本数据集是2017年青藏高原冰川数据,使用了210景Landsat8 OLI卫星多光谱遥感数据,时间从2013年至2018年,90%来源于2017年,85%的Landsat8 OLI数据成像于冬季。冰川数据是青藏高原净冰川覆盖范围,不包括表碛物覆盖部分。数据格式是TIFF,可以为青藏高原冰川变化、冰川水文研究提供基础数据支持。 数据内容: Value是冰川斑块在系统中自动生成的编码。 格网单元:30m 数据的投影方式:Albers等积圆锥投影。 数据加工方法:基于210景Landsat8 OLI卫星多光谱遥感数据,校正、镶嵌为假彩色合成影像(RGB:654),采用人工目视解译方法,参考波段比值法结果,结合SRTM DEM V4.1数据与Google Earth和HJ1A/1B卫星同一年不同季节的影像,剔除了山体阴影、季节性积雪的影响,参考我国第一期和第二期冰川编目数据,剔除了非冰川区的陡崖、裸露基岩等,综合提取净冰川专题矢量数据,不包括冰川末端位置不清的表碛物覆盖区域,冰川边界数字化精度为半个像元(15m)。通过对比分析,可知基于多数据源、参考多方法结果、综合专家经验知识人-机互动方法提取获得的山地冰川数据更准确。具体数据提取方法详见参考文献: Ye, Q., J.Zong,L.Tian et al. (2017). Glacier changes on the Tibetan Plateau derived from Landsat imagery: mid-1970s – 2000 – 2013. Journal of Glaciology,63(238), 273-87. DOI:10.1017/jog.2016.137。 原始遥感资料数据精度:30m 数据质量控制措施:冰川边界数字化精度控制在半个像元之内(15m)。 项目来源:中国科学院战略性先导科技专项(A类)(XDA19070302), 第二次青藏高原综合科学考察研究资助(2019QZKK0202),国家自然科学基金项目(41530748, 91747201)、中国科学院“十三五”信息化建设专项资助(XXH13505-06)。
叶庆华
本数据集是基于MODIS数据进行处理和分析后得到,通过改进不同下垫面下的不同积雪提取算法,提高了积雪范围识别精度,同时利用隐马尔科夫去云算法和SSM/I雪水当量结合,最终生成完全无云的逐日积雪面积产品。取值范围: 1:积雪;0 非积雪。空间分辨率为0.005 度(约500m),时间范围是2000年2月24日至2019年12月31日。 数据格式为geotiff,推荐使用Arcmap或python +GDAL打开和处理数据
郝晓华
本数据集来源于中国长时间序列雪深数据集,利用三江源边界进行提取形成三江源雪深数据集。取值范围:0-100 cm。时间分辨率:逐日。空间分辨率为0.25 度(约25km),时间范围是1980年1月1日至2020年12月31日。雪深数据基于星载被动微波遥感数据生产,使用了三个不同的被动微波传感器数据,它们分别是SMMR,SSM/I和SSMI/S。由于不同的传感器之间存在一定的系统偏差,因此,首先对不同传感器的数据进行了交叉订正,然后再基于被动微波亮度温度梯度法制作中国长时间序列雪深数据集。头文件信息可参考数据集header.txt。
戴礼云
青藏高原地温分布图是基于程国栋(1984)提出的多年冻土稳定型划分指标(表1),利用统计模拟的年变化深度地温数据划分的。利用地理加权回归方法,融合2010年左右233个钻孔年变化深度处的年平均地温数据和遥感积雪日数、GLASS叶面积指数、SoilGrids250m的土壤沙粒含量、土壤粘粒含量、土壤粉粒含量、土壤有机质和土壤体密度数据产品、中国气象局陆面数据同化系统(CLDAS)输出的二版土壤湿度产品和融合了近4万区域自动气象站和FY2/EMSIP降水产品的融合产品。估计得到了代表2010年代的青藏高原1km分辨率年冻土稳定性分布图。数据格式为Arcgis Raster。
冉有华
本数据集是1990年至2010年青藏高原地区的水资源量数据,为可更新地表与地下水资源之和。数据为矢量格式,空间分辨率为地级行政单元尺度。该数据通过校核VIC(Variable Infiltration Capacity)水文模型结果得到。模拟水资源量为水文模拟输出结果中网格地表径流量与地下径流量之和,模拟结果通过与实测站点径流数据比较进行验证。根据中国水资源公报省级尺度统计水资源量,在省级尺度引入校正系数α,令水文模型模拟省区水资源量与α的乘积等于统计水资源量。则地级行政单元水资源量为地级单元的模型模拟水资源总量与α的乘积。
杜云艳, 易嘉伟
冰川对区域和全球气候变化异常敏感,因此常被作为气候变化的指示器之一,其相关参数也是气候变化研究的关键指标,特别是在地球三极环境变化对比研究中,冰川速度的时间和空间差异性对比是气候变化研究的重点之一。但由于冰川基本位于高海拔、高纬度和高寒地区,自然环境恶劣、人迹罕至,缺乏且难以开展大规模冰川运动的常规现场测量工作,为了能够及时高效、全面和准确地了解三极地区冰川运动状况,利用雷达干涉测量、雷达和光学影像像素跟踪等方法获取了三极地区部分典型冰川2000-2017年部分年份的表面运动分布情况,为三极冰川运动的对比分析提供了基础资料。数据集包含12个栅格文件,栅格文件名为“某地区某时段冰川运动”,每一幅栅格图主要包含以某一典型冰川所在的区域流速分布。
闫世勇
