基于MODIS 2000年至2020年生长季平均的NDVI与EVI(空间分辨率250m),利用Mann-Kendall趋势检测方法,计算了NDVI的变化趋势。MOD13Q1 V6产品提供逐像元的植被指数。一个是归一化差值植被指数(NDVI),又称连续性指数,是由现有的国家海洋和大气管理局高级甚高分辨率辐射计(NOAA-AVHRR)导出的NDVI。第二个植被层是增强植被指数(EVI),该指数将冠层背景变化最小化,并在浓密的植被条件下保持敏感性。EVI还使用蓝色波段去除烟雾和亚像素薄云造成的残留大气污染。MODIS NDVI和EVI产品是由大气校正的双向地表反射率计算而来的。该数据空间分辨率为250m。
王旭峰
该数据集包含了三江源地区1960-2020年间因雪灾而损失的牲畜数量和雪灾发生地点位置数据集。灾害发生地及损失情况来自《中国气象灾害大典》(温克刚, 2005)、《中国西部农业气象灾害》(王建林 et al., 2003)及《中国灾害性天气气候图集》(中国气象局, 2007)等。近些年的数据主要依据雪灾的新闻报道和文献报道数据。数据质量控制中,首先对雪灾的发生地进行了详细订正,其次对其损失数量进行了详细评估,对一些明显夸大报道的雪灾事件进行了剔除和合理纠正,使得数据较为客观和真实,能反映雪灾的具体规模大小。是研究三江源区雪灾的一手资料。
魏彦强
三江源国家公园位于地球“第三极”青藏高原腹地,由长江源园区、黄河源园区、澜沧江源园区组成,总面积为12.31万平方公里。三江源国家公园遥感积雪结束日期数据产品是基于中国2000-2020年逐日无云500 m积雪面积产品,依据积雪初日为一个水文年中最后一次出现连续5天是雪的终日对应日期计算得到,其中水文年为每年的9月1日到次年的8月31日。数据格式是TIFF,数据投影为WGS84投影,分辨率是500m。积雪日数取值范围为1~365天或者366天,无效值为0,其中1表示9月1日,依次类推具体日期。
郝晓华
三江源国家公园位于地球“第三极”青藏高原腹地,由长江源园区、黄河源园区、澜沧江源园区组成,总面积为12.31万平方公里。三江源国家公园遥感积雪开始日期数据产品是基于中国2000-2020年逐日无云500 m积雪面积产品,依据积雪初日为一个水文年中第一次出现连续5天是雪的首日对应日期计算得到,其中水文年为每年的9月1日到次年的8月31日。数据格式是TIFF,数据投影为WGS84投影,分辨率是500m。积雪日数取值范围为1~365天或者366天,无效值为0,其中1表示9月1日,依次类推具体日期。
郝晓华
三江源国家公园位于地球“第三极”青藏高原腹地,由长江源园区、黄河源园区、澜沧江源园区组成,总面积为12.31万平方公里。三江源国家公园遥感积雪覆盖天数数据产品是基于中国2000-2020年逐日无云500 m积雪面积产品,依据积雪日数为一个水文年上观测到积雪的次数之和计算得到,其中水文年为每年的9月1日到次年的8月31日。积雪日数取值范围为0~365天或者366天,无效值为-1。数据格式是TIFF,数据投影为WGS84投影,分辨率是500m。
郝晓华
三江源国家公园遥感雪粒径数据产品(2000年-2020年),雪粒径数据产品是基于MOD09GA数据,利用由AART模型发展的SGSP算法反演得到的。雪粒径值表示积雪表层(5cm左右)的雪粒有效半径(单位: μm),数据格式是TIFF,数据投影为WGS84投影。2000-11-01至2019-04-01积雪期(每年11月1日到次年4月1日)。雪粒径取值范围为50-2000μm,并用MOD10A1识别的积雪的FSC(0-100)进行了掩膜,其他区域取值都为0。
郝晓华
