该物候数据基于青藏高原2000-2015年MOD13A2数据(时间分辨率为16天,空间分辨率为1km),利用TIMESAT软件中分段高斯函数拟合NDVI曲线,采用动态阈值方法提取春季物候、秋季物候以及生长季长度,其中春季物候和秋季物候的阈值分别设置为0.2和0.7。此物候数据进行了掩膜处理。其中,掩膜规则为:1)必须满足NDVI的最大值出现在6-9月份之间;2)6-9月份NDVI均值不能小于0.2;3)冬季的NDVI均值不能超过0.3。
俎佳星, 张扬建
本数据集为过去20年间(2001-2020)青藏高原生长季NDVI与植被物候数据集,数据来源为MODIS(MOD13A2)产品,空间分辨率为1km。数据集内容包括:2001-2020年每年生长季(5-9月)平均NDVI、生长季开始日期(SOS)、生长季结束日期(EOS)与生长季长度(DOS)。提取物候采用了两种方法:动态阈值方法和双对数函数法。数据格式为TIFF格式,投影为Sphere_ARC_INFO_Lambert_Azimuthal_Equal_Area。
王泰华, 杨大文
本数据包括青藏高原纳木错地区土壤细菌分布数据,可用来探索围栏和放牧对纳木错地区土壤微生物的季节性影响,样品采集时间为2015年5月至9月,土壤样品用冰袋保存,运回北京青藏高原研究所生态实验室;本数据为扩增子测序结果,使用MoBio Powersoil™DNA分离试剂盒提取土壤DNA,引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3')和806R (5'GGACTACNVGGGTWTCTAAT-3'),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件进行分析,之后计算序列之间相似度,并在相似度在97%以上的序列聚类为一个OTU。采用Greengenes参考文库进行序列比对,去除了只在数据库中出现一次的序列。土壤含水率和土壤温度由土壤温湿度计测得,土壤pH值用pH计测定(Sartorius PB-10, Germany),用2 M KCl(土壤/溶液,1:5)提取土壤硝态氮(NO3−)和铵态氮(NH4+)浓度,并用Smartchem200离散自动分析仪进行分析。本数据集对研究干旱半干旱草原土壤微生物多样性具有重大意义。
孔维栋
青藏高原草地土壤细菌多样性数据。样品采集时间为2017年7月至8月,包含高寒草甸,典型草原,荒漠草原3种生态系统共计120个样品。土壤表层样品采集后用冰袋保存,运回北京青藏高原研究所生态实验室,通过MO BIO PowerSoil DNA试剂盒提取土壤DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 806R (5´GGACTACNVGGGTWTCTAAT-3´),扩增后的片段通过Illumina Miseq PE250方式测序。原始数据通过Qiime软件分析,序列分类依据Silva128数据库,将相似度在97%以上的序列聚类为一个操作分类单元(OTU)。本数据系统地比较了青藏高原样带草地土壤微生物的细菌多样性,对研究微生物在青藏高原的分布具有重大意义。
孔维栋
玛曲草地观测点始建于 2005 年,海拔 3434 米,位于距离玛曲县城以南约 18公里的河曲马场(102°08′45″E,33°51′50″N),下垫面为典型的发育良好的高寒草原,属于季节性冻土区。本数据集为2017-2020年黄河源区玛曲草地观测站点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