本产品基于多源遥感DEM数据生成,步骤如下:以Landsat ETM+、SRTM 和ICESat遥感数据为参考在相对稳定和平坦的地形区域内选控制点。控制点水平坐标是以Landsat ETM+ L1T全色影像作为水平参考进行获取。控制点的高度坐标则主要通过ICESat GLA14高程数据进行获取,在无ICEsat分布的区域内以SRTM高程数据补充。利用选取的控制点和自动生成的连接点,通过Brown’s物理模型对透镜畸变和残余形变进行补偿,使得所有立体像对的空中三角测量结果中影像总RMSE<1个像素。为了对提取的DEM数据进行编辑以消除明显的高程异常值,采用了DEM内插、DEM滤波和DEM平滑等方法对冰川上的DEM进行了编辑,并对西昆仑-西和西昆仑-东区域的KH-9 DEM数据进行了拼接,从而形成产品。
周建民
湖冰是冰冻圈的重要参数,其变化与气温、降水等气候参数密切相关,而且可以直接反映气候的变化,因此是区域气候参数变化的一个重要的指标,但由于其研究区往往位于自然环境恶劣,人口稀少的区域,大规模的实地观测难以进行,因此利用哨兵1号卫星数据,以10m的空间分辨率和优于30天的时间分辨率对不同类型的湖冰变化进行了监测,填补了观测空白。利用HMRF算法对不同类型的湖冰进行分类,通过时间序列分析三个极区中部分面积大于25km2的湖泊的不同类型湖冰的分布,形成湖冰类型数据集,可以获得这些湖泊不同类型湖冰的分布,数据包括了被处理湖泊的序号,所处年份及其在时间序列中的序号等信息,矢量数据集包括采用的算法,所使用的哨兵1号卫星数据,成像时间,所处极区,湖冰类型等信息,用户可以根据矢量文件确定时间序列上不同类型湖冰的变化。
邱玉宝, 田帮森
河湖冰物候对气候变化敏感,是指示气候变化的重要指示因子。308个Excel文件名称对应于湖泊编号。每个excel文件包含6个列,包含2002年7月至2018年6月对应湖泊的日冰覆盖率信息。每一列的属性分别为:日期、湖水覆盖率、湖水冰覆盖率、云覆盖率、湖水覆盖率和经过云处理后的湖面冰覆盖率。通常以0.1、0.9的冰覆盖面积比作为判别湖泊冰物候的依据。数据集包含的excel文件可以进一步获取四个湖冰物候参数:开始冻结(FUS),完全冻结(FUE),开始融化(BUS),完全融化(BUE),和92个湖泊,可获取两个参数,FUS和BUE。
邱玉宝
基于2015年欧空局ESA GlobCover全球陆地覆盖数据,结合中科院地理资源所土地利用数据NLCD-China、清华大学全球土地覆被FROM-GLC数据、美国NASA的MODIS全球土地覆被MCD12Q1数据、马里兰大学全球土地覆被UMD、美国USGS土地覆被数据IGBP DISCover,构建了青藏高原LUC分类系统以及其余数据分类系统的转换规则,构建土地覆被分类置信度函数和地类融合规则,进行土地覆被产品融合与修正,完成了青藏高原土地利用数据V1.0(1992,2005,2015,,300m×300m栅格,一级分类)
许尔琪
基于最新发布的青藏高原多年冻土存在性证据数据集,利用统计模型计算得到了1公里分辨率青藏高原多年冻土概率分布图。该图考虑了气温、积雪和植被这三个多年冻土分布控制性因素,因此能够准确地反应青藏高原冻土的空间异质性。根据1000多个实测资料验证和与已有多年冻土图的对比结果显示,该图的整体分布精度为82.5%,卡帕系数可达到0.62,在多年冻土下界表现出了更好的分类效果。结果显示,青藏高原多年冻土区面积约为1.54 (1.35–1.66) 百万平方公里, 约占陆地面积的 60.7 (54.5– 65.2)% 。多年冻土面积 约为 1.17 (0.95–1.35)百万平方公里,约占46 (37.3–53.0)%。
曹斌
高分二号(GF-2)卫星是我国自主研制的首颗空间分辨率优于1米的民用光学遥感卫星,搭载有两台高分辨率1米全色、4米多光谱相机,星下点空间分辨率可达0.8米。 该数据集为2017年的6景高分二号卫星遥感影像数据。文件夹列表为: GF2_PMS1_E100.5_N37.2_20171013_L1A0002678101 GF2_PMS1_E100.5_N37.4_20171013_L1A0002678097 GF2_PMS1_E100.6_N37.6_20171013_L1A0002678096 GF2_PMS2_E100.3_N37.4_20170810_L1A0002534662 GF2_PMS2_E100.5_N36.7_20170805_L1A0002526723 GF2_PMS2_E100.7_N37.2_20171013_L1A0002672923 GF2_PMS2_E100.7_N37.4_20171013_L1A0002672921 文件命名规则:卫星名称_传感器名称_中心经度_中心纬度_成像时间_L****
中国资源卫星应用中心
该数据集包含了2018年长江源区人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年8月黄河源区(扎陵湖北面)人工采集的土地覆盖及植被类型地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
该数据集包含了2018年可可西里人工采集的土地覆盖地面验证点数据集。数据采集中,以用地类型相对较为均一、完整的斑块作为主要采集对象,在区分其他用地类型及植被类型时相对较易识别和辨识,在地物验证中具有较好的代表性。每个样地首先利用差分GPS仪记录经度(度分秒)、纬度(度分秒)、海拔(0.1米)、采集时间等位置信息,然后以人工目视识别的办法记录主要用地类型和性质、特征、建群种等属性信息,以便回实验室验证和核对。最后,对每个样地拍摄不少于1张的景观照片。在本次采集中,90%以上的样点采集了2张及以上实景照片,以便于在土地利用分类及植被类型提取中进行验证和核查。最后,通过与Google地图的位置核对,数据经过了两轮检验和核查,保证了验证点属性的绝对正确性。
王旭峰
