据说明包括以下部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月19日-2013年12月31日;流量观测,单位(m3 s-1);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。2号点-312桥断面受到频繁人为扰动,水文断面面积不稳定导致水位流量曲线紊乱,流量数据有待进一步观测。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2015年1月1日至12月31日期间水文气象观测网中热扩散液流计数据,研究区位于黑河下游内蒙古自治区阿拉善盟额济纳旗胡杨林。根据胡杨林的不同高度及胸径,选取样树安装热扩散液流计 (Thermal Dissipation sap flow velocity Probe, TDP),采用国产TDP插针式热扩散植物液流计,型号为TDP30。在混合林站及胡杨站附近分别设置样地TDP1点和TDP2点。样树高度从高到低依次为TDP2(16.4米、18.3米、16.9米)、TDP1(12.5,米、13米、14米),胸径从大到小依次为TDP1(48厘米、41.6厘米、46.6厘米)、TDP2(33.8厘米、38.5厘米、42.3厘米),密度分别为TDP1(0.0158棵/平方米)、TDP2(0.0116棵/平方米),以此代表整个区域进行胡杨蒸腾量的测量。每棵样树安装两组探针,高度为1.3米,方位分别为样树正东和正西方向。 TDP的原始观测数据为探针之间的温度差,采集频率为10s采集一次,平均为10分钟输出。发布的数据为经过计算和处理之后的树干液流数据,包括每10分钟的液流速率V(cm/h)、液流通量Fs(cm3/h)和每天的蒸腾量Q(mm/d)。首先根据探针之间的温度差计算液流速率和液流通量,然后根据观测点的胡杨林面积和树木间距,计算得到林带单位面积的蒸腾量Q。同时对计算之后的速率和通量值进行后处理:(1)剔除明显超出物理意义或超出仪器量程的数据;(2)缺失的数据用-6999标记;(3)因探针故障等原因引起的可疑数据用红色字体标识,并剔除确认有问题的数据。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Qiao et al. (2015)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2014年1月1日至2014年12月31日的黑河中游径流加密观测中2号点的河流水位和流速观测数据。观测点位于甘肃省张掖市312国道黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N38°59′51.71″,E100°24′38.76″,海拔1485米,河道宽度,70米、20米。水位观测采用SR50超声测距仪,采集频率30分钟。数据说明包括以下部分: 水位观测,观测频率30分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年12月31日;流量观测,单位(m3 );按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。2号点-312桥断面受到频繁人为扰动,水文断面面积不稳定导致水位流量曲线紊乱,测量期间未能获取稳定的流量水位曲线。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2014年1月1日至6月25日的黑河中游径流加密观测中4号点的河流水位和流速观测数据。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°03'53.23",E100°25'59.31",海拔1431米,河道宽度58米。2012年水位观测采用HOBO压力式水位计,采集频率30分钟;2013年起采用采用SR50超声测距仪,采集频率30分钟。数据说明包括以下部分: 水位观测,观测频率30分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年6月25日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月14日至9月21日的通量观测矩阵中树干液流观测数据。研究区位于甘肃省张掖市盈科灌区内,根据防护林的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散植物茎流计,型号为TDP30。样地依次为TDP-1点,TDP-2点和TDP-3点,分别位于LAS4-S,6号点和8号点附近。样树高度从高到低依次为TDP-2、TDP-1、TDP-3,胸径从大到小依次为TDP-2、TDP-3、TDP-1,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树东南、西南和正北方向。 TDP的原始观测数据为探针之间的温度差,采集频率为30秒,平均时间为10分钟。发布的数据为经过计算和处理之后的树干液流数据,包括每10分钟的液流速率(cm/h)、液流通量(cm3/h)和每天的蒸腾量(mm/d)。首先根据探针之间的温度差计算液流速率和液流通量,然后根据观测点的防护林带面积和树木间距,计算得到林带单位面积的蒸腾量Q。同时对计算之后的速率和通量值进行后处理:(1)剔除明显超出物理意义或超出仪器量程的数据;(2)缺失的数据用-6999标记;(3)因探针故障等原因引起的可疑数据用红色字体标识,并剔除确认有问题的数据。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Qiao et al.(2015)。
刘绍民, 李新
该数据集包含了2012年9月20日至2013年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式反求得到N0。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,建立土壤体积含水量θv和快中子之间的关系。分别选取干湿状况差异比较明显的6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均N0为3597。 4) 土壤水分计算 根据公式,计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 李新, 徐自为
该数据集包含了通量观测矩阵中15测点(大满超级站)2012年5月27日至9月21日的大气水汽氢氧稳定同位素比值和通量数据集、玉米土壤和茎秆氢氧稳定同位素比值数据集;13测点航空遥感飞行时大气水汽氢氧稳定同位素比值数据集、13和15测点航空遥感飞行时玉米土壤和茎秆氢氧稳定同位素比值数据集。站点位于甘肃省张掖市盈科灌区农田内,下垫面均是玉米。15测点的经纬度是100.3722E,38.8555N, 13测点的经纬度是 100.3785E,38.8607N,海拔1552.75m。15测点采用大气水汽δ18O和δD比值和通量的原位连续观测系统进行连续观测,该系统两个进气口高度为玉米冠层上方0.5m和1.5m,采样频率为0.2Hz,进气口切换时间为2min,数据时间间隔为1hr;玉米土壤和茎秆水样品的采样频率为1~3d。13测点采用大气水汽δ18O和δD比值和通量的移动观测系统进行短期观测;大气水汽、玉米土壤和茎秆水样品的采样频率与航空遥感飞行相匹配。 15测点大气水汽氢氧稳定同位素比值和通量数据集的项目包括:Timestamp(时间,timestamp without time zone),Number(有效数据数量),δD of r1(下进气口δD,‰),δD of r2(上进气口δD,‰),δ18O of r1(下进气口δ18O,‰),δ18O of r2上进气口δ18O(‰),vapor mixing ratio of r1(下进气口水汽混合比,mmol/mol),vapor mixing ratio of r2(上进气口水汽混合比,mmol/mol),δET_D(蒸散δD,‰),δET_18O(蒸散δ18O,‰);15测点玉米土壤和茎秆氢氧稳定同位素比值数据集的项目包括Timestamp(时间,timestamp without time zone),Remark(处理:裸地土壤Ld=1;覆膜土壤Fm=2;父本土壤F=3;茎秆Xylem=4),δD(‰),δ18O(‰)。15测点土壤蒸发和植物蒸腾占蒸散比例的数据集的项目包括Timestamp(时间,timestamp without time zone),E/ET(土壤蒸发占蒸散比例,%),T/ET(植物蒸腾占蒸散比例,%)。植物蒸腾占蒸散的比例变异范围为53.6~99.8%,平均值(±标准偏差)86.7±5.2% 。土壤蒸发占蒸散的比例变异范围为0.2~46.4%,平均值(±标准偏差) 13.3 ±5.2%。 13测点航空遥感飞行时大气水汽氢氧稳定同位素比值数据集的项目包括Timestamp1(开始时间,timestamp without time zone),Timetamp2(结束时间,timestamp without time zone),Height(观测高度,cm),δD(‰),δ18O(‰)。13和15测点航空遥感飞行时玉米土壤和茎秆氢氧稳定同位素比值数据集的项目包括Timestamp(时间,timestamp without time zone),Remark(处理:裸地土壤Ld=1;覆膜土壤Fm=2;茎秆Xylem=4),δD(‰),δ18O(‰),Location(测点:13或15测点);缺失数据标记为-6999。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Wen et al.(2016)。
温学发, 刘绍民, 李新
