中国科学院(CAS)气候系统模式FGOALS-f3-L于近期完成了第六次国际耦合模式比较计划(CMIP6)试验中的全球季风比较计划(GMMIP)的Tier-1和Tier-3试验并发布了相应数据。本文是FGOALS-f3-L参加GMMIP试验的数据描述文章。在GMMIP Tier-1试验中,基于观测的海温和海冰强迫,FGOALS-f3-L模式完成了三组不同初始场的历史模拟试验。在GMMIP Tier-3试验中,FGOALS-f3-L模式完成了5组地形和热力扰动的敏感性试验。具体来说,包括四组地形敏感性试验,分别去除了青藏高原、东非和阿拉伯半岛高原、北美马德雷山脉和南美的安第斯山脉,以及一组热力敏感性试验,去除了青藏-伊朗高原及邻近区域500m以上地形的地表感热加热。这组数据集将贡献于CMIP6用于评估海温对全球季风环流和降水的长期以及短期趋势的影响,以及更好的理解大地形在影响全球季风中的作用。
何编
北极放大效应是 20 世纪最显著的气候变化现象。为理解北极放大效应对全球气候变化的响应及影响,科学家们开展了 CMIP6 子计划北极放大效应比较计划(PAMIP)。 中国科学院大气物理研究所的气候系统模式 FGOALS-f3-L 参加了上述计划并完成和提交了 8 组大样本集合试验。这些试验基于陆气耦合模式,分别考虑了不同下垫面强迫的组合在工业革命前情景、 现代气候情景和未来气候变化情景下,全球海温和海冰变化对大气环流及全球气候系统的影响。所有的试验外强迫固定在 2000 年,采用 100 个集合,从 2000 年 4 月 1 日开始积分到 2001 年 6 月 30 日。以上数据为进一步理解北极放大效应现象及其影响提供了新的科学数据和科学依据。
何编
中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室研发的全球气候系统模式FGOALS-f3-H/L 参加CMIP6 高分辨率模式比较计划数据集。CAS FGOALS-f3-H的水平分辨率为0.25°,CAS FGOALS-f3-L的水平分辨率为1°,由标准的外部条件强迫,对1950-2014年和2015-2050年时间段进行了2套模拟,实验ID分别为 "highresSST-present "和 "highresSST-future"。模式输出包含多种时间尺度,包括:小时平均值、三小时平均值、六小时瞬时值、日平均值和月平均值数据集。
包庆
青藏高原分区域动力降尺度(TPSDD)数据集是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-空气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。该数据集的时间跨度为1981年至2020年,时间分辨率为2小时,空间分辨率为10公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、动量通量、显热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 邹捍, 李鹏, 周立波
青藏高原分区域动力降尺度数据集-标准年(TPSDD-Standard)是一个高空间-时间分辨率的网格数据集,用于整个青藏高原的陆地-大气交换过程和低层大气结构研究,并考虑到了青藏高原各分区域的气候特征。根据青藏高原上空500 hPa多年平均位势高度场,选取与该位势高度场空间相关系数最大的年份(2014年)作为标准年,它能粗略反映青藏高原大气多年平均状况。该数据时间分辨率为1小时,空间分辨率为5公里。数据集的气象要素包括近地表土地-空气交换参数,如向下/向上的长波/短波辐射通量、感热通量、潜热通量等。此外,还包括从地表到对流层顶的3维风、温度、湿度和气压的垂直分布。通过比较观测数据和最新的ERA5再分析数据,对该数据集进行了独立评估。结果表明了该数据集的准确性和优越性,为未来的气候变化研究提供了巨大的潜力。
李斐, 马舒坡, 朱金焕, 周立波, 李鹏, 邹捍