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率300米。2)土壤侵蚀强度数据采用中国土壤侵蚀预报模型(CSLE)计算获取。土壤侵蚀预报模型公式中包含降雨侵蚀力因子、土壤可蚀性因子、坡长因子、坡度因子、植被覆盖与生物措施因子、工程措施因子、耕作措施因子。降雨侵蚀力因子由青藏高原各站点降雨数据插值获得;土壤可蚀性因子、工程措施因子、耕作措施因子采用第一次水利普查数据;坡长因子、坡度因子通过30m高程数据计算后重采样得到;植被覆盖与生物措施因子由植被覆盖度结合土地利用数据和降雨侵蚀力比例计算得出,其中植被覆盖度是由MODIS的植被指数产品通过像元二分法计算得到。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。
章文波
1)数据内容包含青藏高原地区1992年、2005年、2015年三期土壤侵蚀强度栅格数据,空间分辨率为300米。2)采用中国土壤侵蚀预报模型(CSLE)计算青藏高原4000余个调查单元的土壤侵蚀量。按土地利用对青藏高原范围进行土壤侵蚀量插值。根据《土壤侵蚀分级标准》对土壤侵蚀量进行分级,得到青藏高原土壤侵蚀强度图。3)通过三期土壤侵蚀强度数据的差异变化比较,符合实际变化规律,数据质量良好。4)土壤侵蚀强度数据对青藏高原土壤侵蚀研究和当地生态系统的可持续发展具有重要意义。属性表中代码含义:Value值1,2,3,4,5,6分别代表侵蚀强度微度、轻度、中度、强烈、极强烈、剧烈;BL代表各侵蚀强度面积占总面积的百分比。
章文波
本数据是通过建立长江黄河源WEB-DHM分布式水文模型,以气温、降水、气压等作为输入数据,以GAME-TIBET数据作为验证数据,模拟输出的5km逐月水文数据集,包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。数据是基于WEB-DHM分布式水文模型,以气温、降水、气温等(源自itp-forcing和CMA)为输入数据,以GLASS、MODIA、AVHRR为植被数据,SOILGRID及FAO为土壤参数建立起的模型,并通过对径流、土壤温湿度的率定与验证获得的1998-2017年长江黄河源5公里逐月格网径流与蒸发。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊
降水强烈的时空变化常使得常规地基台站的降水观测不能准确把握降水的空间分布和强度变化。而卫星微波遥感可以克服此局限,实现全球尺度降水和云的观测,而且相对于红外/可见光只能反映云厚、云高等信息而言,微波能够穿透云体,利用云内降水粒子和云粒子与微波的相互作用对云、雨进行更为直接的探测。 本数据以GPM搭载的DPR双波段降水雷达获取的地表降水量为真值,以NDVI、DEM、ERA5中的土壤温/湿度为参考数据,利用GMI的多波段被动亮温数据反演青藏高原地区暖季(5月-9月)瞬时降水强度,将结果重采样至0.1°空间分辨率后累加到日。
许时光
三江源及区域国家标准气象站逐月气象数据,包含32个气象站,主要包括平均本站气压、极端最高本站气压、极端最高本站气压出现日、极端最低本站气压、极端最低本站气压出现日、平均气温、极端最高气温、极端最高气温出现日、极端最低气温、极端最低气温出现日、平均气温距平、平均最高气温、平均最低气温、日照时数、日照百分率、平均相对湿度、最小相对湿度、最小相对湿度出现日期、降水量、日降水量>=0.1mm日数、最大日降水量、最大日降水量出现日、降水距平百分率、平均风速、极大风速、极大风速之出现日、最大风速、极大风速之风向、最大风速之风向、最大风速之出现日26个变量。数据格式为txt,以站点ID命名,每个文件26列,各列数据的名称、单位以含义在SURF_CLI_CHN_MUL_MON_readme.txt文件中进行了说明。所包含的站点列表如下表: site_id lat lon elv name_cn 52754 37.33 100.13 8301.50 刚察 52833 36.92 98.48 7950.00 乌兰 52836 36.30 98.10 3191.10 都兰 52856 36.27 100.62 2835.00 恰卜恰 52866 36.72 101.75 2295.20 西宁 52868 36.03 101.43 2237.10 贵州 52908 35.22 93.08 4612.20 伍道梁 52943 35.58 99.98 3323.20 兴海 52955 35.58 100.75 8120.00 贵南 52974 35.52 102.02 2491.40 同仁 56004 34.22 92.43 4533.10 托托河 56018 32.90 95.30 4066.40 杂多 56021 34.13 95.78 4175.00 曲麻莱 56029 33.02 97.02 3681.20 玉树 56033 34.92 98.22 4272.30 玛多 56034 33.80 97.13 4415.40 清水河 56038 32.98 98.10 9200.00 石渠 56043 34.47 100.25 3719.00 果洛 56046 33.75 99.65 3967.50 达日 56065 34.73 101.60 8500.00 河南 56067 33.43 101.48 3628.50 久治 56074 34.00 102.08 3471.40 玛曲 56080 35.00 102.90 2910.00 合作 56106 31.88 93.78 4022.80 索县 56116 31.42 95.60 3873.10 丁青 56125 32.20 96.48 3643.70 囊谦 56128 31.22 96.60 3810.00 类乌齐 56137 31.15 97.17 3306.00 昌都 56151 32.93 100.75 8530.00 班玛 56152 32.28 100.33 8893.90 色达
