基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
高分二号(GF-2)卫星是我国自主研制的首颗空间分辨率优于1米的民用光学遥感卫星,搭载有两台高分辨率1米全色、4米多光谱相机,星下点空间分辨率可达0.8米。 该数据集为2017年的6景高分二号卫星遥感影像数据。文件夹列表为: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 GF2_PMS2_E100.5_N36.7_20170805_L1A0002526723 GF2_PMS2_E100.7_N37.2_20171013_L1A0002672923 GF2_PMS2_E100.7_N37.4_20171013_L1A0002672921 文件命名规则:卫星名称_传感器名称_中心经度_中心纬度_成像时间_L****
中国资源卫星应用中心
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率300米。2)土壤侵蚀强度数据采用中国土壤侵蚀预报模型(CSLE)计算获取。土壤侵蚀预报模型公式中包含降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子、耕作措施因子。降雨侵蚀力因子由青藏高原各站点降雨数据插值获得;土壤可蚀性因子、工程措施因子、耕作措施因子采用第一次水利普查数据;坡长因子、坡度因子通过30m高程数据计算后重采样得到;植被覆盖与生物措施因子由植被覆盖度结合土地利用数据和降雨侵蚀力比例计算得出,其中植被覆盖度是由MODIS的植被指数产品通过像元二分法计算得到。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。
章文波
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
章文波
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
三江源及区域国家标准气象站逐月气象数据,包含32个气象站,主要包括平均本站气压、极端最高本站气压、极端最高本站气压出现日、极端最低本站气压、极端最低本站气压出现日、平均气温、极端最高气温、极端最高气温出现日、极端最低气温、极端最低气温出现日、平均气温距平、平均最高气温、平均最低气温、日照时数、日照百分率、平均相对湿度、最小相对湿度、最小相对湿度出现日期、降水量、日降水量>=0.1mm日数、最大日降水量、最大日降水量出现日、降水距平百分率、平均风速、极大风速、极大风速之出现日、最大风速、极大风速之风向、最大风速之风向、最大风速之出现日26个变量。数据格式为txt,以站点ID命名,每个文件26列,各列数据的名称、单位以含义在SURF_CLI_CHN_MUL_MON_readme.txt文件中进行了说明。所包含的站点列表如下表: site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 刚察 52833 36.92 98.48 7950.00 乌兰 52836 36.30 98.10 3191.10 都兰 52856 36.27 100.62 2835.00 恰卜恰 52866 36.72 101.75 2295.20 西宁 52868 36.03 101.43 2237.10 贵州 52908 35.22 93.08 4612.20 伍道梁 52943 35.58 99.98 3323.20 兴海 52955 35.58 100.75 8120.00 贵南 52974 35.52 102.02 2491.40 同仁 56004 34.22 92.43 4533.10 托托河 56018 32.90 95.30 4066.40 杂多 56021 34.13 95.78 4175.00 曲麻莱 56029 33.02 97.02 3681.20 玉树 56033 34.92 98.22 4272.30 玛多 56034 33.80 97.13 4415.40 清水河 56038 32.98 98.10 9200.00 石渠 56043 34.47 100.25 3719.00 果洛 56046 33.75 99.65 3967.50 达日 56065 34.73 101.60 8500.00 河南 56067 33.43 101.48 3628.50 久治 56074 34.00 102.08 3471.40 玛曲 56080 35.00 102.90 2910.00 合作 56106 31.88 93.78 4022.80 索县 56116 31.42 95.60 3873.10 丁青 56125 32.20 96.48 3643.70 囊谦 56128 31.22 96.60 3810.00 类乌齐 56137 31.15 97.17 3306.00 昌都 56151 32.93 100.75 8530.00 班玛 56152 32.28 100.33 8893.90 色达
国家气象信息中心 数据应用服务室
该数据集为收集到的资源三号02星的遥感影像。资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。将进一步加强国产卫星影像在国土测绘、资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通等领域的服务保障能力。文件列表: ZY302_PMS_E98.8_N37.4_20170707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 文件夹命名规则:卫星名称_传感器名称_中心经度_中心纬度_获取时间_L1****
中国资源卫星应用中心
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
该数据集为高分一号卫星遥感数据,包括2017-8-13、2017-10-5 两景PMS1相机的数据,2017-5-27日一景PMS2相机的数据,2018-9-23日WFV2和WFV3相机影像各一景。文件列表: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706
周圣明
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施受到了极大的瓶颈阻碍。鉴于土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。 青藏高原2010年土壤质地数据集裁切自世界土壤库。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
Food and Agriculture Organization of the United Nations(FAO)
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
该数据集为收集到的资源三号卫星的遥感影像。资源三号卫星(ZY-3)于2012年1月9日成功发射。该卫星的主要任务是长期、连续、稳定、快速地获取覆盖全国的高分辨率立体影像和多光谱影像,为国土资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通、国家重大工程等领域的应用提供服务。文件列表: ZY3_MUX_E99.8_N36.6_20171011_L1A0003817398 ZY3_MUX_E99.9_N37.0_20171011_L1A0003817397 ZY3_MUX_E100.0_N37.4_20171011_L1A0003817396 ZY3_MUX_E100.1_N36.6_20170625_L1A0003738882 ZY3_MUX_E100.8_N36.6_20170710_L1A0003748776 ZY3_MUX_E100.9_N37.0_20170710_L1A0003748775 ZY3_NAD_E99.8_N36.6_20171011_L1A0003817439 ZY3_NAD_E99.9_N37.0_20171011_L1A0003817438 ZY3_NAD_E100.0_N37.4_20171011_L1A0003817437 ZY3_NAD_E100.1_N36.6_20170625_L1A0003746917 ZY3_NAD_E100.8_N36.6_20170710_L1A0003748580 ZY3_NAD_E100.9_N37.0_20170710_L1A0003748579
中国资源卫星应用中心
该数据集是中国科学院西北高原生物研究所在三江源国家公园野生动物多样性本底调查过程获得的野生动物分布位点信息。该数据集时间范围是2017年,调查范围是三江源国家公园,调查物种包括藏野驴(Equus kiang)、狼(Canis lupus)、赤狐(Vulpes vulpes)、马鹿(Cervus elaphus)、雀鹰(Accipiter nisus)、红腹红尾鸲(Phoenicurus erythrogastrus)、豹猫(Prionailurus bengalensis)、大鵟(Buteo hemilasius)、藏原羚(Procapra picticaudata)、藏雪鸡(Tetraogallus tibetanus)、高原山鹑(Perdix hodgsoniae)、猎隼(Falco cherrug)等多种珍稀野生动物。
张同作
草地地上生物量采用的方法为分区分类型模型,数据年份为2000、2010、2015年,为8月上旬的地上植被鲜重。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。单位:克/平方米(g/m²)。该数据产品是中国科学院遥感与数字地球研究所基于MODIS的植被指数采用统计模型计算得到。空间分辨率为250m×250m。该数据集是三江源国家公园植被监测的重要数据源。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原地区各县区1980-2015年农业经济相关数据,具体涵盖农村总户数、总人口、农业人口、农村劳动力、耕地面积、水田面积、旱地面积、农机动力、农用汽车、机耕面积、灌溉面积、化肥施用量、用电量、农业收入、农林牧渔业总产值、牛、猪、羊、肉、禽、鱼等的产量、粮食播种面积、粮棉油的及各类作物的产量、特色农产品和畜产品产量等相关数据。数据来源于青藏高原所含各省统计年鉴。数据质量优良,可用于青藏高原社会经济和农业发展分析。
吕昌河
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件