该数据集包含了2014年1月1日至2014年12月31日的宇宙射线仪器(crs)观测数据。站点位于甘肃省张掖市大满灌区农田内,下垫面是玉米地。观测点的经纬度是100.3722E, 38.8555N,海拔1556m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器(CRS1000B)的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括:Date Time(日期时间)、P(气压hPa)、N1C(快中子数个/小时)、N1C_cor(气压订正的快中子数个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4)剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor。 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再通过公式(1)反求得到N0。 (1) 其中θm为质量含水量,N为订正后快中子数,N0为干燥条件下的快中子数,a1=0.079、a2=0.64、a3=0.37和a4=0.91为常数项。 在此,根据仪器源区内的Soilnet土壤水分数据对仪器进行率定,并根据实际情况之间建立土壤体积含水量θv和快中子之间的关系,即将公式(1)中的θm换作θv处理。分别选取干湿状况差异比较明显的6月26日-6月27日和7月16日-7月17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-7月17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均得到crs_a和crs_b的值N0分别为3252、3597。 4) 土壤水分计算 根据公式(1),计算得到每小时的土壤含水量数据。 水文气象网或站点信息请参考Liu et al. (2018),观测数据处理请参考Zhu et al. (2015)。
刘绍民, 朱忠礼, 李新, 徐自为
该数据集包含了2014年1月1日至2014年12月31日的黑河中游径流加密观测中8号点的河流水位和流速观测数据。观测点位于甘肃省张掖市高台县黑河桥,河床为泥沙,断面稳定。观测点的经纬度是N39°23'22.93",N 99°49'37.29",海拔1347米,河道宽度210米。水位观测采用SR50超声测距仪,采集频率30分钟。数据说明包括以下两部分: 水位观测,观测频率30分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。8号点-高台桥断面因湿地公园水体基本停止流动,8号断面仅为水位监测。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2014年1月1日至2014年12月31日的黑河中游径流加密观测中6号点的河流水位和流速观测数据。观测点位于甘肃省张掖市甘州区赵家屯庄高崖国家水文站,河床为砂砾石,断面稳定。观测点的经纬度是N39°08'06.35",E100°25'58.23",海拔1420米,河道宽度50米。水位观测采用HOBO压力水位计,采集频率60分钟。数据说明包括以下两部分: 水位观测,2014年为60分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2014年1月1日至2014年12月28日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°20'2.03",E 100° 5'49.63",海拔1375米,河道宽度130米。2014年水位观测采用SR50超声波测距仪,采集频率30分钟。数据说明包括以下两部分: 水位观测,观测频率30分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年12月28日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月13日至11月24日的黑河中游径流加密观测中4号点的河流水位和流速观测数据。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河道宽度58米。河床为砂砾石,断面不稳定。观测点的经纬度是N39°03'53.23",E100°25'59.31",海拔1431米。数据说明包括以下部分: 水位观测:采用HOBO压力式水位计,数据涵盖时间段6月14日至8月10日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
何晓波, 张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2014年7月28日至2014年12月31日的黑河中游径流加密观测中3号点的河流水位和流速观测数据。观测点位于甘肃省张掖市兰新铁路黑河桥,河床为砂砾石,断面稳定。观测点的经纬度是N39°2'33.08",E100°25'49.42",1443米,河道宽度50米。水位观测采用SR50超声测距仪,采集频率60分钟;剖面流量观测采用StreamPro微型ADCP。数据说明包括以下部分: 水位观测,观测频率60分钟,单位(cm);数据涵盖时间段2014年7月28日至2014年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月17日至2013年12月31日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°20'2.03",E 100° 5'49.63",海拔1375米,河道宽度130米。水位观测采用HOBO压力式水位计,采集频率30分钟。数据说明包括以下两部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月17日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年8月10日至2013年12月31日的黑河中游径流加密观测中6号点的河流水位和流速观测数据,其中2013年4月5日至9月6日期间水位计丢失。观测点位于甘肃省张掖市甘州区赵家屯庄高崖国家水文站,河床为砂砾石,断面稳定。观测点的经纬度是N39°08'06.35",E100°25'58.23",海拔1420米,河道宽度50米。水位观测采用HOBO压力水位计,采集频率30分钟。数据说明包括以下两部分: 水位观测,2012年的观测频率30分钟,2013年为60分钟,单位(cm);数据涵盖时间段2012年8月10日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月17日至11月24日的黑河中游径流加密观测中7号点的河流水位和流速观测数据。观测点位于甘肃省张掖市临泽县平川乡黑河桥,河道宽度130米。河床为砂砾石,断面不稳定。观测点的经纬度是N39°20'2.03",E 100° 5'49.63",海拔1375米。数据说明包括以下两部分: 水位观测:采用HOBO压力式水位计,数据涵盖时间段6月17日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2012年6月13日至11月24日的黑河中游径流加密观测中3号点的河流水位和流速观测数据。观测点位于甘肃省张掖市兰新铁路黑河桥,河道宽度50米。河床为砂砾石,断面稳定。观测点的经纬度是N39°2'33.08",E100°25'49.42",1443米。水位观测采用SR50超声测距仪,采集频率30分钟;剖面流量观测采用StreamPro 微型ADCP。数据说明包括以下部分: 水位观测:采用SR50超声测距仪,数据涵盖时间段6月14日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程.。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2014年1月1日至12月31日期间水文气象观测网下游混合林站和胡杨林站的热扩散液流计的观测数据。研究区位于内蒙古自治区阿拉善盟辖下的额济纳旗胡杨林,根据胡杨林的不同高度及胸径,选取样树安装TDP(Thermal Dissipation sap flow velocity Probe, 热扩散液流计),采用国产TDP插针式热扩散茎流计,型号为TDP30。样地依次为TDP1点和TDP2点,分别位于混合林站及胡杨站附近。样树高度从高到低依次为TDP2、TDP1,胸径从大到小依次为TDP1、TDP2,以此代表整个区域进行树干液流的测量。探针安装高度为1.3米,安装方位为样树正东和正西方向。 TDP的原始观测数据为探针之间的温度差,10s采集一次,输出平均周期为10分钟。发布的数据为经过计算和处理之后的树干液流数据,包括每10分钟的液流速率(cm/h)、液流通量(cm3/h)和日蒸腾量(mm/d)。首先根据探针之间的温度差计算液流速率和液流通量,然后根据观测点的胡杨林面积和树木间距,计算得到林带单位面积的蒸腾量Q。同时对计算之后的速率和通量值进行后处理:(1)剔除明显超出物理意义或超出仪器量程的数据;(2)缺失的数据用-6999标记;其中TDP2在1.1-2.8日由于供电问题数据缺失,2.8-3.13由于第三组探针的问题,该组数据缺失;(3)因探针故障等原因引起的可疑数据用红色字体标识,并剔除确认有问题的数据。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考Qiao et al.(2015)。
刘绍民, 李新, 车涛, 徐自为, 任志国, 谭俊磊
