数值试验:使用的气候模式是由英国气象局与英国大学联合开发的快速海-气耦合模式(FAMOUS)。FAMOUS模式中的大气模式水平分辨率为5°×7.5°,垂直方向有11层;海洋模式的水平分辨率为2.5°×3.75°,垂直方向有20层。大气和海洋每天耦合一次,无通量调整。 试验包括中古新世(MP, ~60Ma BP,试验名称flat_60ma_1xCO2_sea_3d_**100yr_mean.nc)和晚渐新世(LO, ~25Ma BP,试验名称orog_25ma_1xCO2_sea_3d_**100yr_mean.nc)。海陆分布数据主要取自全球海岸线基础数据集(缩写为Gplates,网址为http://www.gplates.org/),考虑到青藏高原等新生代地形的初始隆升约开始于50~55Ma(Searle等,1987),因而在MP试验中将全球地形高度均设置为0,以略去高原地形的作用。25Ma修正了格陵兰(Zachos等, 2001)、青藏高原(例如, Wang等,2014;Ding等,2014;Rowley和Currie, 2006;DeCelles等,2007;Polissar等,2009)。在重建青藏高原古地形时还考虑了其古纬度的变化(Besse等,1984;Chatterjee等,2013;Wei等,2013)。同时,参考新生代大气CO2变化(Beerling和Royer, 2011),2个时期的试验中大气CO2浓度均取工业革命前的值280ppmv(1ppmv=1mg L–1)。 为了简单起见,所有陆地植被和土壤特性都设置为全球均一的值,即在除南极洲外的每个陆地网格点上的各种陆面特性都被赋予工业革命前非冰川陆面的全球平均值,这样也便于突出检验海陆分布和地形变化的影响。此外,由于主要讨论百万年尺度特征地质时期的平均气候状态及其变化,因而可以略去轨道强迫的影响,即在所有试验中地球轨道参数均设置为其现代值。 输出时间:所有试验都被积分了1000年,使用了每个试验最后100年的平均结果。 本数据有助于探究新生代季风和干旱的形成演化机制。
刘晓东
大气水汽是研究水循环的重要参数,在全球气候变暖的背景下,为了更好地研究大气水汽对水循环的影响,构建了空间分辨率为0.25°的全球日尺度AMSR-E/AMSR2全天候大气可降水(Total Precipitable Water,TPW)数据集。数据集中,陆地上空的TPW主要有我们新开发的基于AMSR-E、AMSR2的18.7和23.8GHz亮温数据反演算法获取;海洋上空TPW数据融合了AMSR-E/AMSR2官方TPW产品。作为后处理,为了消除AMSR-E TPW和AMSR2 TPW之间的系统性偏差,以AIRSX2RET TPW为基准,使用直方图匹配方法分别对AMSR-E和AMSR2的TPW数据在全球尺度上进行了系统偏差校正,保证数据的连续性,最终得到全球日尺度AMSR-E和AMSR2 TPW全天候数据集。其中,AMSR-E数据时间范围为2002年7月8日至2011年9月27日,AMSR2数据时间范围为2013年1月1日至2017年8月31。每个日期下均包含升轨和降轨两个文件,数据格式为Geotiff。数据层数为2,第一个层为TPW数据,单位为mm,第二层为时间信息,表示以UTC为时间基准的像元观测时间距离当天0时0分0秒所经过的秒数。数据集具有可靠的质量,通过与全球SuomiNET GPS TPW验证分析,数据集的均方根误差为3.5-5.2mm。由于大气可降水是影响地表遥感重要的地球物理参数,对地球的气候变化也有重要影响,故此数据可用于气候变暖的背景下大气水汽对水循环的影响、大气水资源的评估以及大气校正等方面的研究。
姬大彬, 施建成, 胡斯勒图, 李薇, 张红星, 尚华哲
日照时数重建可以较好的反应地表太阳辐射的长期变化趋势,但只是站点数据。因此要得到高分辨率网格点数据,同时保证其在长期变化方面上的精度,需要融合多种地表太阳辐射相关数据。利用地理加权回归(GWR)方法,融合了MODIS 0.1°分辨率云量和气溶胶反演以及地面日照时数重建地表太阳辐射站点数据。通过增加相邻点数方案的组合判断,有效地提高了地理加权回归降尺度结果的准确性,得到的中国区域多年平均值、长期趋势与观测和卫星遥感反演结果基本一致。采用地理加权回归等方法,生成0.1度网格的地表风速和相对湿度数据;利用改进的彭曼公式计算了陆表蒸散数据。
王开存
地表蒸散发(Evapotranspiration,ET)是连接着陆地能量平衡、水循环以及碳循环等的重要变量,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域与全球的水资源规划管理具有重要的意义。遥感技术是监测蒸散发的有效手段,目前已经生产和发布了多种蒸散发遥感产品,然而,在真实性检验过程中,存在地表蒸散发遥感估算值与站点观测值的空间尺度不匹配问题,在异质性地表尤为严重。因此,在异质性地表,通过尺度扩展方法获取卫星像元尺度地表蒸散发相对真值十分关键。本研究利用站点观测数据,结合多源遥感信息,将地面单站点观测的蒸散发扩展至卫星像元尺度,获得了黑河流域卫星像元尺度地表蒸散发相对真值数据集。 以黑河流域地表过程综合观测网中15个站点(3个超级站和12个普通站)的涡动相关仪观测的地表蒸散发数据为基础,结合融合的高分辨率遥感数据(地表温度、植被指数、净辐射等)、大气再分析数据开展尺度扩展,获取卫星像元尺度地表蒸散发相对真值。