国家气象信息中心 数据应用服务室
该数据集为收集到的资源三号02星的遥感影像。资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。将进一步加强国产卫星影像在国土测绘、资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通等领域的服务保障能力。文件列表: ZY302_PMS_E98.8_N37.4_20170707_L1A0000156704 ZY302_PMS_E100.4_N37.0_20171127_L1A0000217243 ZY302_TMS_E99.5_N37.0_20170717_L1A0000160059 ZY302_TMS_E100.3_N36.6_20171127_L1A0000217279 ZY302_TMS_E100.4_N37.0_20170529_L1A0000139947 文件夹命名规则:卫星名称_传感器名称_中心经度_中心纬度_获取时间_L1****
中国资源卫星应用中心
该数据集是中国科学院西北高原生物研究所调查的三江源国家公园植物采集布位点信息。该数据集时间范围是2008年至2017年,调查范围是三江源国家公园,调查内容包括采集日期、编号、科、属、种、调查日期、采集地点、采集人、经度、纬度、海拔、生境、鉴定人等信息。对国家公园的三个园区分别进行了调查,在长江源园区调查了24个科56个属的88个种的植被,总共116条记录;在黄河源园区调查了26个科64个属110个种的植被,总共159条记录;在澜沧江源园区调查了12个科22个属30个种的植被,总共33条记录。
高庆波
该数据集为高分一号卫星遥感数据,包括2017-8-13、2017-10-5 两景PMS1相机的数据,2017-5-27日一景PMS2相机的数据,2018-9-23日WFV2和WFV3相机影像各一景。文件列表: GF1_PMS1_E99.1_N37.2_20170813_L1A0002539236 GF1_PMS1_E101.2_N36.4_20171005_L1A0002653985 GF1_PMS2_E100.3_N37.7_20170527_L1A0002384098 GF1_WFV2_E98.4_N37.6_20180927_L1A0003481737 GF1_WFV3_E100.4_N37.3_20180927_L1A0003481706
周圣明
净初级生产力(NPP)数据基于CASA模型生产,数据内容为三江源地区2010-2015年250米分辨率逐月NPP数据集。净初级生产力定义:绿色植物单位面积、单位时间内所累积的有机物数量。 单位:0.01gC/m²/月。Monthly和Yearly NPP分别表示逐月和逐年NPP。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
无论从全球尺度亦或是局地尺度而言,土壤数据极其重要,而由于缺乏可靠的土壤数据,土地退化评估、环境影响研究和可持续的土地管理干预措施受到了极大的瓶颈阻碍。鉴于土壤信息数据在全世界的迫切需要,特别是在气候变化公约的背景下,国际应用系统分析研究所(IIASA)及联合国粮农组织(FAO)和京都协议对土壤碳测量和联合国粮农组织/国际全球农业生态评价研究(GAEZ v3.0)共同倡导下建立了新一代世界土壤数据库(Harmonized World Soil Database version 1.2 )(HWSD V1.2)。 青藏高原2010年土壤质地数据集裁切自世界土壤库。数据格式:grid栅格格式,投影为WGS84。采用的土壤分类系统主要为FAO-90。核心土壤制度单元唯一验证标识符: MU_GLOBAL-HWSD数据库土壤制图单元标示符,连接了GIS图层。 MU_SOURCE1 和 MU_SOURCE2- 源数据库制图单元标识符 SEQ-土壤制图单元组成中的土壤单元序列; 土壤分类系统利用FAO-7分类系统或 FAO-90分类系统(SU_SYM74 resp. SU_SYM90)或FAO-85(SU_SYM85). 土壤属性表主要字段包括: ID(数据库ID) MU_GLOBAL(土壤单元标识符)(全球) SU_SYMBOL 土壤制图单元 SU_SYM74(FAO74分类); SU_SYM85(FAO85分类); SU_SYM90(FAO90土壤分类系统中土壤名称); SU_CODE 土壤制图单元代码 SU_CODE74 土壤单元名称 SU_CODE85 土壤单元名称 SU_CODE90 土壤单元名称 DRAINAGE(19.5); REF_DEPTH(土壤参考深度); AWC_CLASS(19.5); AWC_CLASS(土壤有效水含量); PHASE1: Real (土壤相位); PHASE2: String (土壤相位); ROOTS: String (到土壤底部存在障碍的深度分类); SWR: String (土壤含水量特征); ADD_PROP: Real (土壤单元中与农业用途有关的特定土壤类型); T_TEXTURE(顶层土壤质地); T_GRAVEL: Real (顶层碎石体积百分比);(单位:%vol.) T_SAND: Real (顶层沙含量); (单位:% wt.) T_SILT: Real (表层粉沙粒含量); (单位:% wt.) T_CLAY: Real (顶层粘土含量); (单位:% wt.) T_USDA_TEX: Real (顶层USDA土壤质地分类); (单位:name) T_REF_BULK: Real (顶层土壤容重); (单位:kg/dm3.) T_OC: Real (顶层有机碳含量); (单位:% weight) T_PH_H2O: Real (顶层酸碱度) (单位:-log(H+)) T_CEC_CLAY: Real (顶层粘性层土壤的阳离子交换能力); (单位:cmol/kg) T_CEC_SOIL: Real (顶层土壤的阳离子交换能力) (单位:cmol/kg) T_BS: Real (顶层基本饱和度); (单位:%) T_TEB: Real (顶层交换性盐基);(单位:cmol/kg) T_CACO3: Real (顶层碳酸盐或石灰含量) (单位:% weight) T_CASO4: Real (顶层硫酸盐含量);(单位:% weight) T_ESP: Real (顶层可交换钠盐);(单位:%) T_ECE: Real (顶层电导率)。 (单位:dS/m) S_GRAVEL: Real (底层碎石体积百分比);(单位:%vol.) S_SAND: Real (底层沙含量); (单位:% wt.) S_SILT: Real (底层淤泥含量); (单位:% wt.) S_CLAY: Real (底层粘土含量); (单位:% wt.) S_USDA_TEX: Real (底层USDA土壤质地分类); (单位:name) S_REF_BULK: Real (底层土壤容重); (单位:kg/dm3.) S_OC: Real (底层有机碳含量); (单位:% weight) S_PH_H2O: Real (底层酸碱度) (单位:-log(H+)) S_CEC_CLAY: Real (底层粘性层土壤的阳离子交换能力); (单位:cmol/kg) S_CEC_SOIL: Real (底层土壤的阳离子交换能力) (单位:cmol/kg) S_BS: Real (底层基本饱和度); (单位:%) S_TEB: Real (底层交换性盐基);(单位:cmol/kg) S_CACO3: Real (底层碳酸盐或石灰含量) (单位:% weight) S_CASO4: Real (底层硫酸盐含量);(单位:% weight) S_ESP: Real (底层可交换钠盐);(单位:%) S_ECE: Real (底层电导率)。 (单位:dS/m) 本数据库分两层,其中以顶层(T)土壤厚度为(0-30cm),底层(S)土壤厚度为(30-100cm)。 其他属性值请参考说明HWSD1.2_documentation文档.pdf,The Harmonized World Soil Database (HWSD V1.2) Viewer-中文说明及HWSD.mdb。
Food and Agriculture Organization of the United Nations(FAO)
基于MODIS 2000年至2018年生长季平均的NDVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。对三江源国家公园的三个园区都进行了计算(CJYYQ:长江源园区;HHYYQ:黄河源园区;LCJYYQ:澜沧江源园区)。CJYYQ_NDVI_trend_2000_2018_ok.tif:长江源园区NDVI变化趋势。CJYYQ_NDVI_trend_2000_2018_ok_significant.tif:长江源园区NDVI变化趋势,剔除了不显著(p>0.05)的区域。CJYYQ_gs_avg_NDVI_2000.tif:长江源园区2000年生长季平均NDVI。单位为NDVI变化每年。
王旭峰
该数据集为收集到的资源三号卫星的遥感影像。资源三号卫星(ZY-3)于2012年1月9日成功发射。该卫星的主要任务是长期、连续、稳定、快速地获取覆盖全国的高分辨率立体影像和多光谱影像,为国土资源调查与监测、防灾减灾、农林水利、生态环境、城市规划与建设、交通、国家重大工程等领域的应用提供服务。文件列表: ZY3_MUX_E99.8_N36.6_20171011_L1A0003817398 ZY3_MUX_E99.9_N37.0_20171011_L1A0003817397 ZY3_MUX_E100.0_N37.4_20171011_L1A0003817396 ZY3_MUX_E100.1_N36.6_20170625_L1A0003738882 ZY3_MUX_E100.8_N36.6_20170710_L1A0003748776 ZY3_MUX_E100.9_N37.0_20170710_L1A0003748775 ZY3_NAD_E99.8_N36.6_20171011_L1A0003817439 ZY3_NAD_E99.9_N37.0_20171011_L1A0003817438 ZY3_NAD_E100.0_N37.4_20171011_L1A0003817437 ZY3_NAD_E100.1_N36.6_20170625_L1A0003746917 ZY3_NAD_E100.8_N36.6_20170710_L1A0003748580 ZY3_NAD_E100.9_N37.0_20170710_L1A0003748579
中国资源卫星应用中心
该数据集是中国科学院西北高原生物研究所在三江源国家公园野生动物多样性本底调查过程获得的野生动物分布位点信息。该数据集时间范围是2017年,调查范围是三江源国家公园,调查物种包括藏野驴(Equus kiang)、狼(Canis lupus)、赤狐(Vulpes vulpes)、马鹿(Cervus elaphus)、雀鹰(Accipiter nisus)、红腹红尾鸲(Phoenicurus erythrogastrus)、豹猫(Prionailurus bengalensis)、大鵟(Buteo hemilasius)、藏原羚(Procapra picticaudata)、藏雪鸡(Tetraogallus tibetanus)、高原山鹑(Perdix hodgsoniae)、猎隼(Falco cherrug)等多种珍稀野生动物。