该数据集包含了2012年6月19日至8月10日,2012年11月24日至2013年12月31日的黑河中游径流加密观测中5号点的河流水位和流速观测数据。观测点位于甘肃省张掖市临泽县板桥乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°15'32.41",E100°16'33.95",海拔1398米,河道宽度270米。水位观测采用HOBO压力式水位计,采集频率30分钟。数据说明包括以下两部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月19日-2012年8月10日,2012年11月24日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年8月10日至11月24日的黑河中游径流加密观测中6号点的河流水位和流速观测数据。观测点位于甘肃省张掖市甘州区赵家屯庄高崖国家水文站,河道宽度50米。河床为砂砾石,断面稳定。观测点的经纬度是N39°08'06.35",E100°25'58.23",海拔1420米。数据说明包括以下两部分: 水位观测:采用HOBO压力水位计,数据涵盖时间段8月10日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2012年6月19日至11月24日的黑河中游径流加密观测中2号点的河流水位和流速观测数据。观测点位于甘肃省张掖市312国道黑河桥,分为两个河道,东面的标记为1号,西面的标记为2号。河道宽度分别为70米、20米。河床为砂砾石,断面不稳定。观测点的经纬度是N38°59′51.71″,E100°24′38.76″,海拔1485米。数据说明包括以下部分: 水位观测:采用SR50超声测距仪,数据涵盖时间段6月19日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。2号点-312桥断面受到频繁人为扰动,水位流量曲线有待进一步观测,单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2012年6月13日至11月24日的黑河中游径流加密观测中1号点的河流水位观测数据。观测点位于甘肃省张掖市213省道黑河桥,分为两个河道,东面的标记为1号,西面的标记为2号。河道总宽度330米。河床为砂砾石,断面不稳定。观测点的经纬度是N38°54'43.55",E100°20'41.05",海拔1546米。数据说明包括以下部分: 水位观测:采用SR50超声测距仪,数据涵盖时间段6月13日至11月24日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。1号点—213桥断面受到频繁人为扰动,水位流量曲线有待进一步观测,单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2014年1月1日至4月30日,2014年7月18日至2014年7月26日的黑河中游径流加密观测中5号点的河流水位和流速观测数据,。观测点位于甘肃省张掖市临泽县板桥乡黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°15'32.41",E100°16'33.95",海拔1398米,河道宽度270米。2014年水位观测采用SR50超声波测距仪观测,采集频率30分钟,观测期间仪器故障返厂维修,后期安装后故障并未排除。数据说明包括以下两部分: 水位观测,观测频率30分钟,单位(cm);数据涵盖时间段2014年1月1日至2014年4月30日,2014年7月18日至2014年7月26日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月13日至11月24日,2013年9月6日至2013年12月31日的黑河中游径流加密观测中4号点的河流水位和流速观测数据。观测点位于甘肃省张掖市靖安乡上堡村黑河桥,河床为砂砾石,断面不稳定。观测点的经纬度是N39°03'53.23",E100°25'59.31",海拔1431米,河道宽度58米。前期水位观测采用HOBO压力式水位计,采集频率30分钟;后期采用采用SR50超声测距仪,采集频率30分钟。数据说明包括以下部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月14日-2012年8月10日,2013年9月6日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月14日至2013年12月31日的黑河中游径流加密观测中3号点的河流水位和流速观测数据。观测点位于甘肃省张掖市兰新铁路黑河桥,河床为砂砾石,断面稳定。观测点的经纬度是N39°2'33.08",E100°25'49.42",1443米,河道宽度50米。水位观测采用SR50超声测距仪,采集频率30分钟;剖面流量观测采用StreamPro微型ADCP。数据说明包括以下部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月14日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
该数据集包含了2012年6月19日至8月10日的黑河中游径流加密观测中5号点的河流水位和流速观测数据。观测点位于甘肃省张掖市临泽县板桥乡黑河桥,河道宽度270米。河床为砂砾石,断面不稳定。观测点的经纬度是N39°15'32.41",E100°16'33.95",海拔1398米。数据说明包括以下两部分: 水位观测:采用HOBO压力式水位计,数据涵盖时间段6月19日至8月10日,观测频率30分钟,单位(cm); 流量观测:通过最新技术手段ADCP监测流量,获取精确的水位流量曲线,依托水位过程观测获得径流量变化过程。单位(m3 s-1); 缺值数据统一采用字符串-6999表示。 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考He et al.(2016)。
张建, 宁天祥, 黄晓明, 姜衡, 刘绍民, 李新
该数据集包含了2012年6月1日至9月20日的通量观测矩阵中两台宇宙射线仪器(crs_a和crs_b)的观测数据。站点位于甘肃省张掖市盈科灌区农田内,下垫面是玉米地。crs_a观测点的经纬度是100.36975E, 38.85385N,海拔1557.16m,crs_b观测点的经纬度是100.37225E, 38.85557N,海拔1557.16m,仪器探头底部距地面0.5m,采样频率是1小时。 宇宙射线仪器的原始观测项目包括:电压Batt(V)、温度T(℃)、相对湿度RH(%)、气压P(hPa)、快中子数N1C(个/小时)、热中子数N2C(个/小时)、快中子采样时间N1ET(s)及热中子采样时间N2ET(s)。发布的数据为经过处理计算后的数据,数据表头包括Date Time(日期 时间)、P(气压 hPa)、N1C(快中子数 个/小时)、N1C_cor(气压订正的快中子数 个/小时)和VWC(土壤体积含水量 %),其处理的主要步骤包括: 1) 数据筛选 数据筛选共四条标准:(1)剔除电压小于和等于11.8伏特的数据;(2)剔除空气相对湿度大于和等于80%的数据;(3)剔除采样时间间隔不在60±1分钟内的数据;(4) 剔除快中子数较前后一小时变化大于200的数据。此外缺失数据用-6999补充。 2) 气压订正 根据仪器说明手册中提到的快中子气压订正公式,对原始数据进行气压订正,得到订正后的快中子数N1C_cor,具体见数据引用文献. 3) 仪器率定 在计算土壤水分的过程中需要对计算公式中的N0进行率定。N0为土壤干燥条件下的快中子数,通常使用测量源区内的土样得到实测土壤水分(或者通过比较密集的土壤水分无线传感器获取)θm(Zreda et al. 2012)和对应时间段内的快中子校正数据N,再反求得到N0。具体见数据引用文献. 在此,根据两台仪器源区内的Soilnet土壤水分数据对仪器进行率定,并根据实际情况之间建立土壤体积含水量θv和快中子之间的关系,即将公式(2)中的θm换作θv处理。分别选取干湿状况差异比较明显的6月26日-27日和7月16日-17日四天的数据,其中6月26日-27日率定数据显示土壤水分较小,因此选取4厘米、10厘米和20厘米的三个值平均值作为率定数据,其变化范围为22%-30%,而7月16日-17日率定数据显示土壤水分较大,因此选取4厘米、10厘米的两个值平均值作为率定数据,其变化范围为28%-39%,最后平均得到crs_a和crs_b的值N0分别为3252、3597。 4) 土壤水分计算 计算得到每小时的土壤含水量数据。具体计算公式见数据引用文献. 多尺度观测试验或站点信息请参考Liu et al. (2016),观测数据处理请参考Zhu et al.(2015)。
刘绍民, 朱忠礼, 徐自为, 李新
该数据集包含了2012年6月17日至2013年12月31日的黑河中游径流加密观测中8号点的河流水位和流速观测数据。观测点位于甘肃省张掖市高台县黑河桥,河床为泥沙,断面稳定。观测点的经纬度是N39°23'22.93",N 99°49'37.29",海拔1347米,河道宽度210米。水位观测采用SR50超声测距仪,采集频率30分钟。数据说明包括以下两部分: 水位的观测频率30分钟,单位(cm);数据涵盖时间段2012年6月17日-2013年12月31日;流量观测,单位(m3);按照不同水位监测流量,获取水位流量曲线,依托水位过程观测获得径流量变化过程。8号点-高台桥断面受到湿地公园人为排蓄水扰动,水位流量曲线有待进一步观测。缺值数据统一采用字符串-6999表示。 水文气象网或站点信息请参考Li et al. (2013),观测数据处理请参考He et al.(2016)。
何晓波, 刘绍民, 李新, 徐自为
在黑河下游额济纳绿洲乌兰图格附近典型胡杨群落为下垫面,架设了EC150开路式涡动协方差观测系统,系统地观测了2013.7-2014.9月的胡杨群落水热通量变化规律与特征。
陈亚宁
本数据集为2005-2007年黑河干流中游地区地下水位月监测值,包含了山丹桥、童家当铺、流泉、王其闸、大满、盈科干渠、新沟、石岗墩、下安、下秦、哈寨子、太平堡、杨家庄、张掖农场、廖家堡、杨家寨、火车站、三闸、瓦窑、谢家湾、下崖子、燎烟、沙井子、小河、甘泉、西关水文站3年的逐月平均水位。数据来源于水文年鉴,由于资料缺失,部分水文站平均水位数据缺失。
胡立堂, 徐宗学
本数据集包括黑河中游盈科/大满灌区5.5km×5.5km观测矩阵(缩略图中红色框)内9个WATERNET节点的2015年观测数据。9个节点均包含4cm和10cm两层Hydro probe II探头,观测土壤水分、土壤温度、电导率及复介电常数等主要变量;在4m高度架设有SI-111红外温度探头观测下垫面地表辐射红外温度。观测时间频率为5分钟。本数据集可为异质性地表关键水热变量的遥感估算及其遥感真实性检验,生态水文研究,灌溉优化管理等研究提供时空连续的观测数据集。 详细内容请参见“2015年黑河中游WATERNET数据文档201610501.docx”
晋锐, 亢健, 李新, 马明国
1.数据集为黑河流域上游土壤含水量数据集,数据为2013-2014年定位点实测数据。 2.入渗数据是用ECH2O进行测量。包括5层的土壤含水量、土壤温度 3.部分仪器因为电池续航不足、道路被冲断以及仪器被偷等原因缺失数据
贺缠生