鄂陵湖是青藏高原最大的淡水湖泊,与邻近的扎陵湖一起构成了黄河源头的“姊妹湖”,并入选了国际重要湿地名录,也是三江源国家公园的核心区。本数据集为中国科学院若尔盖高原湿地生态系统研究站2017-2020年黄河源区鄂陵湖草地观测点的常规气象观测数据,使用Kipp&Zonen CNR4、Vaisala HMP155A、PTB110等仪器观测获得,时间分辨率为半小时,主要包括风速、风向、气温、相对湿度(2020年为比湿)、气压、向下短波辐射、向下长波辐射、降水。
孟宪红, 李照国
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
本数据集以 4 种比例的燕麦草与祁连山高寒草甸天然牧草混合日粮,研究了夏季不同比例的燕麦草与天然牧草混合饲喂对放牧藏羊消化代谢的影响。包含放牧藏羊的干物质(dry matter, DM)、有机物质(organic matter, OM)、粗蛋白(crude protein, CP)、粗脂肪(ether extract, EE)、中性洗涤纤维(neutral detergent fiber, NDF)、酸性洗涤纤维(acid detergent fiber, ADF)采食量和消化率。通过对数据的分析,夏季全天然牧草可以满足藏羊的生长代谢,且不宜对其饲喂燕麦草。
彭泽晨
数据文件为7z压缩包格式,可用7-Zip软件解压打开,文件共计三个,分别是文件1、青藏高原草地退化分级的文字版,文件类型为word,文件2、名称为图,共有七张图,图片类型为png,图片名称为2010-2019年青藏高原(草丛、草地、草甸、草原、高山植被、荒漠、沼泽)生长季平均NDVI变化趋势率。文件3、命名为数据的文件夹,内容为图片,共有7种图,名称同上,每种图有五种文件类型,分别是hdr、tif、xml、ovr、png.
周华坤
碳氮磷硫钾等是生态系统重要的基本生命元素,揭示其区域变异与空间格局对人类活动的影响及其未来生态系统可持续发展具有重要作用。青藏高原具有独特的高寒植被类型以及丰富的垂直带地貌和地表覆盖类型,其地表元素(碳氮磷硫钾)的生物地理格局是驱动高寒生态系统碳氮水循环过程耦合和相关机制的重要表现形式。本数据集聚焦青藏高原水塔区和喜马拉雅山区复杂生态系统中地表物质(植物叶-枝-干-根和凋落物)的分配模式和空间变异,以期为区域模型模拟和生态管理提供数据支撑。
李明旭
该数据集包括8种牧草种植的气候适宜性区划、气候土壤适宜性区划和气候土壤地形适宜性区划数据集。该数据集可为草地恢复与畜牧业平衡管理进行人工草地建植提供重要的数据支撑。采用气候指标模型和最大熵模型,利用近40年气温、降水资料及海拔高程数据,通过构建的每种牧草的气候适宜性指标,考虑土壤类型、土壤有机质含量和地形因素,建立西藏牧区8种牧草适宜性种植区划。8种牧草为高寒地区重要的牧草资源,通过野外调查确保了气候适宜指标的准确性,综合考虑气候因子和土壤地形因子,确保了牧草种植区划数据集的实用性。人工草地建植是退化草地生态恢复的主要手段,也是草地生产结构调整的重要部分,合理科学的草种建植是基础,牧草种植区划数据集在重大生态工程实施和草地科学管理方面具有重要的应用前景。
周华坤, 石明明, 周秉荣, 苏文将, 孙玮婕
该数据集包括8种牧草种植的气候适宜性区划、气候土壤适宜性区划和气候土壤地形适宜性区划数据集。该数据集可为草地恢复与畜牧业平衡管理进行人工草地建植提供重要的数据支撑。采用气候指标模型和最大熵模型,利用近40年气温、降水资料及海拔高程数据,通过构建的每种牧草的气候适宜性指标,考虑土壤类型、土壤有机质含量和地形因素,建立青海牧区8种牧草适宜性种植区划。8种牧草为高寒地区重要的牧草资源,通过野外调查确保了气候适宜指标的准确性,综合考虑气候因子和土壤地形因子,确保了牧草种植区划数据集的实用性。人工草地建植是退化草地生态恢复的主要手段,也是草地生产结构调整的重要部分,合理科学的草种建植是基础,牧草种植区划数据集在重大生态工程实施和草地科学管理方面具有重要的应用前景。