三江源国家公园遥感蒸散发数据集(2000年-2020年)使用了MOD16A2遥感数据集,该数据集的空间分辨率为1km,时间分辨率为8天。 MOD16A2第6版蒸发/热量通量产品是一个以500米像素分辨率制作的8天综合产品。用于MOD16数据产品收集的算法是基于Penman-Monteith方程的逻辑,其中包括每日的气象再分析数据的输入,以及MODIS遥感数据产品,如植被属性动态、反照率和土地覆盖。
王旭峰
该数据集包含了基于ASTER GDEM v3提取的三江源地区数字高程数据,空间分辨率为30m。数字高程模型(Digital Elevation Model,简称DEM),利用有序、有限的位置高程数值矩阵实现对地球表面高程状态的数字化模拟,是建立数字地形模型(Digital Terrain Model,简称DTM)的基础。 NASA(美国国家航空航天局)和METI(日本经济产业省)于2009年6月28日共同发布了ASTER GDEM v1数据产品,并宣布向全球用户免费开放下载使用。2011年10月中旬,NASA和METI共同发布了ASTER GDEM v2版本,在v1的基础之上,新增了26万光学立体像对数据,主要用于改善覆盖范围、提升数据分辨率、提升水体掩模处理精确度。2019年8月5日,NASA和METI共同发布了ASTER GDEM v3版本,在v2的基础之上,新增了36万光学立体像对数据,主要用于减少高程值空白区域、水域数值异常。 本DEM数据是基于ASTER GDEM v3,利用三江源地区边界范围进行拼接处理和修正,空间分辨率为1弧度秒(约30 米),格式为GeoTIFF,参考大地水准面为WGS84/EGM96,特殊DN值:无效像素值为-9999,海平面数据为0。精度:垂直精度20米,水平精度30米。
魏彦强
该数据集包含了三江源地区1km空间分辨率的理论载畜量数据集。该数据集在2015年到2021年收集的地面样点数据基础上,与基于MODIS遥感影像提取的NDVI数据进行建模,反演得到三江源地区地上草地生物量数据,利用羊单位(SU)换算得到公里网格2020年理论载畜量(羊单位,SU)数据集。空间分辨率为1km。在算法中,首先结合地面样方和对应的同时相MODIS植被指数,建立回归关系模型,此外,集成了去云算法、基于地面验证点建立了基于支持向量机分类器的优化算法,最终得到分类效果较好的草地分类产品作为掩膜,最终得到公里网格理论载畜量(羊单位,SU)。该数据集具有很好的高空间分辨率和高时效性等特点。
魏彦强
山地冰川是中国西部及其周边地区重要的淡水资源。由于冰川融水在流域尺度为生态和社会经济用水提供补给,因此,确定冰川作用(补给)流域是开展冰川水资源供给功能和服务研究的基础。基于Randolph Glacier Inventory 6.0、中国历次冰川编目、中国三级流域边界数据(中国科学院资源与环境科学数据中心提供)和全球流域边界数据HydroBASINS(www.hydrosheds.org),通过将冰川分布数据与流域边界数据进行相交分析,生成了20世纪50年代至21世纪20年代(至今)(1)中国两级冰川作用流域边界、(2)中国冰川作用的国际河流流域边界以及(3)亚洲高山区冰川作用流域边界数据。该数据兼顾了中国和全球常用流域边界,并将二者很好匹配,以期为中国及其周边地区冰川水资源研究提供基础数据。
苏勃
格拉丹东地区是青藏高原重要的、典型的大江大湖源区。本数据集提供了不同时间尺度,不同分辨率的,覆盖长江和色林错源区冰川的DEM,用以计算源区冰川表面高程的季节变化和年代际变化。数据集包括了2016-2017年7景不同月份5米分辨率的TanDEM-X数据,可用以冰川表面高程的季节性变化计算;包括了1景1976年30米分辨率的KH-9 DEM,5景2011年30米分辨率的TanDEM-X,1景2014年和3景2017年30米分辨率的TanDEM-X,可用以计算1976-2000,2000-2011,2011-2017年期间冰川表面高程变化。同时采用Landsat ETM数据勾画,并按照RGI6.0分割了1976年的冰川轮廓数据;右图显示了该数据集的空间和时间覆盖信息,底图为正射校正后KH-9影像。