数据集为2013-2014年黑河流域上游野外土壤测量分析数据,包括:土壤颗粒分析、水分特征曲线、饱和导水率、土壤孔隙度、入渗分析、土壤容重 一、土壤颗粒分析 1.土壤粒度数据是在兰州大学西部教育部重点实验室粒度实验室进行测量。测量仪器为马尔文激光粒度仪MS2000。 2.粒度数据用激光粒度仪进行测量。导致颗粒较大的样点无法测量,比如D23,D25无法测量而没有数据。加上部分样品缺失。 二、土壤水分特征曲线 1.采用离心机法测量:将野外采集的环刀原状土放入离心机,分别用转速0,310,980,1700,2190,2770,3100,5370,6930,8200,11600测量每次的转子重量得到。 2.环刀是按照数字从1开始一直往后编号,由于分3组同时在不同地方取样,因此为了避免重复编号,1组从1号开始编号,2组从500号开始往后编号,3组从1000号开始往后编号。和采样点的编号是一致的。在两个Excel中能找到对应编号。 3.土壤容重数据在2013年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 4.烘干后重量:部分样品由于实验过程中烘箱出问题,导致未测量烘干重。 三、土壤饱和导水率 1.测量方法说明:此方法是依据依艳丽(2009)的定水头发自制仪器进行测量。使用马利奥特瓶在实验过程中始终保持定水头;同时最后将当时测量的Ks转化为10℃时的Ks值进行分析计算。详细测量记录表格参见饱和导水率测量说明。K10℃是转化为10℃后的饱和导水率数据。单位:cm/min. 2.数据缺失说明:饱和导水率数据部分由于土样缺失以及土层深度不够无法取第4或5层数据导致数据缺失 3.取样时间:2014年7月 四、土壤孔隙度 1.采用容重法推求:根据土壤容重与土壤孔隙度的关系得到。 2.数据在2014年因为是补充2012年取样,因此并不是每个点位都有数据。同时部分样点土层未达到70 cm厚,因此无法取5层数据,同时由于运输及记录问题导致有很大部分数据存在缺失。同时随机点只选取了一层数据。 五、土壤入渗分析 1.入渗数据是用“MINI DISK PORTABLE TENSION INFILTROMETER”进行测量。得到一定负压下的近似饱和导水率。仪器情况详细情况见网站:http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7当时因为下雨而未测量入渗实验。 六、土壤容重 1.2014年土壤容重为在2012年基础上进行补样用环刀取原状土。 2.该土壤容重为土壤干容重,采用烘干法测量。将野外采集的原状环刀土样在烘箱中以105℃恒温24小时,土壤干重除以土壤体积(100立方厘米)。 3.单位:g/cm3
贺缠生
该数据为黑河计划项目“黑河上游土壤水文异质性观测试验及其对山区水文过程的影响”(91125010)的土壤水分采样点经纬度信息,主要用于表达本项目中土壤水分采样点的空间分布情况。
贺缠生
该数据集包含了2012年7月至2013年8月的黑河流域典型土壤样点饱和导水率数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点,重复三次测每类土壤的饱和导水率,取平均值。
张甘霖, 宋效东
黑河流域30m/月植被指数(NDVI/EVI)数据集提供了2011-2014年的月度NDVI/EVI合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,以平均合成MC法作为主算法进行合成,备用算法采用VI法。同时,将多源数据集主要观测角作为质量描述符的一部分,以辅助分析合成植被指数残留的角度效应。每月获取的遥感数据能够提供比单天传感器数据更多的角度和更多次的观测,但由于传感器的在轨运行时间及性能差异,多时相、多角度观测数据的质量参差不齐。因此,为有效利用多时相、多角度观测数据,本算法在利用多源数据集进行植被指数合成前,设计了对多源数据集的数据质量检查,去除了较大误差观测及不一致的观测。在黑河中游农田区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(R2=0.89,RMSE=0.092)。总之,黑河流域30m/月合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,实现了稳定的标准化产品的从无到有,更好的服务于遥感数据产品的应用。
李静, 柳钦火, 仲波, 吴俊君, 吴善龙
黑河流域1km/5day植被指数(NDVI/EVI)数据集提供了2011-2014年的5天分辨率NDVI/EVI合成产品,该数据利用我国国产卫星FY-3数据兼具较高时间分辨率(1天)和空间分辨率(1km)的特点构造多角度观测数据集,在对多源数据集以及现有合成植被指数产品及算法进行分析的基础上,提出了基于多源数据集生产1km分辨率5天周期的全球合成植被指数产品算法体系。植被指数合成算法基本采用MODIS的植被指数合成算法,即基于半经验的Walthall模型的BRDF角度归一化方法、CV-MVC法和MVC法的算法体系。利用该算法体系,分别对一级数据、二级数据计算合成植被指数,并进行质量标识。多源数据集可在有限时间内提供比单一传感器更多的角度和更多次的观测,但是,由于传感器的在轨运行时间及性能差异,多源数据集的观测质量参差不齐。因此,为更有效的利用多源数据集,算法体系首先对多源数据集进行了质量分级,根据观测合理性分为一级数据、二级数据、三级数据。三级数据为受薄云污染的观测,不用于计算。在黑河中游农田、森林区域的验证结果表明,联合多时相、多角度观测数据的NDVI/EVI合成结果与地面实测数据具有较好的一致性(RMSE=0.105)。与MODIS MOD13A2产品的时间序列对比分析,充分显示了时间分辨率从16天提高到5天时,稳定的高精度的植被指数对植被生长细节的细致描述。总之,黑河流域1km/5day合成植被指数(NDVI/EVI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
李静, 柳钦火, 仲波, 杨爱霞
黑河流域土地利用覆盖数据集提供了2011-2015年的月度地表类型覆盖数据,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造时间序列数据,针对各类地物随时间变化呈现的NDVI时间序列曲线不同,对不同地物特征进行知识归纳,设定提取规则不同地物信息。黑河流域土地利用覆盖数据集保留了传统的土地利用图的基本类别信息,包括水体,城镇,耕地,常绿针叶林,落叶阔叶林等,同时增加了对耕地范围的作物精细分类(包括玉米、大麦、油菜、春小麦等主要作物信息)、更新了上游冰川、积雪等信息,使黑河流域的土地覆盖信息更为详细。 通过和黑河流域历史土地利用图以及其他植被覆盖产品相比,黑河流域土地利用覆盖数据集的分类效果在视觉上都要优于其他数据,利用黑河中游实地调研数据,中游的作物精细分类信息精度也较高。由Google Earth高清影像和实地调研数据对2012年的分类结果进行精度评价,总体精度达到92.19%。总之,黑河流域土地利用覆盖数据集不仅具有较高总体精度而且细化了耕地范围的作物信息,更新了冰川、积雪等地类信息,是精度更高、分类更细的黑河流域地表分类数据。
仲波, 杨爱霞
黑河流域30m/月合成光合有效辐射吸收比例(FAPAR)数据集提供了2011-2014年的月度LAI合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,考虑不同植被类型,基于土地覆盖分类图,结合30m/月合成叶面积指数(LAI)产品,采用基于能量守恒的FAPAR-P模型,进行月合成FAPAR产品生产。算法从能量守恒原理出发,考虑植被间及土壤与植被间的多次反弹,也考虑了天空散射光等多种因素的影响,通过分析光子与冠层作用的过程,从光子在植被冠层内的运动和发生多次散射时的再碰撞概率相等为出发点,建立了均匀连续植被FAPAR模型。此外,分析多种影响因素对FAPAR模型的影响,其中土壤和叶片反射率、聚集指数、G函数在针对不同情况采用不同取值。算法具有很高的动态性,对于不同的土壤背景、植被类型、辐射条件、光照与观测几何、天气条件下获得的图像都能得到较好的结果。通过与2012年7月8日甘肃省张掖市盈科灌区玉米冠层PAR测量数据对比,30m/月合FAPAR产品与地面观测数据具有高度的一致性,与观测值误差小于5%。总之,黑河流域30m/月合成光合有效辐射吸收比例(FAPAR)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
范闻捷, 柳钦火, 仲波, 吴俊君, 吴善龙
黑河流域1km/5天合成植被覆盖度(FVC)数据集提供了2011-2014年的5天FVC合成结果,该数据利用Terra/MODIS、Aqua/MODIS、以及国产卫星FY3A/MERSI和FY3B/MERSI传感器数据构建空间分辨率1km、时间分辨率5天的多源遥感数据集。将全国划分为不同植被区划、地类,分别计算植被指数(NDVI)与FVC的转换系数,采用计算的转换系数查找表和1km/5天合成NDVI产品生产区域1km/5天合成FVC产品。黑河流域1km/5天合成FVC产品通过高分辨率数据可以直接获得植被覆盖比例,减轻低分辨率数据异质性的影响;另外,选择植被生长变化的典型时期,通过对每一个像元时间序列植被指数进行拟合得到每个像元对应的生长曲线参数;再配合土地利用图和植被分类图,寻找区域的代表性均一像元用于训练植被指数的转换系数。通过与黑河流域高分辨率ASTER参考FVC结果相比,首先联合地面实测数据,利用尺度上推方法,将黑河流域ASTER产品聚合到 1km 尺度得到ASTER聚合FVC数据,并与Geoland2项目发布的基于SPOT VEGETATION遥感数据的FVC产品(简称GEOV1 FCOVER)进行间接比较,根据三种数据FVC时间序列曲线图,结果表明:GEOV1的结果较ASTER 影像联合地面实测的结果偏高,黑河流域1km/5天合成FVC产品结果位于两者之间,在实验区内黑河流域1km/5天合成FVC产品优于GEOV1产品。总之,黑河流域1km/5天合成FVC数据集综合利用多源遥感数据以提高FVC参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
穆西晗, 阮改燕, 仲波, 柳钦火