张同作
草地地上生物量采用的方法为分区分类型模型,数据年份为2000、2010、2015年,为8月上旬的地上植被鲜重。地上生物量定义为单位面积内地面以上实存生活的植被有机物质总量。单位:克/平方米(g/m²)。该数据产品是中国科学院遥感与数字地球研究所基于MODIS的植被指数采用统计模型计算得到。空间分辨率为250m×250m。该数据集是三江源国家公园植被监测的重要数据源。 投影信息: Albers 等积圆锥投影 中央经线:105度 第一割线:25度 第一割线:47度 坐标西偏:4000000 meter
朱伟伟
该数据集包含青藏高原地区各县区1980-2015年农业经济相关数据,具体涵盖农村总户数、总人口、农业人口、农村劳动力、耕地面积、水田面积、旱地面积、农机动力、农用汽车、机耕面积、灌溉面积、化肥施用量、用电量、农业收入、农林牧渔业总产值、牛、猪、羊、肉、禽、鱼等的产量、粮食播种面积、粮棉油的及各类作物的产量、特色农产品和畜产品产量等相关数据。数据来源于青藏高原所含各省统计年鉴。数据质量优良,可用于青藏高原社会经济和农业发展分析。
吕昌河
本数据集包含三江源国家公园内各个县的社区情况统计表,具体内容包括: 表一包括:行政村个数、自然村个数、户数、人口数、农村劳动力人数、一二三产业总值、人均纯收入、家畜数量; 表二包括:人口民族组成(各名族人口数)、教育的相关统计(中小学个数及学生人数)、卫生相关的统计(医院、卫生室以及医护人员个数)、人口受教育水平的统计(不同教育程度的人数); 表三包括:草地(草地总面积、可利用草场面积、中度以上退化面积、草原植被覆盖度)、林地(总面积、乔木林面积、灌木林面积和疏林地面积)、水域(总面积、河流面积、湖泊面积、冰川面积、雪山面积和湿地面积)。 总共设计四个县:玛多、曲麻莱、杂多和治多县。该数据来自政府部门的统计数据。
国家统计局
本数据集为青藏高原黄河源区2015年逐像素年内最大植被覆盖度空间分布图,该区域的面积约为4.4万平方公里。此数据是基于2015年MODIS(空间分辨率250米) 和Landsat-8 OLI(空间分辨率30米)植被生长季(5月初-9月末)的时间序列影像,并利用最大值合成方法、像元二分模型和时间插值等方式获得。植被覆盖度空间分布图的空间分辨率为30米,采用WGS 1984 UTM 投影,数据格式为grid格式。
王广军
本数据集为扎陵湖-鄂陵湖附近黄河源区沼泽空间分布图,面积约2.1万平方公里。数据集由Landsat 8 影像通过专家决策树分类,并经人工目视解译修正获得。影像的空间分辨率为30 m,采用WGS 1984 UTM 投影坐标系,数据格式为grid格式。影像区分为5种地类,地类1为“水体”,地类2为“高盖度植被”,地类3为“裸地”,地类4为“低盖度植被”,地类5为“沼泽”,其中低盖度植被及高盖度植被通过植被覆盖度进行区分,阈值选取0.1至0.4为低盖度植被,0.4至1为高盖度植被。
王广军
青藏高原在中国境内的部分涉及西藏、青海、新疆、云南、甘肃、四川六个省份,包括了西藏、青海全境,以及新疆、云南、甘肃、四川的部分地区。水土资源匹配研究旨在揭示一定区域尺度水资源和土地资源时空分配的均衡状况与丰缺程度。区域水资源与耕地资源分配的一致性水平越高,其匹配程度就越高,农业生产的基础条件就越优越。采用单位耕地面积的广义农业水资源量测度方法来反映研究区农业生产的水资源供给量和耕地资源空间适宜性的量比关系。 数据集的Excel文件中包含青藏高原在中国境内的市级行政区2008-2015年的广义农业水土资源匹配系数数据,矢量数据为2004年青藏高原在中国境内的市级行政区矢量边界数据,栅格数据像元值即所在地区当年广义农业水土资源匹配系数。
董前进, 董凌霄
本数据包含黄河源园区、澜沧江源园区、长江源园区内的乡界矢量数据。本数据根据青海省测绘地理信息局发布的青海省电子地图册中三江源国家公园所在县的电子地图数字化得到。数据为ARCGIS的shp格式,属性数据中主要包含三个属性,乡镇名称:各个乡镇的名字(如:花石峡镇);PAC:是行政区划代码(如:513230);NAME:是属县的名称(如玛多县)。数据采用2000国家大地坐标系和1985国家高程基准。该数据是三江源国家公园重要的基础地理数据,为该区域的制图、调查提供基本信息。
青海省基础地理信息中心
ASTER Global Digital Elevation Model (ASTER GDEM)是美国航空航天局 (NASA)和日本经济产业省(METI)联合发布的全球数字高程数据产品,该DEM数据是根据NASA新一代对地观测卫星TERRA的观测结果完成,是由ASTER(Advanced Space borne Thermal Emission and Reflection Radio meter)传感器搜集的130万个立体像对数据制作,其覆盖范围超过了地球99%陆地表面。本数据下载自ASTER GDEM数据分发网站,为了便于用户使用数据,在分幅ASTER GDEM数据的基础上,我们使用erdas软件进行拼接制备青藏高原ASTER GDEM镶嵌图。 ASTER GDEM发布了两个版本,第一个版本于2009年6月发布,第二个版本于2011年10月发布,本数据集为青藏高原地区第二版本的ASTER GDEM数据集。 本数据集共包括三个数据文件: ASTER_GDEM_TILES ASTERGDEM_MOSAIC_DEM ASTERGDEM_MOSAIC_NUM 青藏高原地区ASTER GDEM数据,精度30米,原始数据为tif格式,镶嵌数据使用img格式存储。 