陈文锋
该数据集为可可西里地区冰川分布状况记录,包含了可可西里地区各山地现代冰川分布状况,可可西里地区各流域现代冰川分布, 可可西里地区不同山地高度段内现代冰川分布状况三个表格。地处青藏高原腹地的可可西里地区,平均海拔在5000m以上,气候严寒。根据中国冰川目录和作者在1/10万地形图上重新统计,全区发育现代冰川437条,覆盖面积达1552.39平方千米,冰储量为162.8349立方千米,成为本区众多河流湖泊水体的重要补给源泉。通过该数据集可以更加深入了解该区冰川分布规律等。
李炳元
青藏高原是世界上最大的高、低纬度多年冻土带,近几十年来,其多年冻土带迅速退化,其最显著的特征之一就是热融湖塘的形成。这样的湖泊由于能够调节碳循环、水和能量通量而引起了极大的关注。然而,这一地区的热融湖塘的分布在很大程度上仍不为人所知,这阻碍了我们对多年冻土的响应及其碳反馈对气候变化的理解。本数据集基于200余景Sentinel-2A影像,结合ArcGIS、NDWI和Google Earth Engine平台,通过GEE自动提取和人工目视解译的方法提提取青藏高原多年冻土区内热融湖塘边界。在2018年热融湖塘数据集中,青藏高原多年冻土区共有121,758个热融湖塘,面积为0.00035-0.5 km²,总面积为1730 km² 。本次热融湖塘编目数据集为青藏高原水资源评价、多年冻土退化评价、热喀斯特研究提供了基础数据。
陈旭, 牟翠翠, 贾麟, 李志龙, 范成彦, 母梅, 彭小清, 吴晓东
全面了解青藏高原多年冻土发生的变化,包括年平均地温(MAGT)和活动层厚度(ALT)的变化,对气候变化引起的多年冻土变化工程的实施具有重要意义。 青藏高原多年冻土活动层厚度和范围模拟数据集,参考2000-2015年CMFD再分析数据及中国气象局气象观测资料、1公里数字高程模型、地理空间环境预测因子、结合冰川和冰湖、钻孔数据等,利用统计和机器学习(ML)方法模拟了青藏高原多年冻土层磁通量和磁通量的当前和未来变化,得到RCP2.6、RCP4.5和RCP8.5三种不同浓度情景下2000-2015、2061-2080年平均地温(MAGT)和活动层厚度(ALT)范围数据,分辨率为0.1*0.1度。 模拟结果表明,利用统计和ML相结合的方法模拟冻土热状态所需的参数和输入变量较少,可以有效地了解青藏高原冻土对气候变化的响应。
倪杰, 吴通华
基于“暴露性-敏感性-适应性”的脆弱性评估框架,构建了青藏高原农牧区脆弱性评估指标体系。指标体系数据包括气象数据、土壤数据、植被数据、地形数据和社会经济数据5大类,共计12个数据指标,主要来原于国家青藏高原科学数据中心和中国科学院资源与环境科学数据中心。基于6位相关领域专家的问卷调查,利用层次分析法确定指标权重,最终形成涉及青藏高原农牧区生态暴露性、敏感性、适应性和生态脆弱性4个1公里网格数据。数据可为青藏高原生态脆弱区识别提供参考。
战金艳, 滕艳敏, 刘世梁
本数据集包含青藏高原地区近50年(1950-2002)的自然灾害统计信息,包括干旱、雪灾、霜灾、冰雹、洪涝、风灾、雷电灾害、寒潮和强降温、低温冻害、大风沙尘暴、虫灾、鼠害等气象灾害产生的时间地点及所造成的损失及影响。 青海和西藏是青藏高原的主体,青藏高原是我国生物物种形成、演化的中心之一,也是国际科技界瞩目的研究气候和生态环境变化的敏感区和脆弱带,其复杂的地形条件,高峻的海拔高度和严酷的气候条件决定了生态环境十分脆弱,,成为我国自然灾害发生最频繁的地区。 数据摘录自《中国气象灾害大典·青海卷》、《中国气象灾害大典·西藏卷》,人工录入总结校对。