一、数据概述 此数据汇交是“黑河流域生态-水文过程集成研究”重大研究计划重点项目“黑河流域典型荒漠植物耐旱机理的基因组学研究”的第二次数据汇交。本项目的主要研究目标是以典型荒漠植物沙冬青为材料,利用目前国际上先进的新一代基因测序技术对沙冬青的全基因组序列及基因转录组序列进行解码,从而发掘与抗旱相关的基因和基因群组,并用转基因技术在模式植物(如拟南芥和水稻)中验证其抗旱性。 二、数据内容 1.沙冬青基因组和转录组的序列测定: 前期基因组预测序测得蒙古沙冬青的基因组大小约为926 Mb,GC含量36.88%,重复序列比例66%,基因组杂合率0.56%,表明其基因组重复序列多,杂合度较高,属复杂基因组。 基于这一预测序结果,我们随后开展了沙冬青基因组的深度测序,所得数据经组装后得到937 Mb的全基因组序列(表一),与前期预测的基因组大小基本一致。通过对沙冬青的转录组测序和序列组装(表二),获得了77,000余个基因编码序列(Unigene),对这些基因序列进行注释发现,绝大部分基因序列与豆科植物大豆、鹰嘴豆和菜豆等有较高的相似度(图一),与沙冬青属豆科植物的事实相符。 2.沙冬青简单重复序列(SSR)分子标记的发掘: 网络公共数据库已有公开发表的沙冬青转录组数据集,其样品采集地点是宁夏中卫市。而本项目组样品采集的地点是甘肃民勤县,为了研究这不同地区的沙冬青的序列是否具有序列多态性,我们首先鉴定了民勤县植物样品的基因组中的简单重复序列(SSR)分子标记(表三),随后与中卫市植物样品的转录组序列进行比较,发现部分SSR分子标记具有多态性(表四),这些分子标记可用于该物种植物的遗传图谱构建、QTL定位和遗传多样性分析等研究中。 三、数据处理说明 样品采集地点:甘肃民勤县,经纬度:北纬N38°34′25.93″ 东经E103°08′36.77″。基因组测序:共构建8个不同大小的基因组DNA文库,使用Illumina HiSeq 2500仪器测定。转录组测序:共构建24个转录组mRNA的文库,使用Illumina HiSeq 4000仪器测定。 四、数据的使用说明和意义 我们选定一种典型的荒漠植物作为研究对象,从基因组学的角度解析该荒漠植物的全基因组和转录组序列,发掘其中蕴藏的宝贵抗旱基因资源,并研究他们的抗旱机理,有利于沙冬青这一古老而重要植物资源的有效利用,以及黑河流域抗旱植物的遗传培育、生态恢复和可持续发展。
何军贤, 冯磊
样地调查数据为,于2013年8月份,在天涝池流域设置森林样地30块,样地规格为10 m×20 m,样地长边与山坡走向平行,其中青海云杉林26块,祁连圆柏林2块,云杉圆柏混交林2块,在样地内,采用围尺测量每株树木的胸径(树干1.3 m高度处的直径),采用手持超声波测高器测量每株树木的树高、枝下高(树冠下端第一活枝的高度),采用皮尺测量南北方向和东西方向冠幅,利用差分GPS对样地进行定位。 采用HASM-AD算法的并行版本对已分类好的LIDAR点云数据进行模拟,由地面点生成DEM,由所有点生成DSM,对DSM与DEM做作差值运算即得到地表地物的高度,在森林区域,即为树冠高度模型(Canopy Height Model,CHM)。用给定搜索半径的圆形窗口,在CHM上查找局部最大值,若圆心象元值为最大值,则判定为树冠顶点,树顶点的像元属性值即为树高,空间分辨率为1m。
岳天祥, 王轶夫
黑河流域30m/月合成植被覆盖度(FVC)数据集提供了2011-2014年的月度FVC合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,将全国划分为不同植被区划、地类,分别计算植被指数(NDVI)与FVC的转换系数,采用计算的转换系数查找表和月度合成NDVI产品生产区域月度合成FVC产品。黑河流域30m/月合成FVC产品通过高分辨率数据可以直接获得植被覆盖比例,减轻低分辨率数据异质性的影响;另外,选择植被生长变化的典型时期,通过对每一个像元时间序列植被指数进行拟合得到每个像元对应的生长曲线参数;再配合土地利用图和植被分类图,寻找区域的代表性均一像元用于训练植被指数的转换系数。通过黑河流域30m/月合成FVC产品与ASTER参考FVC结果相比,30m/月合成FVC产品的数值略高于ASTER参考结果,但总体偏差并不大,产品与参考值的均方根误差(RMSE)最大值小于0.175。此外,与河北怀来实验场地面测量数据对比,30m/月合成FVC产品总体上反映了植被生长季节性变化,与地面测量数据结果偏差小于0.1;同时与东北、华北、东南地区的多个流域植被盖度地面测量结果对比,30m/月合成FVC产品与地面测量数据整体误差在0.2以内。总之,黑河流域30m/月合成FVC数据集综合利用多时相、多角度遥感数据以提高FVC参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
穆西晗, 阮改燕, 仲波, 吴俊君, 吴善龙, 柳钦火
黑河流域30m/月合成叶面积指数(LAI)数据集提供了2011-2014年的月度LAI合成产品,该数据利用我国国产卫星HJ/CCD数据兼具较高时间分辨率(组网后2天)和空间分辨率(30m)的特点构造多角度观测数据集,考虑地表分类和地形起伏影响,算法针对不同植被类型特点选择适宜的一体化模型参数化方案,基于查找表方法反演LAI。每月获取的遥感数据能够提供比单天传感器数据更多的角度和更多次的观测,但由于传感器的在轨运行时间及性能差异,多时相、多角度观测数据的质量参差不齐。因此,为有效利用多时相、多角度观测数据,首先设计了数据质量检查方案。利用黑河上游大野口地区与中游盈科、临泽等地区的9个森林样方,20个农田样方和14个稀树草原样方的LAI地面观测数据验证7月份LAI,反演结果与测量结果吻合得很好,平均误差小于1;此外联合多时相、多角度观测数据的LAI反演结果与地面实测数据具有较好的一致性(R2=0.9,RMSE=0.42)。总之,黑河流域30m/月合成叶面积指数(LAI)数据集综合利用多时相、多角度观测数据以提高参数产品的估算精度、时间分辨率等,更好的服务于遥感数据产品的应用。
柳钦火, 范闻捷, 仲波
本数据集包括黑河中游盈科/大满灌区5.5km×5.5km观测矩阵内75个BNUNET节点的2012年5-9月连续观测数据集。75个节点配置均相同,包含4cm、10cm和20cm深度的3层土壤温度探头和4cm深度的1层土壤水分探头,观测频率为10分钟。本数据集可为异质性地表关键水热变量的遥感估算及其遥感真实性检验,生态水文研究,灌溉优化管理等研究提供时空连续的观测数据集。时间是UTC+8。 详细信息请参见“BNUNET数据文档.docx”
刘军, 寇晓康, 马明国
黑河流域植被物候数据集提供了2012年至2015年遥感物候产品。其空间分辨率为1km,投影类型为正弦投影。该数据采用MODIS LAI产品MOD15A2作为物候遥感监测数据源,MODIS陆地覆盖分类产品MCD12Q1作为辅助数据集进行提取。产品算法首先采用时间序列数据重建方法(BISE法)控制输入时间序列的数据质量;然后利用主算法(Logistic函数拟合法)与备用算法(分段线性拟合法)相结合的方式提取植被物候参数,实现算法互补,保证精度的同时提高可反演率。算法可提取一年最多三个生长周期,每个生长周期包含6个数据集,包括植被生长起点、生长峰值起点、生长峰值终点、生长终点、生长最快点、衰落最快点,同时记录了生长周期类型、生长季长度、质量标识等,共25个数据集。该物候产品降低了反演缺失率,提高了产品稳定性,数据集信息丰富,是相对可靠的。
李静
本数据集包括黑河中游张掖市周边扁都口地区0.5°×0.5°观测矩阵内26个BNUNET节点的2013年9月至2014年3月连续观测数据集。26个节点配置均相同,包含1cm、5cm和10cm深度的3层土壤温度探头和5cm深度的1层土壤水分探头,观测频率为2小时。本数据集可为地表异质性的遥感真实性检验、生态水文等研究提供时空连续的观测数据集。时间为UTC+8。 详细信息请参见“BNUNET数据文档.docx”
赵少杰, 王琦, 陆峥, 马明国, 柴琳娜
数据集包含黑河流域典型样点土壤观测数据:PH值、土壤质地 1、土壤PH值:典型土壤样点经纬度及PH值。 2、土壤质地:包含2012年7月至2013年8月的黑河流域典型土壤样点的土壤质地数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,采取每个剖面的土壤样本。
张甘霖, 宋效东
该数据集包含了2012年7月至2014年8月的黑河流域典型土壤样点的位置信息与土壤系统分类类型数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,划分每个剖面的土壤类型。样点总共划分为8个土纲:有机土、人为土、干旱土、盐成土、潜育土、均腐土、雏形土、新成土,39个亚类。
张甘霖, 宋效东
黑河上游分布式生态水文模型(GBEHM)输出数据包括1-km网格的空间分布数据系列数据。 区域:黑河上游(莺落峡),时间分辨率:月尺度,空间分辨率:1km,时段:2000年-2012年。 数据包括蒸散发、径流深、土壤体积含水量(0-100cm)。 所有数据均为ASCII格式,流域空间范围参见reference目录下的basin.asc文件。 模型结果的投影参数: Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area
杨大文
黑河上游分布式生态水文模型(GBEHM)输出数据包括1-km网格的空间分布数据系列数据。 区域:黑河上游(莺落峡),时间分辨率:月尺度,空间分辨率:1km,时段:1980年-2010年。 数据包括降水量、蒸散发、径流深、土壤体积含水量(0-100cm)。 所有数据均为ASCII格式,流域空间范围参见reference目录下的basin.asc文件。 模型结果的投影参数: Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area
杨大文
农业灌溉占人类用水量的80%左右, 是人类水资源管理中最主要的一环,与人类生存和发展息息相关。灌溉也是水循环中重要的一环,大规模灌溉会通过影响蒸散发从而影响水循环,甚至影响局地的气候。灌溉引水取水过度会导致水资源不可持续利用,同时,会减少河道流量和含水层水储量从而危害生态环境。 因此,确定空间和时间上灌溉量的分布和变化,对于研究过去人类水资源利用情况,灌溉对于生态水文过程,环境和气候的影响,以及制定未来灌溉计划至关重要。 通过融合不同数据源的河道引水灌溉量和地下水取水灌溉量,结合陆面模式CLM4.5模拟和遥感反演的蒸散发数据,制作了一套黑河流域1981-2013年月尺度空间分辨率为30弧秒(0.0083度)的时空连续的地表水和地下水灌溉量数据集。 经过验证,该数据集在2000-2013年可信度较高,1981-1999年由于无遥感数据支持且未考虑土体利用变化,可信度较2000-2013年段为低。 文件说明如下: 每月地表水灌溉量文件命名:Monthly_surfacewater_irrigation_1981-2013.nc 每月地下水灌溉量文件命名:Monthly_groundwater_irrigation_1981-2013.nc 数据为netcdf格式。有3个维度,依次为month, lat, lon. 其中month为月份,数值为0-395,代表1981-2013年逐个月份,lat为网格纬度信息,lon为网格经度信息。 灌溉量数据储存在data变量中,单位为m^3/month 为了方便使用,还提供对应的网格面积数据Heihe_area_size.nc,面积数据储存于该文件data变量中,单位为m^2