本数据集原始数据下载于ASTERGDEM网站,完全保留了数据的原貌,ASTER GDEM在分发时被分割为若干1×1度的数据块,分发格式为zip压缩格式,每个压缩包包括两个文件,文件命名格式如下: ASTGTM_NxxEyyy_dem.tif ASTGTM_NxxEyyy_num.tif 其中xx为起始纬度,yyy为起始经度。_dem.tif为dem数据文件,_num.tif为数据质量文件。 ASTER GDEM TILES:原始数据保留数据原貌,未进行处理 ASTERGDEM_MOSAIC_DEM:使用erdas软件对dem.tif数据进行镶嵌,参数设置使用默认值 ASRERGDEM_MOSAIC_NUM:使用erdas软件对num.tif数据进行镶嵌,参数设置使用默认值 原始数据保留数据原貌,精度同ASTERGDEM数据分发网站的数据精度,该数据的水平精度30米,高程精度为20米。镶嵌数据使用erdas制作,参数使用默认值。
METI, NASA
青藏高原地区属于高原山地气候,降水量及其季节分配与降水形式变化一直是全球气候变化研究的热点之一。数据包含青藏高原地区的降水数据,空间分辨率为1km*1km,时间分辨率为月、年,时间覆盖范围为2000年、2005年、2010年、2015年。数据通过对国家气象科学信息中心气象数据进行Kring插值得到。数据可用于分析青藏高原的降水的时空分布情况,此外数据还可用于分析青藏高原的降水随时间变化的规律,对青藏高原的生态环境研究有重要意义。
方华军
数据包含青藏高原地区的土壤有机质数据,空间分辨率为1km*1km,时间覆盖范围为1979-1985年。数据来源是基于第二次土壤普查数据生成的土壤碳含量。土壤有机质主要来源于植物、动物及微生物残体,其中高等植物为主要来源。原始土壤中最早出现在母质中的有机体是微生物。随着生物的进化和成土过程的发展,动物、植物残体及其分泌物就成为土壤有机质的基本来源。数据对于分析青藏高原的生态环境以及衡量区域土壤特征具有重要意义。
方华军
光合有效辐射吸收系数光合有效辐射分量是重要的生物物理参数,是生态系统功能模型、作物生长模型、净初级生产力模型、大气模型、生物地球化学模型、生态模型等的重要陆地特征参量,是估算植被生物量的理想参数。 数据集包含青藏高原地区的光合有效辐射吸收系数数据,空间分辨率为500m,时间分辨率为8d,时间覆盖范围为2000年、2005年、2010年、2015年。数据来源为NASA网站MODIS LAI/FPAR产品数据MOD15A2H(C6)。 数据对于分析青藏高原的植被生态环境有重要意义。
方华军, Ranga Myneni
数据包含青藏高原地区的夜间灯光数据,空间分辨率为1km*1km,时间分辨率为5年,时间覆盖范围为2000年、2005年、2010年。数据来自Version 4 DMSP-OLS产品,DMSP/OLS传感器独辟蹊径,采集的是夜间灯光、火光等产生的辐射信号。DMSP/OLS传感器在夜间工作,能探测到城市灯光甚至小规模居民地、车流等发出的低强度灯光,并使之区别于黑暗的乡村背景。因此,DMSP/OLS夜间灯光影像可作为人类活动的表征,成为了人类活动监测研究的良好数据源。
方华军
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中净初级生产力数据基于CASA模型的NPP估算方法完成。在某些极端或环境因子迅速变化的情况下,如果完全适应不可能,或者植物还来不及适应新的环境,NPP则受到最紧缺资源的限制,它们可以通过一个转换因子连接起来,这一转换因子可以是一个复杂的模型,也可以是一个简单的比率常数。
刘文俊
青藏高原生态资产评估遥感反演基础数据集包括了青藏高原自2000年起年度的植被覆盖度(FVC),净初级生产力(NPP)和叶面积指数(LAI)等基于遥感反演的生态参数,以供区域尺度生态资产评估研究使用。其中植被覆盖度数据以MODIS NDVI数据为主体,基于像元二分模型,利用多尺度遥感影像,结合植被群落类型、分布特征等高精度遥感参数,发展植被覆盖度模型,用混合像元分解法构建。精度验证估测值与实测值的RMSE为0.21,在样本值0-0.5之间均存在一定的高估情况。
刘文俊
该数据集是NOAA的 Advanced Very High Resolution Radiometer (AVHRR)传感器获取的长时间序列的NDVI数据。该数据集时间范围是1982年至2015年。为了去除NDVI数据中的噪声,进行了最大化合成、多传感器对比纠正。每半个月合成一幅NDVI影像。该数据集在植被长期变化趋势分析中被广泛应用。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率为8km,时间分辨率为2周,时间范围为1982年至2015年。数据转系系数为10000, NDVI = ND/10000。
NOAA
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流和沟渠等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