统计局
该数据集是通过MODIS各通道反射率和SIF观测数据建立神经网络模型,从而得到较高时空分辨率的SIF数据,常作为初级生产力的参考。数据来源于Zhang et al. (2018),具体算法参见文章。源数据范围为全球,本数据集选取了青藏高原区域。本数据将原本的4天时间尺度数据集成至月数据,加工方法为取月最大值,尽可能达到去除噪声的效果。该数据集常被用作评定植被绿度和初级生产力的时间和空间格局,具有实际意义和理论价值。
张尧
本数据集为青海可可西里地区湖泊要素数据集,详细记录了可可西里地区主要湖泊特征和水质采样分析数据。青海可可西里地区湖泊众多,是青藏高原湖泊集中分布区之一。该区域湖泊发育的基本特点是:数量大,类型多,结构复杂。据初步统计,面积大于1km2的湖泊有107个,总面积为3825km2,湖泊度约为0.05。该数据集原始数据数字化自《青海可可西里地区自然环境》一书,具体包括了35个主要湖泊特征数据和60个湖泊水体化学分析数据。本数据集对于研究青海可可西里地区提供了基础数据,对于相关领域的研究具有参考价值。
李炳元
本数据集为青海可可西里地区气候要素数据集,涵盖十四个观测站点数据,详细记录了1990年的各项气候观测数据。青海可可西里地区地势高亢,平均海拔在5000m以上,气候寒冷,空气稀薄,自然环境恶劣,广大地区至今仍为无人区,有“人类禁区”之称。该区由于受到人类活动的干扰较小,大部分地区仍保持着原始的自然状态,其特殊的地理位置、地壳结构和自然环境以及特有的生物区系组成等,一直为国内外科学界所注目。该数据集原始数据数字化自《青海可可西里自然环境》一书,气候观测数据具体包括太阳辐射、温度、降水、气压、风速等。本数据集对于研究青海可可西里地区提供了基础数据,对于相关领域的研究具有参考价值。
李炳元
本数据集来源于论文:Ding, J., Wang, T., Piao, S., Smith, P., Zhang, G., Yan, Z., Ren, S., Liu, D., Wang, S., Chen, S., Dai, F., He, J., Li, Y., Liu, Y., Mao, J., Arain, A., Tian, H., Shi, X., Yang, Y., Zeng, N., & Zhao, L. (2019). The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region. Nature Communications, 10(1), 4195. doi:10.1038/s41467-019-12214-5. 数据中包含新评估的青藏高原3m深度土壤有机碳库格点数据及相应的R代码,格点数据空间分辨率为0.1°。 以往对青藏高原土壤碳库的评估多以现代气候、植被等特性为根据,未考虑古气候条件、土层厚度等因素的影响。本研究中,研究人员综合考虑了古气候和现代气候条件、土层厚度和土壤理化属性、植被和地形等因素,通过机器学习算法重新评估了青藏高原3m深度土壤碳库。新评估得到的青藏高原土壤碳储量为36.6 Pg C (38.9-34.2 Pg C),约为陆地生态系统模型模拟均值的3倍(11.5±4.2 Pg C)。同时,研究指出,模型中缺乏对古气候影响的考虑是导致模拟偏差的重要原因。 数据中包含以下字段: Longitude (°E) Latitude (°N) SOCD (0-30cm) (kg C m-2) SOCD (0-300cm) (kg C m-2) GridArea (k㎡) 3mCstcok (10^6 kg C)
丁金枝, 汪涛
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件