周华坤, 苏文将, 周秉荣, 石明明, 赵慧芳
该数据集是实测数据,通过2019-2021年三年的野外调查获得,共59个样点,590个样方。包含了祁连山地区14个典型县(阿克塞、大柴旦、德令哈市、都兰县、刚察县、高台县、格尔木市、皇城镇、茫崖市、门源县、祁连县、山丹县、肃南县、乌兰县)不同草地类型的草地生长状况,指标有物种多样性,优势物种,可食牧草、毒杂草、可食牧草干重和毒杂草的干重,该数据集将可食牧草和毒杂草分开调查可为计算有效的载畜量提供精准的数据支撑。
彭泽晨
沱沱河源区植被类型图是基于 319 个地面采样点数据结合随机森林(RF)分类方法进行创建的。随机森林分类器的16个输入变量包括了Landsat-8的可见光、短波红外和热红外波段值及其反演的植被指数和地表温度数据等。根据研究区的植被特征及多年冻土模拟的需要,该图对高寒沼泽草甸(alpine swamp meadow)、高寒草甸(alpine meadow)、高寒草原(alpine steppe)和高寒沙漠(alpine desert )等4种植被类型进行了分类。图件的空间分辨率为30 m,可以提供更细节的植被类型的位置信息。
邹德富, 赵林, 刘广岳, 杜二计, 胡国杰, 李智斌, 吴通华, 吴晓东, 陈杰
采用样方调查方法,在西藏江湖源区布设天然草地、围栏天然草地、人工草地等样方,调查草地类型、盖度、物种构成、地上生物量以及土壤温度、土壤容重、土壤含水量、土壤质地、土壤pH、土壤有机质、土壤全P、土壤全K,对比分析不同草地利用方式下的植被群落和土壤质量特征,研究草地利用对植被和土壤环境的影响。数据采集年份为2019年8月-2021年8月,采集地点为江湖源区及周边地区。样点海拔为GPS记录数据,植被类型为样点在中国植被图中的映射,土壤温湿度为土壤4参数速测仪数据,土壤容重为样点实测数据,草本物种数、草地盖度、地上生物量为样方调查数据,土壤粒径、有机质和养分含量为样品实验室分析数据。
徐增让, 靳茗茗, 乔添
数据采集于海北高寒草甸生态系统研究站样地(101°19′E,37°36′N,海拔3250m),位于青藏高原东北隅祁连山北支冷龙岭东段,高寒草甸是该地区主要的植被类型。数据记录了高山植物冠层上方光照、空气温湿度以及风温风速数据。通过LI-190R 光合有效辐射传感器(LI-COR,Lincoln NE,USA)和LR8515数据采集器(Hioki E. E. Co., Nagano, Japan)记录高山植物冠层上方辐射强度,记录间隔为每秒一次。用S580-EX温湿度记录仪(深圳华图)以及万向风速记录仪(北京天建华仪)记录空气温湿度以及风温风速的日动态,记录间隔为每三秒一次。记录时间为从北京时间7月13日10点至8月17日21点,由于每日需要使用USB存储时间以及更换电池,所以每日有3-5min的数据缺失,缺失的时间段不固定。目前该数据暂未发表。通过研究该数据可以进一步探讨高山植物叶片所处的微环境以及可能的对叶片生理反应的影响。
唐艳鸿, 郑天宇