分布图见图1。具体来说,首先进行地表水热状况空间异质性评价;其次通过直接检验和交叉检验对九种尺度扩展方法(基于Priestley-Taylor公式的方法、Penman-Monteith公式结合EnKF的方法、Penman-Monteith结合SCE_UA的方法、人工神经网络、贝叶斯线性回归、深度信念网络、高斯过程回归、随机森林以及直接把涡动相关仪观测值作为像元尺度相对真值)进行比较和分析,最终优选一种综合的方法(在均匀下垫面,直接采用涡动相关仪观测值;在中度和高度非均匀下垫面,采用高斯过程回归方法进行尺度扩展),获取了黑河流域15个主要下垫面的逐日卫星像元尺度地表蒸散发相对真值(2010-2016,空间分辨率为1km)。结果表明,卫星像元尺度地表蒸散发相对真值较为可靠。与像元尺度参考值(LAS观测值)相比,三个超级站的MAPE分别为1.57%、3.23%和4.59%,能够满足地表蒸散发遥感产品真实性检验的需求。所有站点信息和数据处理请参考Liu et al. (2018),尺度扩展方法请参考Li et al. (2021)。
刘绍民, 李相, 徐自为
青藏高原作为“亚洲水塔”,对全球自然环境和气候变化有着深远的影响。因此,研究青藏高原对流层-平流层水汽分布特征是理解高原水塔的水汽来源和变化规律的重要环节。而在此地区缺乏原位观测,急需水汽探空数据集。为此,我们在青藏高原拉萨、昆明测站开展了探空观测,继而获得青藏高原对流层-平流层夏季水汽垂直分布。将数据集命名为泛第三极水汽探空数据集(Pan-Third Pole Water Vapor Sounding),主要是2009年7月至2019年8月在拉萨、昆明测站开展探空气球实验,获取的水汽廓线数据。通过常规高空探测气球搭载低温霜点湿度计(CFH)及无线电探空仪(iMet)等获取大气高度(Altitude)、水汽(H2O)、温度(Temp)、气压(Press)和位温(Theta)等从近地面到20 km高度数据。通过无线电探空仪将数据实时传回地面接收站。
卞建春
该数据集为云降水过程综合观测数据集的分数据集,源自2020年期间在祁连山南北坡开展的综合考察试验,空中观测以空中国王飞机为主,地基考察包括自动气象站、雨滴谱仪、微波辐射计、云雷达、探空秒数据等,其中自动气象站观测要素包括气温、气压、湿度、风向、风速、降水量,雨滴谱仪观测要素包括粒子谱、降水强度等,微波辐射计观测要素为大气温度、湿度廓线,云雷达观测要素主要为定点垂直观测数据,并开展气溶胶、雨水、冰雹、土壤样品采集,可为揭示西风-季风对祁连山云降水过程和大气水循环的影响研究提供数据支持。
付丹红
1,数据内容包含:年、月、日、小时、经度、纬度、高度、水汽通量的经向(uq)和纬向(vq)分量; 2,数据来源及加工方法:热带印度洋海洋大气综合科学考察关键断面GPS气象探空数据,通过相对湿度、风场、气压和高度计算水汽通量; 3,数据质量描述:垂向1秒间隔连续观测 4,数据应用成果及前景:通过掌握热带印度洋水汽输送的变化特征,研究印度季风雨带的变化特征,同时为季风和西风协同作用的分布特征研究提供数据基础。
王东晓
This dataset includes daily water vapor and precipitation isotopes (δ18O and δD) and daily meteorological parameters including temperature, relative humidity, vapor concentration, air pressure, and precipitation amount at Nanjing, eastern China. Water vapor isotopes (δ18Ov and δDv) were online measured during November 2012 to December 2018 by a Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model: Picarro L2120-i) at the Station for Observing Regional Processes of the Earth System of Nanjing University (SORPES-NJU, 32.12°N, 118.95°E, 55 m above sea level) on the Xianlin Campus of the Nanjing University, about 20 km east of downtown Nanjing in the Eastern China. The uncertainties were determined to be less than 0.2‰ for δ18Ov and 1.0‰ for δDv. Precipitation isotopes were also measured by Picarro L2120-i during September 2011 to December 2018, with the analytical uncertainty of less than 0.1‰ for δ18O and 0.5‰ for δD.