风速数据被广泛用于科学、管理和政策领域,在评估可再生能源潜力、解决风灾、研究生物现象和探索气候变化等方面发挥着重要作用。但现有的风速产品存在很大的局限性:气象观测数据在空间和时间上存在不连续性,再分析产品和气候模型模拟虽然实现了数据的连续性,但大多未能重现观测到的风速趋势。此外,风速数据的高变异性及站点分布的不均匀和稀缺性,使得传统的统计插值方法,如克里金或主成分分析,在重构全球风速上表现不佳。因而,风速数据成为风速研究中“卡脖子”的难题。 在此,研究团队基于部分卷积神经网络算法(the partial convolutional neural network),融合了34个气候模式数据和气象站点观测数据HadISD(由Met Office Hadley Centre提供),重构了1973-2021年间共588个月的全球10米近地风速,空间分辨率为1.25°×2.5°(纬度×经度),该数据集包含了观测到的风速趋势信息。详细的重构过程请见参考文献中的方法部分。
周俐宏, 曾振中, 江鑫
日照时数重建可以较好的反应地表太阳辐射的长期变化趋势,但只是站点数据。因此要得到高分辨率网格点数据,同时保证其在长期变化方面上的精度,需要融合多种地表太阳辐射相关数据。利用地理加权回归(GWR)方法,融合了MODIS 0.1°分辨率云量和气溶胶反演以及地面日照时数重建地表太阳辐射站点数据。通过增加相邻点数方案的组合判断,有效地提高了地理加权回归降尺度结果的准确性,得到的中国区域多年平均值、长期趋势与观测和卫星遥感反演结果基本一致。采用地理加权回归等方法,生成0.1度网格的地表风速和相对湿度数据;利用改进的彭曼公式计算了陆表蒸散数据。
王开存
青藏高原(TP)在春季和夏季作为一个巨大的高架式地表和大气热源,对区域和全球气候和气候具有重要影响。为了探讨TP的热强迫效应,制备了青藏高原感热异常的全球模拟 敏感性试验数据集。 本数据包含三组敏感性试验:(1)全耦合模式CESM1.2.0中春季3-5月高原感热偏强cgcm_lar_mon_3-12-2.nc和高原感热偏弱cgcm_sma_mon_3-12-2.nc的敏感性试验;(2)单独大气环流模式CAM4.0中春季3-5月高原感热偏强cam_lar_mon3-8.nc和高原感热偏弱cam_sma_mon3-8.nc的敏感性试验。 包括:三维风、位势高度、气温、地表温度、比湿、感热通量、潜热通量、降水等常规变量 空间范围:全球模拟结果
段安民
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
采用WRF4.1.1模式制备的青藏高原高分辨率大气-水文模拟数据集,格点数为191*355,空间分辨率9km,覆盖范围如图1所示,时间分辨率为3h,模拟时采用的主要参数化方案包括:Thompson微物理方案、RRTM长波辐射方案、Dudhia短波辐射方案、MYJ边界层方案、Noah陆面过程方案。数据的时间跨度为2000-2010年,变量包括:降水(Rain),地面2m高度的温度(T2)和湿度(Q2),地表温度(TSK)、地面气压(PSFC)、地面上10m风场的纬向分量(U10)、地面上10m风场的经向分量(V10)。地表向下的长波通量(GLW)、地表向下短波通量(SWDOWN)、地表热通量(GRDFLX)、感热通量(HFX)、潜热通量(LH)、地表径流(SFROFF)、地下径流(UDROFF)等。该数据可有效支撑青藏高原地区区域气候特征及气候变化研究。
孟宪红, 马媛媛
该数据集包含了2021年1月1日至2021年10月9日青海湖流域地表过程综合观测网高寒草甸草原混合草原超级站气象要素梯度观测系统数据。站点位于青海省天峻县苏里路旁侧,下垫面是高寒草甸和高寒草原的混合。观测点经纬度为:东经 98°35′41.62″E,北纬 37°42′11.47″N,海拔3718m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m、15m、20m、30m、40m处,共7层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧10m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m、WS_15m、WS_20m、WS_30m、WS_40m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m、WD_15m、WD_20m、WD_30m、WD_40m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m、Ta_15m、Ta_20m、Ta_30m、Ta_40m和RH_3m、RH_5m、RH_10m、RH_15m、RH_20m、RH_30m、RH_40m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日青海湖流域地表过程综合观测网亚高山灌丛气象要素梯度观测系统数据。