该数据集是MODIS的植被指数数据(MOD13Q1),将三江源区域进行了提取,以便单独开展三江源地区的研究分析。MOD13Q1是16天合成的植被指数,包含归一化植被指数(NDVI)和增强型植被指数(EVI)。三江源的空间范围覆盖两景MODIS文件(h25v05和h26v05)。数据存储格式为hdf,每个文件中包含12个波段:归一化植被指数(NDVI)、增强型植被指数(EVI)、数据质量(VI Quality)、红波段反射率(red reflectance)、近红外波段反射率(NIR reflectance)、蓝波段反射率(blue reflectance)、中红外波段反射率(MIR reflectance)、观测天顶角(view zenith angle)、太阳天顶角(sun zenith angle)、相对方位角(relative azimuth angle)、合成的时间(composite day of the year)和象元可靠性(pixel reliability). 本数据集数据格式为hdf,空间分辨率250m,时间分辨率是16天,时间范围:2000年2月至2018年10月。
Kamel Didan*, Armando Barreto Munoz, Ramon Solano, Alfredo Huete
本数据来源于全国地理信息资源目录服务系统系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万水系数据,包括水系面(HYDA)、水系线(HYDL)和水系点(HYDP)三个图层。水系面(HYDA)包括湖泊、水库、双线河流等;水系线(HYDL)包括单线河流、沟渠、河流结构线等;水系点(HYDP)包括泉、井等。 HYDA属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 WQL 水质 淡 PERIOD 时令月份 7-9 TYPE 类型 通行 HYDL属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 HYDC 水系名称代码 KJ2103 NAME 名称 黑河 PERIOD 时令月份 7-9 HYDP属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 210101 NAME 名称 不冻泉 TYPE 类型 淡 ANGLE 角度 75 水系数据GB码及其含义: 属性项 代码 描述 GB 210101 地面河流 210200 时令河 210300 干涸河 230101 湖泊 230102 池塘 230200 时令湖 230300 干涸湖 240101 建成水库 240102 建成中水库
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万交通数据,包括公路(LRDL)和铁路(LRRL)两个图层。公路(LRDL)包括国道、省道、县道、乡道和其它公路等;铁路(LRRL)包括标准轨铁路、窄轨铁路、地铁和轻轨等。 公路(LRDL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 420301 RN 道路编号 X828 NAME 道路名称 着晓三叉口-尕拉山顶叉口 RTEG 道路等级 四级 TYPE 道路类型 高架 公路属性项含义: 属性项 代码 描述 GB 420101 国道 420102 建筑中国道 420201 省道 420102 建筑中省道 420301 县道 420302 建筑中县道 420400 乡道 420800 机耕路 440100 简易公路 440200 乡村路 440300 小路 铁路(LRRL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 410101 RN 铁路编号 0907 NAME 铁路名称 青藏铁路 TYPE 铁路类型 高架
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统中1:100万全国基础地理数据库,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2017年。 本数据集为三江源地区1:100万行政边界,包括行政边界面图层(BOUA)和行政边界线图层(BOUL)。 政境界面图层(BOUA)属性项名称及定义: 属性项 描述 填写实例 PAC 行政区划代码 513230 NAME 名称 壤塘县 行政边界线图层(BOUL)属性项名称及定义: 属性项 描述 填写实例 GB 国标分类码 630200 行政边界线图层(BOUL)属性项含义: 属性项 代码 描述 GB 630200 省级界线 GB 640200 地、市、州级行政区界 GB 650201 县级行政区界(已定)
全国地理信息资源目录服务系统
本数据来源于全国地理信息资源目录服务系统,由国家基础地理信息中心于2017年11月份开始免费向公众提供。我们将三江源作为一个整体进行了拼接和裁切,以便于三江源地区研究中的使用。数据现势性为2015年。 本数据集为三江源地区1:25万自然地名数据(AANP),包括交通要素名、纪念地和古迹名、山名、水系名、海洋地域名、自然地域名等。 自然地名数据(AANP)属性项名称及定义: 属性项 描述 填写实例 NAME 名称 拉木赛拉保尼洼 PINYIN 汉语拼音 Lamusailabaoniwa CLASS 地名分类码 HB
全国地理信息资源目录服务系统
该数据集是SPOT卫星上的VEGETATION传感器获取的长时间序列的NDVI数据。该数据集时间范围是1998年5月至2013年。为了去除NDVI数据中的噪声,进行了最大化合成。每10天合成一幅NDVI影像。该数据集是从全球数据集中将三江源部分裁切出来,以便单独开展三江源地区的研究分析。 本数据集数据格式为geotiff,空间分辨率1km,时间分辨率是10天,时间范围:1998年5月至2013年12月。
Image Processing Centre for SPOT-VGT
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件