庞洪喜
分别于2014年4月和2016年5月在黄河源区(黄河沿以上)采集的21个湖泊(7个非热融湖塘,14个热融湖塘),在加拿大维多利亚Inno Tech Alberta实验室通过Delta V Advantage Dual Inlet/HDevice system 测试氢氧同位素丰度,同位素丰度表达为δ(‰)形式(相对于维也纳平均海水丰度) 测试误差:δ18O: 0.1‰,δD: 1‰ ,数据还包括通过Google earth engine中 Landsat 2017影像数据提取得到的湖泊面积和湖泊流域面积。 通过的长期气象资料数据(多年平均气温,多年平均相对湿度,多年平均年降水量,多年平均年水面蒸发量),基于水量平衡及同位素质量守恒模型(模型参数也包括在数据集中)对湖泊水文信息,包括蒸发/入流比例(E/I)和湖泊流域产水量(WY)进行估算。
万程炜
1) 数据内容:为了描述青藏高原上的大气水资源,我们提供了两个变量。 一种叫做大气柱水汽收入(CWI),定义为单位面积大气柱水汽通量散度和地表面蒸发之和。 CWI变量为0.25×0.25度网格资料,单位为kg/m2或毫米。 另一个是大气水塔指数(AWTI),是整个TP区域大气水资源净收入的总和,AWTI即cwi乘以高原(75-105E, 25-40N, altitude> 2.5km)格点面积之和,单位为Gt. 2) 数据来源:基于ERA5再分析数据产品计算得到 3) 数据质量描述:ERA5是目前精度较高的再分析数据 4) 数据应用成果及前景: 上述两个变量提供了高原大气中水汽净收入量,
阎虹如
海陆热力差异是形成季风的重要原因,印度夏季风的建立与欧亚大陆和印度洋之间产生的海陆热力差异有关。对流层中高层青藏高原和热带印度洋的热力差异与印度夏季风的爆发及其年际和年代际变化紧密相关。青藏高原和热带东印度洋上空温度是对印度夏季风变化最敏感的两个区域,基于此,用500-200hPa温度场定义了一个青藏高原与印度洋热力差异指数: TCI = Nor[T(25°N-38°N, 65°E-95°E) - T(5°S-8°N, 65°E-95°E)] 其中,Nor表示标准化,T表示500hPa-200hPa温度场。 青藏高原与印度洋热力差异指数(TCI)分为逐候、月、夏季3种时间分辨率序列。它可以从多种时间尺度反映高原与北印度洋之间的热力差异及其与后期印度夏季风变率的关系。并且,与单独的青藏高原或印度洋热力状况相比,该指数表现得更好,指数大时,后期印度夏季风强度往往偏强。另外,TCI的逐候增量对印度季风的演变具有预测意义,TCI逐候增量超前印度季风指数3候开始显著相关,且超前15候的时候相关最大。同时,TCI逐候增量前25候平均值的大小对印度季风爆发的早晚有一定的预报意义。 资助项目: 中国科学院战略性先导科技专项泛第三极环境变化与绿色丝绸之路建设(XDA20060501 印度洋-第三极热力差异对季风的影响及其经向输送效应)
李张群, 肖子牛, 赵亮
本数据集为基于蒸散发互补方法建立的中国地表蒸散发产品(v1.5),输入数据包括CMFD向下短波辐射、向下长波辐射、气温、气压,以及GLASS地表发射率和反照率、ERA5-land地表温度和空气湿度、NCEP散射辐射率等。本数据集时间跨度为1982年-2017年,空间范围为中国陆地区域。本数据集可为研究长时间尺度水循环和气候变化提供基础。 陆地实际蒸散发 (Ea),单位: mm month-1。 时间分辨率为逐月; 空间分辨率为0.1°; 数据类型:NetCDF; 本数据仅为陆地实际蒸散发,不含水面。
马宁, Jozsef Szilagyi, 张寅生, 刘文彬
该数据集包含了2018年9月24日至2018年12月31日的兰州大学寒旱区科学观测网络瓜州站涡动相关仪观测数据。站点位于甘肃酒泉瓜州县柳园镇,下垫面是荒漠。观测点的经纬度是95.673E,41.405N,海拔2014m。涡动相关仪的架高4m,采样频率是10Hz,超声朝向是正北向,超声风速温度仪(CSAT3)与CO2/H2O分析仪(Li7500A)之间的距离是17cm。 涡动相关仪的原始观测数据为10Hz,发布的数据是采用Eddypro软件处理的30分钟数据,其处理的主要步骤包括:野点值剔除,延迟时间校正,坐标旋转(二次坐标旋转),频率响应修正,超声虚温修正和密度(WPL)修正等。