谢正辉
1.数据概述: 本数据包括黑河中游张掖盆地甘州区4个观测点(新墩镇苗圃、新墩镇隋家寺、党寨镇五支管理房、上秦镇上秦站)2012年7月12日至2014年7月5日地下水埋深观测数据。 2.数据内容: 地下水井井内布设HOBO水位传感器,主要用于监测张掖甘州区地下水位动态变化。数据内容为气压绝对值(kPa)、温度(℃)及地下水埋深(m),数据为小时数据。 3.时空范围: 新墩镇苗圃井(1559 m)地理坐标:经度 100°20.8′E;纬度:38°54′N; 新墩镇隋家寺井(1518 m)地理坐标:经度:100°23.9′E;纬度:38°54.1′N; 党寨镇五支管理房井(1675 m)地理坐标:经度:100°30.7′E;纬度:38°52.8′N; 上秦镇上秦站井(1480 m)地理坐标:经度:100°31.7′E;纬度:38°54.5′N。 备注:括号内为高程。
谢正辉
本数据为盈科绿洲农田观测的一个生长周期内的ASTER植被覆盖度数据集。数据观测从2012年5月30日开始到9月12日结束。 原始数据: 1、 ASTER的15m分辨率L1B反射率产品 2、 中游人工绿洲生态水文试验区植被覆盖度数据集 数据处理: 1、 对ASTER反射率产品进行预处理得到ASTER NDVI; 2、 通过NDVI-FVC非线性转换形式,利用ASTER NDVI与地面实测FVC得到不同时相的ASTER尺度下NDVI到FVC的转换系数; 3、 将此系数应用到ASTER影像上,得到15m分辨率的植被覆盖度; 4、 将15m分辨率ASTER FVC聚合,得到1km ASTER FVC产品
黄帅, 马明国
本数据集为三部分,第一部分为1979-2014年莺落峡和草滩庄水利枢纽逐月流量数据;第二部分为1979-2014年黑河干流上S213桥(N38°54'43.55",E100°20'41.05")、G312桥(N38°59′51.71″,E100°24′38.76″)、铁路桥(N39°2'33.08",E100°25'49.42")、高崖(N39°08'06.35",E100°25'58.23")及平川桥(N39°20'2.03",E 100° 5'49.63")断面逐月流量与水位数据;第三部分为1979-2014年黑河干流上S213桥、G312桥、铁路桥、高崖及平川桥断面逐日流量与水位数据。其中流量数据指黑河干流断面流量,水位数据指的是位于HiWATER中游径流加密观测点的水位。数据集中的月数据可信度高于日数据可信度,流量的可信度高于水位可信度。 1. 数据估算目的 第一部分数据估算目的是提供1979-2014年月时间序列的黑河中游干流来水量和东西干渠等引渠灌溉后草滩庄水利枢纽下泄量的变化;第二部分数据估算的目的是为黑河中游部分流量水位资料缺测断面提供1979-2014年月时间序列的流量水位变化;第三部分数据估算的目的是为河道侧向输水模型或河岸生态水文模型提供不同断面位置的高时间分辨率流量水位强迫数据。 2. 数据估算方法 考虑黑河上游高海拔区降水缺测和观测站分布不均匀的情况,构建神经网络与水文模型相集成的径流估计模型,融合莺落峡流域缺降水观测区模式模拟与站点观测降水得到2001-2010年模拟月径流,联合2011-2014年南卓铜等用SWAT模拟的月径流与收集的1979-2010年月径流资料以及1979-2014年观测年径流,经数据校正和模拟与观测的相互验证,得到1979-2014年莺落峡水文断面逐月流量。基于此流量及其与草滩庄水利枢纽下泄量的统计关系,考虑灌渠引水、不同河道渗漏方案及“九七”分水方案的影响,重建草滩庄、S213桥、G312桥及铁路桥断面月流量;由铁路桥断面估算与高崖断面观测(1981-2008年)月流量的高度相关关系,结合高崖断面年流量观测,插补校正得到1979-2014年高崖断面月流量;利用高崖与正义峡观测的年流量、灌渠引水量、河道蒸发、支流入干量估算单长河道年溢出量,并基于HiWATER观测年内月变化计算平川桥断面月流量;最后根据HiWATER提供的各月内流量水位变化及部分断面流量-水位关系,估算黑河中游S213桥、G312桥、铁路桥、高崖及平川桥断面1979-2014年的日流量与逐月、日水位,为河流输水的生态水文效应等研究提供高时间分辨率的数据支撑。
谢正辉
利用红外气体分析仪测量水汽通量的方法,观测了灌木黑果枸杞和小灌木红砂在荒漠典型天气下的植物蒸散量和土壤蒸发量,比较不同生活型荒漠植物耗水量的日变化规律。 该测定系统由LI-8100闭路式土壤碳通量自动测定仪(LI-COR,美国)和北京力高泰科技有限公司设计制作的同化箱组成,LI-8100是美国LI-COR公司生产的用于土壤碳通量测量的仪器,采用红外气体分析仪测量CO2和H2O的浓度。同化箱的长宽高均为50cm。同化箱由LI-8100控制,设置好测量参数后,仪器可以自动运行。
苏培玺
黑河流域盈科-大满试验数据受黑河计划重点基金项目“黑河流域农业节水的生态水文效应及多尺度用水效率评估”支持。包括:土壤容重、土壤含水量、土壤质地、玉米样点生物量、断面流量等 数据描述: 1、叶面积指数和地上生物量取样位置:盈科灌区;玉米的LAI及第上部分生物量每15天取样一次;取样时间:2012.5-2012.9;测量方法:LAI采用冠层分析仪(LP-80)测量,地上部分生物量采用取样烘干法测量;样点数量:16个。 2、土壤质地:取样位置:盈科灌区及盈科灌区石桥五斗二农渠农田;土壤采样深度140 cm,取样层次分别为0-20 cm每10 cm取一样,20-80 cm 每20 cm取一样, 80-140 cm 每30 cm取一样;取样时间:2012年;测量方法:实验室激光粒度分析仪;样点数量:38个。 3、土壤容重:取样位置:盈科灌区和大满灌区;土壤容重取样深度100 cm,取样层次分别为0-50 cm取一样,50-100 cm取一样;取样时间:2012年;测量方法:环刀法;样点数量:34个。 4、土壤含水率:本数据为盈科灌区水文要素监测内容的一部分,具体取样位置:盈科灌区石桥五斗二农渠农田,种植作物为制种玉米;土壤含水率取样深度140 cm,取样层次分别为0-20 cm每10 cm取一样,20-80 cm 每20 cm取一样, 80-140 cm 每30 cm取一样;周期为每7天监测一次;取样时间:2012.5-2012.9;测量方法:取土烘干法及TDR测量;样点数量:17个。 5、断面流量:取样位置:盈科灌区石桥五斗二农渠农田;测量农田各次灌水时不同渠系断面处水流流速、水位、水温,并记录时间及计算流量,监测每3小时一次,直至灌水结束;;取样时间:2012.5-2012.9;测量方法:多普勒超声流量流速仪(HOH-L-01, China);测量次数:盈科四次灌水数据。
黄冠华, 姜瑶
黑河上游分布式生态水文模型的输出数据包括1-km网格的空间分布数据和流域出口的流量时间系列数据。(1)1-km网格的空间分布数据,月平均的土壤水分、实际蒸散发、径流深等1-km分辨率的空间分布数据。(2)径流时间系列流域出口的逐日流量数据。
杨大文
2014年6月下旬‒7月上旬,选定黑河下游荒漠植物优势种黑果枸杞和苦豆子,利用美国拉哥公司制造的LI-6400便携式光合作用系统(Portable Photosynthesis System, LI-COR, USA),对荒漠植物光合生理和水分生理特性进行了测定分析。
苏培玺
黑河上游祁连附近地貌面包括一级剥蚀面(宽谷面),9级河流阶地面。阶地面分布数据主要通过野外考察获取,对各级地貌面分布范围进行GPS测量,在室内把野外资料进行分析,再结合遥感影像、地形图、地质图等资料,绘制得到黑河上游各级地貌面分布图。剥蚀面的年代在1.4Ma左右,黑河阶地形成晚于这一时代,都为晚更新世以来阶地。
胡小飞, 潘保田
对地处祁连山大野口流域分布的5种典型鬼剑锦鸡儿、吉拉柳、金露梅、鲜黄小擘和甘青锦鸡儿的叶面积利用LAI-2200 冠层分析仪进行了动态测定。
刘贤德
该数据集包含了2012年7月至2013年8月的黑河流域典型土壤样点的土壤有机质含量数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,采取每个剖面的土壤样本。
张甘霖
一、数据描述: 数据包含了2014年7月24日~2014年9月11日葫芦沟小流域三角洲地区地下水水位埋深观测数据,监测频率为1h/次。 二、采样地点: 地下水水位观测点位于三角洲山前冲洪积扇顶部,坐标为99°52'45.38"E,38°15'21.27"N。
马瑞
主要包含野外土壤水分,地下水位,土壤物理性质,温度,通量,植物生长,土壤养分、树干茎流,农田小气候,土壤剖面含水量等观测数据。
邵明安
2000-2011年黑河干流主要控制断面:莺落峡(东经100°11′,北纬38°49′)、正义峡(东经99°28′,北纬39°49′)、哨马营(东经99°59′,北纬40°25′)、狼心山东河和西河(东经100°20′,北纬41°02′)、东居延海(东经101°06′,北纬42°13′)的月平均流量。
蒋晓辉
该数据集包含了2012年7月至2013年8月的黑河流域典型土壤样点的土壤容重数据。黑河流域典型土壤样点采集方式为代表性采样,指能够采集到景观区域内的典型土壤类型,尽可能采集代表性较高的样点。按照中国土壤系统分类,以诊断层和诊断特性为基础,采取每个剖面的土壤样本。
张甘霖
张掖盆地主要包括20个灌区,在分水任务的制约下,灌区地表水用量受到控制,但增大了地下水开采,导致中游地下水水位下降,造成潜在的生态环境风险。由于研究区的地表水和地下水存在复杂且频繁的交换,通过优化各灌区地表水和地下水的使用比例,有可能在总体上实现水资源的节约。 本项目在不改变中游灌区需水量的前提下,研究了最大化正义峡的出流量(给定地下水储量约束)和最大化中游地下水储量(给定正义峡的出流量约束)这两个方面的问题。
郑一
在前一项目布设在黑河下游的3个荒漠不同类型调查观测场外部,选择与观测场平均长势和大小一致的不同种类荒漠植物,进行了地上生物量和地下生物量全根法调查。干重为80℃下的烘干重量,根冠比为地下生物量与地上生物量的干重比值。种类有:沙拐枣、红砂、黑果枸杞、泡泡刺、苦豆子、骆驼蓬、柽柳等。
