青藏高原的水土资源匹配数据,由站点气象数据(2008-2016年,国家气象数据共享网)经过彭曼公式计算得出的潜在蒸散发数据,利用土地利用的不同土地类型,根据下垫面影响系数计算现有土地利用下的蒸散发量;以及气象数据中的站点降雨数据插值得到的降雨数据,根据两者差值得到水土资源匹配系数。实际降雨与现有土地利用条件下的需水量之间的差值来反映水土资源的匹配性,数值越大匹配性越好。水土资源的匹配情况的空间分布能为进一步了解青藏高原的农牧业资源情况做铺垫。
董凌霄
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
基于青藏高原国家气象站站点数据通过PRISM模型插值生成的高原气象要素分布图,主要包括气温和降水。 青藏高原1961-1990月均温分布图(30年平均值): t1960-90_1.e00,t1960-90_2.e00,t1960-90_3.e00,t1960-90_4.e00,t1960-90_5.e00, t1960-90_6.e00,t1960-90_7.e00,t1960-90_8.e00,t1960-90_9.e00,t1960-90_10.e00, t1960-90_11.e00,t1960-90_12.e00 青藏高原1991-2020月均温分布图(30年平均值): t1991-20_1.e00,t1991-20_2.e00,t1991-20_3.e00,t1991-20_4.e00,t1991-20_5.e00, t1991-20_6.e00,t1991-20_7.e00,t1991-20_8.e00,t1991-20_9.e00,t1991-20_10.e00, t1991-20_11.e00,t1991-20_12.e00, 青藏高原1961-1990月降水分布图(30年平均值): p1960-90_1.e00,p1960-90_2.e00,p1960-90_3.e00,p1960-90_4.e00,p1960-90_5.e00, p1960-90_6.e00,p1960-90_7.e00,p1960-90_8.e00,p1960-90_9.e00,p1960-90_10.e00, p1960-90_11.e00,p1960-90_12.e00 青藏高原1991-2020月降水分布图(30年平均值): p1991-2020_1.e00,p1991-2020_2.e00,p1991-2020_3.e00,p1991-2020_4.e00,p1991-2020_5.e00, p1991-2020_6.e00,p1991-2020_7.e00,p1991-2020_8.e00,p1991-2020_9.e00,p1991-2020_10.e00, p1991-2020_11.e00,p1991-2020_12.e00, 数据时间范围分为1961-1990年、1991-2020年。 数据覆盖的空间范围为东经73°~104.95°,北纬26.5°~44.95°,空间分辨率0.05度×0.05度(经度×纬度),大地坐标投影。 名称解释: 月均温:一个月中每天的日平均气温的平均数; 月降水:一个月降水量的总和。 量纲:数据的文件格式为E00文件,DN值为1~12月的月均温平均值(×0.01℃)、月降水平均值(×0.01mm)。 数据类型:整型。 数据精度:0.05度×0.05度(经度×纬度)。 本数据原始来源为两组数据集:1)青藏高原及周边地区128个气象站自建站至2000年的月均温、月降水观测资料;2)青藏高原50×50km网格的HadRM3区域气候情景模拟数据,即1991-2020年下月平均温度、月降水模拟值。 1961-1990年,对源数据集采用PRISM(Parameter elevation Regressions on Independent Slopes Model)插值方法生成网格数据,基于站点数据对插值模型进行调参和验证。1991-2020年,对区域气候情景模拟数据以地形趋势面插值方法降尺度生成网格数据。部分源数据来自GCM模型模拟的结果:GCM模型采用Hadley Centre climate model HadCM2-SUL。 a) Mitchell JFB, Johns TC, Gregory JM, Tett SFB (1995) Climate response to increasing levels of greenhouse gases and sulphate aerosols. Nature, 376, 501-504. b) Johns TC, Carnell RE, Crossley JF et al. (1997) The second Hadley Centre coupled ocean-atmosphere GCM: model description, spinup and validation. Climate Dynamics, 13, 103-134. 对气象数据进行空间插值采用PRISM (Parameter-elevation Regressions on Independent Slopes Model)方法: Daly,C., R.P. Neilson, and D.L. Phillips, 1994: A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteor., 33, 140~158. 因高原地区观测条件艰苦,基础研究数据缺乏,部分地区气象数据有缺失的现象。本数据集经调参和验证,精度尚可,但仅可做为宏观尺度气候研究的参考之用。青藏高原1961-1990月均温分布数据平均相对误差率为8.9%,青藏高原1991-2020月均温分布数据平均相对误差率为9.7%,青藏高原1961-1990月降水分布数据平均相对误差率为20.9%,青藏高原1991-2020月降水分布数据平均相对误差率为22.7%。对部分缺失数据的区域进行了插补,对明显错误的个别数值进行了修改。
周才平
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件