站点位于青海省刚察县沙柳河镇大寺附近,下垫面是亚高山灌丛。观测点经纬度为:东经100°6'3.62"E,北纬37°31'15.67" N,海拔3495m。风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧2m平台上;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和500cm处,在距离气象塔2m的正东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_500cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_500cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
该数据集包含了2021年1月1日至2021年10月13日的青海湖流域水文气象观测网温性草原气象要素梯度观测系统数据。站点位于青海省刚察县三角城种羊场,下垫面是温性草原。观测点经纬度为:东经 100°14'8.99"E,北纬 37°14'49.00"N,海拔3210m。风速/风向、风速/风向、空气温度、相对湿度传感器分别架设在3m、5m、10m处,共3层,朝向正北;气压计安装在3m处;翻斗式雨量计安装在塔西偏北侧;四分量辐射仪安装在6m处,朝向正南;两个红外温度计安装在6m处,朝向正南,探头朝向是垂直向下;土壤热流板(自校正式)(3块)依次埋设在地下6cm处,朝向正南距离塔体2m处;土壤温度探头埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;土壤水分传感器分别埋设在地下5cm、10cm、20cm、40cm、80cm、120cm、200cm、300cm和400cm处,在距离气象塔2m的东方;光合有效辐射仪安装在6m处,探头垂直向上和向下方向各一个,朝向正南。 观测项目有:风速(WS_3m、WS_5m、WS_10m)(单位:米/秒)、风向(WD_3m、WD_5m、WD_10m)(单位:度)、空气温湿度(Ta_3m、Ta_5m、Ta_10m和RH_3m、RH_5m、RH_10m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、气压(Press)(单位:百帕)、地表辐射温度(IRT_1、IRT_2)(单位:摄氏度)、向上与向下光合有效辐射(PAR_U_up、PAR_U_down)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、土壤热通量(Gs_1、Gs_2、Gs_3)(单位:瓦/平方米)、土壤水分(Ms_5cm、Ms_10cm、Ms_20cm、Ms_40cm、Ms_80cm、Ms_120cm、Ms_200cm、Ms_300cm、Ms_400cm)(单位:百分比)、土壤温度(Ts_5cm、Ts_10cm、Ts_20cm、Ts_40cm、Ts_80cm、Ts_120cm、Ts_200cm、Ts_300cm、Ts_400cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018/8/31 10:30。
李小雁
青藏高原1km分辨率可利用风能资源分布数据是以数值模拟得到的青藏高原地区多年年平均风速为基础,考虑地形、水体、城镇等土地利用对风能开发的制约和限制,综合得到的非常丰富、丰富、较丰富和一般几个风能资源等级。根据地形坡度、土地利用类型来设置土地可利用率,并将城镇周边3km范围扣除,将土地可利用率按照0.2的间隔划分成从0到1的5个区间,再将年平均风速大小划分成4个区间,通过土地利用可利用率和风速两个因子的组合得到风能资源的等级划分。数据主要用于风能资源详查和风电场宏观选址。
朱蓉, 孙朝阳
以中国科学院区域气候-环境重点实验室研制的区域环境集成系统模式为基础,建成了青藏高原对流解析区域气候模式。 模式模拟区域的网格中心位于(34N,100E), 水平分辨率为3km,模式的模拟网格点数为465(经向)X 375(纬向)。垂直方向为27层。模式层顶气压为50 百帕。缓冲区为15个网格,积分时间为2010年一年,采用欧洲中期天气预报中心的水平分辨率为0.25X0.25时间间隔为6小时的ERA5再分析资料作为驱动场,生成水平分辨为3公里*3公里时间间隔为1小时2010年青藏高原地面气象要素驱动数据 采用青藏高原对流解析区域气候模式进行动力降尺度后,解决青藏高原等地区缺乏长时间序列高时空分辨率的气象数据集的瓶颈问题,为青藏高原气候和环境未来变化、生态安全屏障建设等提供坚实可靠的科学数据基础。