苏培玺
黑河上游河谷断面数据主要展示了黑河河流阶地的结构及其横断面分布特征。这些数据主要通过野外考察、测量得到。该组数据包括黑河上游祁连县附近林场断面和下筏断面,莺落峡黑河口断面。
胡小飞, 潘保田
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤砂粒含量空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据集内容: hh_sand_layer1.tif:0-5cm 土壤砂粒含量; hh_sand_layer2.tif:5-15cm 土壤砂粒含量; hh_sand_layer3.tif:15-30cm 土壤砂粒含量; hh_sand_layer4.tif:30-60cm 土壤砂粒含量; hh_sand_layer5.tif:60-100cm 土壤砂粒含量;
宋效东, 张甘霖
植被指数(NDVI)能够应用在检测植被生长状态、植被覆盖度和消除部分辐射误差等 数据集为经过图形处理的黑河流域2000-2010年,MODIS 500米16天合成的NDVI产品数据,无值区为-32768。坐标系统为经纬度投影,空间范围为:96.5E–102.5E, 37.5N–43N。数据格式为GEOTIFF。
王忠静
本项目以典型荒漠植物沙冬青为研究对象,通过对沙冬青的蛋白提取纯化体系进行优化,采用IEF和2-D双向电泳技术获得沙冬青可溶性蛋白电泳图,分析得到了在干旱胁迫下差异表达的蛋白质点,为后续质谱鉴定蛋白的功能、构建沙冬青水分胁迫响应网络提供技术上的保障。
苏彦华
数据调查方法:黑河流域管理局调查搜集。 数据包括:1996年水利部黄河水利委员会编制的《黑河干流(含梨园河)水量分配方案》;1992年水利部兰州勘测设计院编制的《黑河干流水利规划简要报告》;2001年国务院批复的《黑河流域近期治理规划》;2008年黑河流域管理局的《黑河水量调度历史文件资料汇编》;2014年讨赖河流域管理局编制的《讨赖河流域酒泉盆地水资源合理配置方案研究》。
郑航, 王忠静
荒漠植物大气水汽吸收利用数据集,本数据集所有数据均为原始数据,包括柽柳、梭梭、霸王、白刺、红砂五种荒漠植物野外和室内控制实验相关的气象、土壤含水量,植物茎干液流、植物组织水势、大气及加湿水汽同位素特征、荧光示踪图像、植物光合荧光、基因表达调控等方面的数据。 1、荒漠植物柽柳的同位素数据。采集荒漠植物组织,使用定制的同位素示踪水源对荒漠植物进行加湿,加湿 1 小时、2 小时、3 小时后同时采集有机玻璃室内外植物的组织样品,经过低温真空蒸馏玻璃提水系统进行提出处理,然后利用Euro EA3000元素分析仪与Isoprime气体稳定性质谱仪测得同位素数据。柽柳样品采自景泰县寺滩村,包括加湿和对照样品。同位素组成变化数据可用于测定植物叶片吸收水汽的方式、运移途径及量。 2、荧光切片照片数据:本数据集所有数据均为原始数据,包括景泰县寺滩村和额济纳旗的柽柳、梭梭、白刺、霸王、红砂等荒漠植物叶片的荧光切片在高倍显微镜下的结构照片。具体获取方法为:在加湿前把荧光染色剂涂到荒漠植物叶片表面,分别在加湿 1 小时、2 小时、3小时采集植物叶片和茎置于液氮中,带回实验室切片,用荧光显微镜观察照相。可用于分析荒漠植物叶片吸收水汽的组织器官及水分在植物体内的运移方向和路径。 3:基因转录表达数据:柽柳的转录表达数据,数据采集时间:2014年5月25日,地点:甘肃省景泰县寺滩村,数据分析平台:lllumina HiSep TM 2000平台,由百迈客公司进行转录组分析所得。 4、光合及荧光数据:为利用光合仪在野外(景泰县寺滩村和额济纳旗)所测的光合和荧光参数。 5、流液及环境数据:均为原始数据,利用茎流仪所测到的荒漠植物液流数据,包括柽柳、梭梭、白刺、红砂等荒漠植物野外(景泰县寺滩村和额济纳旗)的液流,以及自动气象站监测的环境数据,包括温湿度。
肖洪浪
一、数据描述 红泥沟典型土壤剖面土壤温度监测分为七层,深度分布为20cm、40cm、60cm、80cm、120cm、160cm、230cm。观测频率为1次/60分钟。观测数据时间范围为2013年8月25日~2014年5月1日。 二、采样地点 葫芦沟小流域典型土壤剖面土壤温度监测点设置在红泥沟中下部,其地理坐标为99°52′25.98″E,38°15′36.11″N。 三、测试方法 采用HOBO Pendant® Temperature/Light Data Logger 64K - UA-002-64温度记录仪进行土壤温度观测。
孙自永, 常启昕
通过Hiseq2000对沙冬青叶片和根系进行高通量转录组测序,发现了44959个unigene。并通过数据库比对,对其中的43192个unigene进行功能注释。发现干旱处理下,在叶片和根中差异表达的基因(表达量上调或下调2倍以上)分别有1035个和1210个。这些差异表达的基因集中于与物质运输、胁迫响应以及代谢过程,分子结构活性等方面。鉴定出干旱胁迫下差异表达的(专一性)响应基因40个。通过对沙冬青转录因子的分析,还发现沙冬青包含50个转录因子家族,1575个转录因子。在叶片中7个转录因子表达量上升,50个下降;在根中有11上升,33个下降。
苏彦华
通过对沙冬青根系、茎部以及叶片的组织切片观察,发现沙冬青具备高效吸收、运输和储备水分的形态学特征。通过对沙冬青生理生化的研究初步明确了干旱胁迫条件下,沙冬青通过渗透调节以适应水分胁迫生理和分子机制。通过对沙冬青在干旱条件下的生理特性研究,发现了脯氨酸积累随干旱胁迫过程的变化规律,其可能作为重要的渗透调节物质参与沙冬青适应水分胁迫的调节机制。进而克隆获得了参与沙冬青脯氨酸合成、代谢及转运过程的7个全长基因。
苏彦华
DEM是数字高程模型的英文简称(Digital Elevation Model)是流域地形、地物识别的重要原始资料。DEM 的原理是将流域划分为m 行n列的四边形(CELL),计算每个四边形的平均高程,然后以二维矩阵的方式存储高程。由于DEM 数据能够反映一定分辨率的局部地形特征,因此通过DEM 可提取大量的地表形态信息,这些信息包含流域网格单元的坡度、坡向以及单元格之间的关系等[7 ]。同时根据一定的算法可以确定地表水流路径、河流网络和流域的边界。因此从DEM 提取流域特征,一个良好的流域结构模式是设计算法的前提和关键。 本数据将dem提取为矢量图,以等高线为基础,详细描述了黑河干流中游地区的地形。 数据范围: 左:493300.000000 右:669700.000058 上:4414700.000000下:4254299.999998
徐宗学, 胡立堂, 徐茂森
数据集为黑河干流中游地区潜水位等值线图,包含了2005年、2006年、2007年三年的黑河干流中游地区的潜水位概况,利用arcgis制作而成,为矢量图。包含等水位线的长度、高程及其厚度等属性。其范围为: 左:604028.6599 右:645635.1531 上:4333504.1090 下:4296403.637
徐宗学
采用天宝公司生产的Trimble 5800 GPS对阶地面进行了载波相位实时动态差分测量,得到阶地面的高程数据。室内对阶地面变形特征与幅度进行分析。数据包括黑河中游正义峡附近地貌面变形与黑河上游莺落峡附近地貌面变形。
潘保田, 胡小飞
数据来源:清华大学黑河地下水模型模拟结果; 内容概述:2003-2012年观测井模拟水位:其中字母表示观测井所在地区(L-临泽、Z-张掖、G-高台、J-金塔、E-额济纳)、数字表示观测井的编号 时间范围:2003-2012月数据
王忠静
黑河中游植被样方调查数据由2013年与2014年两个年度的野外实测数据组成,包括调查样方的植被情况和土壤数据。每个调查样方的数据包含以下信息:样方经纬度、样方大小、高程、样方概况、植物名称、植物高度、冠幅、盖度、总盖度、株数、株距、行距、大行距、胸径。土壤按照地面以下0-100cm分为6层,分别为0-10cm、10-20cm、20-40cm、40-60cm、60-80cm、80-100cm。
王子丰, 徐宗学, 张淑荣
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤粉粒含量空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据集内容: hh_silt_layer1.tif:0-5cm 土壤粉粒含量; hh_silt_layer2.tif:5-15cm 土壤粉粒含量; hh_silt_layer3.tif:15-30cm 土壤粉粒含量; hh_silt_layer4.tif:30-60cm 土壤粉粒含量; hh_silt_layer5.tif:60-100cm 土壤粉粒含量;
宋效东, 张甘霖
黑河流域灌区及干支渠分布图包括了黑河流域的主要灌区及所有干渠、支渠的分布。灌区主要有罗城灌区、友联灌区、六坝灌区、平川灌区、蓼泉灌区、梨园河灌区、鸭暖灌区、板桥灌区、沙河灌区、西浚灌区、盈科灌区、大满灌区、马营河灌区、上三灌区、新坝灌区、红崖子灌区,这16个灌区。干支渠分布图包含了这16个灌区的所有干渠和支渠。
徐茂森, 徐宗学, 胡立堂
按照全球数字土壤制图(GlobalSoilMap.net)标准,将0-1m土壤深度划分为0-5cm、5-15cm、15-30cm、30-60cm、60-100cm 5个层次,根据土壤-景观模型原理,使用数字土壤制图方法制作不同层次的土壤粘粒含量空间分布数据产品。土壤粒级划分标准使用美国制分类法。本数据集的源数据来源于黑河流域重大研究计划集成项目(黑河流域土壤数据集成与土壤信息产品生成,91325301)集成的土壤剖面数据。 范围:黑河流域; 投影:WGS_1984_Albers; 空间分辨率:100米; 数据格式:TIFF; 数据集内容: hh_clay_layer1.tif:0-5cm 土壤粘粒含量; hh_clay_layer2.tif:5-15cm 土壤粘粒含量; hh_clay_layer3.tif:15-30cm 土壤粘粒含量; hh_clay_layer4.tif:30-60cm 土壤粘粒含量; hh_clay_layer5.tif:60-100cm 土壤粘粒含量;
宋效东, 张甘霖