基于环境敏感区指数(ESAI)方法,计算获得2021年阿拉伯半岛栅格荒漠化风险数据。ESAI方法考虑土壤,植被,气候和管理质量,是监测荒漠化风险最广泛的方法之一。根据ESAI指标框架,选择了14个指标计算四个质量领域,每个质量指数均由几个指标参数计算获得。参考前人研究,确定每个参数分类及其阀值。然后,根据每个类别在荒漠化的敏感性中的重要性以及与荒漠化过程的开始或不可逆转的退化关系,把每个类别分配了1(最低敏感度)和2(最高敏感度)之间的敏感性得分。关于如何选取指标以及与荒漠化风险和得分相关性,在Kosmas的研究中提供了更全面的描述。主要指标数据集来源于联合国粮农组织的世界土壤数据,欧空局的土地覆盖数据和AVHRR数据。所有栅格数据集重采样到500m并合成年度值。尽管验证综合评估指数存在困难,但根据ESAI值的时空比较,对荒漠化风险进行了间接验证,包括对ESAI与稀疏植被和草地转变关系的定量分析和分析ESAI与植被净初级生产力之间的关系。验证结果表明阿拉伯半岛的荒漠化风险数据精度可靠。
许文强
1)数据内容:草地围栏工程内外对比土壤理化性质数据集,包含样方编号、草地类型、调查县、调查地点、工程类型、采样时间、工程开始时间、持续时间、"经度(°E)"、"纬度(°N)"、"海拔(m)"、"pH (0-15cm)"、"pH(15-30cm)"、"SOM (0-15cm(‰))"、"SOM(15-30cm(‰))"、"TN(0-15(‰))"、"TN(15-30(‰))"、"TP(0-15(‰))"、"TP(15-30(‰))" 2)数据来源:实地采样数据 3)数据质量:质量较高 4)数据应用前景:青藏高原草地围栏工程将在保护草地、恢复区域植被生产力上获得显著成效,工程的实施为区域畜牧业发展提供了更广阔的空间,保障了当地农牧民收入与地区经济的稳定增长。此外,工程的实施保证并支持了藏区牧民的正常生产和生活, 实现了牧区草地保护与牧民畜牧业生产的稳定发展,这对维护西藏社会全面稳定,促进西藏地区又好又快发展具有重要意义。
洪江涛, 王小丹
本数据集包括藏东南站、阿里站、慕士塔格站、珠峰站和纳木错站的大气气溶胶颗粒物的PM2.5质量浓度(单位为μg/m3)。气溶胶PM2.5细颗粒物是指环境空气中空气动力学当量直径小于等于 2.5 微米的颗粒物。它能较长时间悬浮于空气中,对空气质量和能见度等有重要的影响,其在空气中含量浓度越高,就代表空气污染越严重。PM2.5的浓度特性数据以每5 min获取一组数据的频率进行产出,能实现小时、昼夜、季节和年际等不同时间尺度气溶胶质量浓度的分析,这为青藏高原地区不同位置的气溶胶质量浓度在不同时间尺度上的变化及其影响因素分析,以及当地空气质量评价,提供了重要的数据支撑。该数据为已发布数据《青藏高原不同站点气溶胶颗粒PM2.5浓度数据集(2018和2019)》的更新。
邬光剑
本数据集包含两台部署在祁连山保护区的陆生脊椎动物红外相机及环境参量数据集。本设备部署在祁连山保护区寺大隆附近,时间跨度(2020.8-2021.10)。由于设备维护,光照不足等,部分数据不连续,但两台设备的数据可互为补充,可以重建出2020.8-2021.10祁连山保护区内观测点的全部信息。 两台设备有一台设备配备了红外相机,采集到4994张照片,可与上述传感器照片相互匹配后,或者拍照前后的生态因子信息。由于单个压缩文件较大,故采用分卷压缩,需要将三个压缩文件都下载后方可解压缩。 1. 祁连山保护区内出没的野生动物以及温度、湿度、光照、压强以及网络信号强度信息。采集间隔每半小时一次; 2. 数据来源:"陆生脊椎动物监测设备研制“课题,2016YFC0500104,完成单位:中国科学院动物研究所,原始数据,未加工; 3. 传感器数据采集间隔每半小时一次,温度精度正负0.1度,湿度精度正负0.5%,照片数据分为触发和定时两种,触发数据一般由出没在红外相机视野内的野生动物触发;定时拍照数据根据电池电量情况动态调节,采集间隔在1-12小时之间; 4. 本数据可用于记录保护区内的环境温度,结合红外相机数据,可用于分析野生动物活动节律,共存分析以及分布的限制因子等。
乔慧捷
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件