熊喆
塔吉克斯坦西帕米尔冰川气象站(38°3′15″N,72°16′52″E,3730m),该站为中国气象局乌鲁木齐沙漠气象研究所和塔吉克斯坦国家科学院水问题水能与生态研究所、塔吉克斯坦水文气象局合作建设。观测数据包括逐时气象要素(风向平均值(°)、内风速平均值(m/s)、风速最大时的风向(°)、风速最大值(m/s)、平均气温(℃)、最高气温(℃)、最低气温(℃)、平均相对湿度(%)、最低相对湿度(%)、平均大气压(hPa)、最高大气压(hPa)、最低大气压(hPa))。 资料时段为2020年12月10日至2021年10月13日 气象观测资料可以为研究西帕米尔山区气候变化、冰川、水资源之间的关系提供重要基础数据,为塔吉克斯坦阿姆河流域下游经济建设提供重要的数据。
霍文
本数据集综合了2014年珠峰、林芝、纳木错(探空观测时段为6月、8月和11月的 08时,14时和20时)站点和2019年第二次青藏高原科考“地-气相互作用与气候效应”立体综合加强期观测试验狮泉河(探空观测时段为5月、7月和10月的02时, 08时,14时和20时)站点探空观测数据。本数据是由位温、比湿、风速、风向和相对高度组成的梯度观测数据,数据采集频率为2s,使用时间均为北京时,数据完整性文件命名规则为:年份+要素.xlsx。
李茂善, 马耀明, 胡泽勇, 陈学龙, 孙方林, 马伟强
该数据集记录了阿里荒漠环境综合观测研究站观测场内(33°23.42′ N, 79°42.18′ E, 4270 m asl)2019-2020年的气象数据,数据时间分辨率为天。包含如下基本参数:气温(℃)、相对湿度(%)、风速(m/s)、风向(°)、气压(hPa)、降水量(mm)、水汽压(Kpa)、向下短波辐射(W/m²)、向上短波辐射(W/m²) 、向下长波辐射(W/m²) 、向上长波辐射(W/m²) 、净辐射(W/m²)、地表反照率(%)、土壤温度(℃)、土壤含水量(%)。 观测仪器的传感器型号:大气温度和湿度:HMP45C;降水:T200-B;风速和风向: Vaisala 05013;净辐射:Kipp Zonen NR01;气压:Vaisala PTB210;土壤温度:109温度探头;土壤含水量:CS616。数据采集器:CR 1000。原始数据的时间分辨率为30 min。 该数据可供从事气象、大气环境或生态等研究的科研人员使用。
赵华标
该气象数据为中国科学院珠穆朗玛大气与环境综合观测研究站观测场内(86.56°E, 28.21°N,4276m)2019-2020年观测的气温、相对湿度、风速、降水量、气压、辐射、土壤温湿度等基本气象数据。降水量为日累计值。 所有数据严格按照仪器操作规范进行观测和采集,在加工生成数据时,剔除了一些明显的误差数据。 该数据可供从事气象、大气环境或生态等研究的学生和科研人员使用(注意:使用时必须在文章中标明数据来源于中国科学院珠穆朗玛大气与环境综合观测研究站,Qomolangma Station for Atmospheric and Environmental Observation and Research, Chinese Academy of Sciences (QOMS/CAS))
席振华
数据采集于海北高寒草甸生态系统研究站样地(101°19′E,37°36′N,海拔3250m),位于青藏高原东北隅祁连山北支冷龙岭东段,高寒草甸是该地区主要的植被类型。数据记录了高山植物冠层上方光照、空气温湿度以及风温风速数据。通过LI-190R 光合有效辐射传感器(LI-COR,Lincoln NE,USA)和LR8515数据采集器(Hioki E. E. Co., Nagano, Japan)记录高山植物冠层上方辐射强度,记录间隔为每秒一次。用S580-EX温湿度记录仪(深圳华图)以及万向风速记录仪(北京天建华仪)记录空气温湿度以及风温风速的日动态,记录间隔为每三秒一次。记录时间为从北京时间7月13日10点至8月17日21点,由于每日需要使用USB存储时间以及更换电池,所以每日有3-5min的数据缺失,缺失的时间段不固定。目前该数据暂未发表。通过研究该数据可以进一步探讨高山植物叶片所处的微环境以及可能的对叶片生理反应的影响。
唐艳鸿, 郑天宇
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件