1947-1948年间,中华民国水利部河西水利工程总队编写了黑河干流水利工程规划书(15项)。这是目前全流域最早根据现代水利工程学原理编制的全面工程规划。这批规划以灌溉工程为主,兼顾跨流域调水与防洪工程。这些工程大多在1949年后得到不同程度的实现,但其中引大通河水入黑河水计划则从未付诸实施。这批文献中水文、社会经济数据的搜集则多完成于抗战时期,由甘肃省水利林牧公司负责完成,是流域内最早、较系统的数据,对于分析、认识民国时期黑河干流水利开发与社会经济状况有不可替代的价值。本数据主要内容包括张掖、山丹、民乐、临泽、高台的水库工程、地下水截引及灌溉工程、地表径流灌溉工程、灌溉渠系整理工程等计划书。
王忠静
荒漠植物大气水汽吸收利用数据集,本数据集所有数据均为原始数据,包括柽柳、霸王、白刺、红砂等荒漠植物野外(景泰县寺滩村和额济纳旗)的液流及环境数据,包括气象、光合、荧光和叶面湿度,另外还有基因转录组和表达调控等方面的数据。
肖洪浪
该数据是黑河干流莺落峡以上上游的植被图,比例尺为1:10万,面积大约为1万平方公里,数据格式为GIS矢量格式,满足生态水文模型数据输入要求,出版前仍需进行地图修饰,本版本为2.0版,后期拟对比黑河计划上游样带调查数据进行进一步修正。该数据是在《1:100万中国植被图》的基础上,对黑河上游海拔、坡向(基于ASTER GDEM计算)等地形进行详细分析,结合野外调查资料、文献资料、TM及ETM+影像、谷歌地球等,对《1:100万中国植被图》的群系边界进行优化后得到。该数据对1:100万植被图类型边界调整较大,与海拔和坡向相符更好。该数据可在Arc GIS及其兼容软件中直接使用和编辑。
郑元润
本数据集包括青海省祁连县阿柔乡阿柔草场2013年11月10日-14日车载微波辐射计观测亮温以及同步测量的地表温湿度连续观测数据集。地表温湿度包括温度传感器在土壤深度1cm、3cm,5cm,10cm,15cm,20cm六层和湿度传感器在土壤深度0-5cm处,观测的土壤温度,土壤水分数据。土壤温湿度的常规观测的时间频率为5分钟。 数据细节: 1. 时间:2013年11月10日-14日 2. 数据: 亮温: 使用车载多频被动微波辐射计观测,包括6.925、10.65、18.7和36.5GHz V极化和H极化数据 土壤温度:使用安装在dt80和dt85上的传感器测量,其中dt80上接的传感器测量1cm,5cm,10cm,20cm土壤温度,dt85上接的探头测量1cm,3cm,5cm,10cm,15cm土壤温度 土壤湿度:使用H-probe传感器测量0-5cm土壤湿度,该探头可以同时测量0-5cm土壤温度 3. 数据大小:16.7M 4. 数据格式:.xls
赵少杰, 寇晓康, 叶勤玉, 马明国
葫芦沟人工蒸发皿和降水日尺度数据集 1.数据概述: 此数据集是祁连站2011年1月1日—2011年12月31日日尺度人工蒸发皿和降水数据。人工蒸发皿为20cm口径标准人工蒸发皿,降水量为20cm口径标准雨量器。 2.数据内容: (1)蒸发量的测定为每日20:00时用20专用量杯量测;一般是前一日20时以专用量杯量清水20毫米(原量)倒入器内,24小时后即当日20时,再量器内的水量(余量),其减小的量为蒸发量。即:蒸发量=原量—余量。若前一日20时到当日20时之间有降水,则计算式为:蒸发量=原量+降水量—余量。 (2)降水量一般采用2段制进行观测,即每日8时及20时各观测一次,雨季增加观测段次,雨量大时还需加测。日雨量是以每天上午8时作为分界,将本日8时至次日8时的降水量作为本日的降水量。若为降雨,用20专用量杯量测,当降雪时,仅用外筒作为承雪器具,然后用电子天平(沈阳龙腾ES30K-12型号电子天平,最小感量为0.2g)称重测量。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 宋耀选, 刘俊峰, 阳勇, 卿文武, 刘章文, 韩春坛
1.数据概述: 此数据集是祁连站2012年1月1日—2012年12月31日日尺度气象梯度数据(2011年9月底安装)。VG1000梯度观测系统通过对风速风向、空气温湿度和辐射等常规气象要素进行长期监测,结合高精度、高扫描频率的数据采集器进行数据存储和处理分析。 2.数据内容: 主要观测要素包括四层气温、湿度和二维超声风,雨雪量计,八层地温、土壤含水量等。 3.时空范围: 地理坐标:经度:经度:99°52′E;纬度:38°15′N;海拔:3232.3m
陈仁升, 韩春坛
本数据集包括黑河上游八宝河流域40个WATERNET传感器网络节点自2013年6月底至今的观测数据。4cm、10cm和20cm土壤水分是每个节点的基本观测;19个节点包含土壤水分和地表红外辐射温度观测;11个节点包含土壤水分、地表红外辐射温度观测、雪深和降水观测。观测频率为5分钟。该数据集可为流域水文模拟、数据同化及遥感验证提供地面数据集。 详细内容请参见“WATERNETNET数据文档20141206.docx”
晋锐, 亢健, 李新, 马明国
葫芦沟人工蒸发皿和降水日尺度数据集 1.数据概述: 此数据集是祁连站2013年1月1日—2013年12月31日日尺度人工蒸发皿和降水数据。人工蒸发皿为20cm口径标准人工蒸发皿,降水量为20cm口径标准雨量器。 2.数据内容: (1)蒸发量的测定为每日20:00时用20专用量杯量测;一般是前一日20时以专用量杯量清水20毫米(原量)倒入器内,24小时后即当日20时,再量器内的水量(余量),其减小的量为蒸发量。即:蒸发量=原量—余量。若前一日20时到当日20时之间有降水,则计算式为:蒸发量=原量+降水量—余量。 (2)降水量一般采用2段制进行观测,即每日8时及20时各观测一次,雨季增加观测段次,雨量大时还需加测。日雨量是以每天上午8时作为分界,将本日8时至次日8时的降水量作为本日的降水量。若为降雨,用20专用量杯量测,当降雪时,仅用外筒作为承雪器具,然后用电子天平(沈阳龙腾ES30K-12型号电子天平,最小感量为0.2g)称重测量。 3.时空范围: 地理坐标:经度:99°53′E;纬度:38°16′N;海拔:2981.0m
陈仁升, 韩春坛, 宋耀选, 刘俊峰, 阳勇, 刘章文
本项目基于美国USGS的GSFLOW模型对黑河中游张掖盆地进行地表-地下水耦合模拟的工作。模拟的时空范围及精度如下: 模拟期:1990-2012年; 模拟步长:逐日; 模拟的空间范围:张掖盆地; 模拟的空间精度:地下部分为1km×1km网格(5层,每层网格总数为150×172=25800,其中活动网格9106);地表部分以水文响应单元(HRU)为基本计算单元(总计588个,每个HRU面积几平方公里到几十平方公里不等)。 数据包括:地表入渗量、实际蒸散发、平均土壤含水量、地表地下水交换量、浅层地下水水位、正义峡日流量模拟值、正义峡月流量模拟值、地下水抽取量、河道引水量
郑一
下游航空遥感试验期间,开展了飞行时黑白布同步光谱观测以及典型下垫面地物波谱观测,为航空飞行资料预处理提供基础数据集。 1、 观测仪器 中科院寒旱所PRS-3500野外便携式地物光谱仪(光谱范围:350-2500nm)以及参考板。 2、 下垫面及观测方式 下垫面包括:黑白布、哈密瓜、柽柳、胡杨、芦苇、杂草、花花柴、沙土、戈壁、苦豆子等; 测量地物前先垂直测量参考板反射率,再垂直测量地物反射率,每种地物测量5条光谱反射率。 3、 观测时间及内容 2014年7月24日:典型地物光谱观测 2014年7月27日:典型地物光谱观测 2014年7月29日:黑白布光谱同步观测 2014年7月31日:典型地物光谱观测 4、 数据存储 本数据集包括光谱仪导出的*.sed格式的光谱数据(可用PRS-3500配套软件打开,也可用记事本直接打开)、Excel格式观测记录表以及下垫面照片。
耿丽英, 李艺梦
下游航空遥感试验期间,开展了下游典型植被地表土壤呼吸观测,观测自2014年7月23日开始,8月2日结束。 1、 观测时间 2014年7月23日至8月2日每天观测一次,其中7月25日中断一天 2、 样方选择及观测方式 结合下游植被特征和站点分布,选择临近于站点、面积分布大于100 m100 m且均一的植被作为观测样地,共选取了5个观测样地,包括胡杨柽柳混合林、胡杨林、柽柳群、裸地和瓜地样地;在每一样地中,选取具有代表性的3-5个点,提前一天打入土壤环(内径为19.5cm,外径为20.0cm,高12cm,尽量保持打入后的PVC露出地面5cm左右),尽可能不扰动地表的植被和凋谢物。经过24h平衡,土壤呼吸速率恢复到原来状态,避免了由于基座的安置而造成的对土壤呼吸速率的波动。 观测时间段为每天上午的8:00至12:00(这段时间土壤呼吸比较稳定,能够代表整天的土壤呼吸速率),运用LI-8100开路式土壤碳通量自动测定仪(Model 8100-103)分别对每个样地内样点测量一次,每天完成5块样地的一次循环观测,每块样地取所观测样点的平均值作为该样地的土壤呼吸值。 3、 观测仪器 中科院地环所Li-8100(Li-COR,USA)开路式土壤碳通量自动测定仪 4、 数据存储 本数据集包括Li-8100导出的*.81x格式的数据(用Li-8100配套软件打开,也可以用txt打开)、Excel格式观测记录表以及实验照片。
任志国
下游生态水文实验区地表温度同步观测的目的在于获取热像仪飞行期间高覆盖均一植被、水体以及水泥地等下垫面的同步地表温度,用于支持航空热像仪飞行资料反演地表温度的验证和尺度效应分析,实现地表温度遥感产品的真实性检验。 1、 观测时间 2014年8月1日 2、 观测内容 选取了飞行区域内苦豆子、水泥地和水体3种大面积分布且均一的下垫面进行同步观测 3、 观测方式 在热像仪飞行进入相应下垫面上空时,使用手持式红外温度计进行连续人工同步观测 4、 观测仪器参数及标定 观测所使用的手持红外温度计比辐射率设为0.95,手持式红外温度计视场角为1°。同时对所用观测仪器在2014年7月31日进行了标定。 5、 数据存储 所有观测数据均用Excel格式存储。
李艺梦, 任志国, 周胜男, 马明国
本数据集利用LI-6400光合仪,观测了黑河流域下游试验区的主要植物胡杨林的光合作用过程。观测地点位于下游核心观测区额济纳旗的胡杨站和混合林站。观测日期为2014年7月下旬。本数据集为观测期内的胡杨的LI-6400的原始观测数据。 1、 测量目的 光合数据测量可以用于植物生理特性研究。 2、 测量仪器 测量仪器:LI-6400便携式光合作用测量仪。 3、 观测时间地点 观测地点:混合林站 观测时间:2014-07-24 观测地点:胡杨站 观测时间:2014-07-25至2014-07-31 4、 数据存储与处理 LI-6400数据采用Excel格式存储。为保留原始数据,未对数据进行删改。测量时每个时段数据存为一个文件,并以日期+类型命名。
王海波
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件