同时对各通量值进行质量评价,主要是大气平稳性(Δst)和湍流相似性特征(ITC)的检验。对Eddypro软件输出的30min通量值也进行了筛选:(1)剔除仪器出错时的数据;(2)剔除降水前后1h的数据;(3)剔除10Hz原始数据中每30min内缺失率大于10%的数据。观测数据的平均周期为30分钟,一天48个数据,缺失数据标记为-6999。4月3日-4日涡动系统的Li7500A进行标定,导致数据缺失。 发布的观测数据包括:日期/时间Date/Time,风向Wdir(°),水平风速Wnd(m/s),侧向风速标准差Std_Uy(m/s),超声虚温Tv(℃),水汽密度H2O(g/m3),二氧化碳浓度CO2(mg/m3),摩擦速度Ustar(m/s),奥布霍夫长度L(m),感热通量Hs(W/m2),潜热通量LE(W/m2),二氧化碳通量Fc(mg/(m2s)),感热通量的质量标识QA_Hs,潜热通量的质量标识QA_LE,二氧化碳通量的质量标识QA_Fc。感热、潜热、二氧化碳通量的质量标识分为九级(质量标识1-3数据质量好,4-6数据质量较好,7-8数据质量较差(较插补数据好);9数据质量差)。数据时间的含义,如0:30代表0:00-0:30的平均;数据以*.xls格式存储。 观测数据处理请参考Liu et al. (2011)。
张仁懿
地表蒸散发(Evapotranspiration,ET)是连接着陆地能量平衡、水循环以及碳循环等的重要变量,地表蒸散发的准确获取有助于全球气候变化、作物估产、干旱监测等研究,并且对区域与全球的水资源规划管理具有重要的意义。地表蒸散发的获取方法主要包括地面观测、遥感估算、模式模拟与同化等。地面观测可以获得高精度的地表蒸散发数据,但观测站点的空间代表性十分有限;遥感估算、模式模拟与同化方法可以获得空间连续的地表蒸散发,但存在精度与时空分布格局合理性的验证问题。因此,本研究充分利用众多的高精度站点观测数据,结合多源遥感信息,将地面站点观测尺度扩展至区域上,获得高精度、时空分布连续的地表蒸散发量。 基于近年来开展的“黑河综合遥感联合试验”(WATER)、“黑河流域生态-水文过程综合遥感观测联合试验”(HiWATER)、所积累的站点观测数据(自动气象站、涡动相关仪、大孔径闪烁仪等),共选用36个站点(65个站年,分布图见图1),结合多源遥感数据(土地覆盖与植被类型图,叶面积指数、地表温度等)和大气驱动数据等,运用五种机器学习方法(回归树、随机森林、人工神经网络、支持向量机、深度信念网络)分别构建了不同的地表蒸散发尺度扩展模型,对各尺度扩展模型进行了全面的对比分析,结果表明:相比于其他四种方法,随机森林方法更适合于黑河流域由站点到区域的地表蒸散发尺度扩展研究。基于优选出的随机森林尺度扩展模型,以遥感及大气驱动数据作为输入,生产了2012~2016年生长季(5~9月)黑河流域地表蒸散发时空分布图(ETMap,时间分辨率为逐日,空间分辨率为1km)。以LAS观测值为真值进行验证,结果表明:ETMap整体精度良好,上游 (LAS1)、中游 (LAS2-LAS5)和下游 (LAS6 - LAS8)的RMSE (MAPE)分别为0.65 mm/day(18.86%)、0.99 mm/day (19.13%)和0.91 mm/day (22.82%)。总之,ETMap是基于站点观测数据运用随机森林算法进行尺度扩展得到的精度较高的黑河流域地表蒸散发产品。所有站点信息和尺度扩展方法请参考Xu et al. (2018),观测数据处理请参考Liu et al. (2018)。
刘绍民, 徐同仁
1) 数据内容(包含的要素及意义): 大气柱总含水量/可降水量、 儒略日Julian Day、经纬度和海拔高度; 2) 数据来源及加工方法: ECMWF-interm逐月再分析资料集 monthly mean analysis; 3) 数据质量描述:时间分辨率为逐月,空间分辨率:0.7°*0.7°; 4) 数据应用成果及前景:数据集给出了高原空中大气水资源的空间情况,用于分析高原空中水汽的时空变化及对周边地区降水的影响。
阎虹如
本数据集包含从2008年1月1日到2018年10月1日,斯里兰卡22个国际交换站观测的气温、气压、相对湿度、风速、风向、降水、辐射、水汽压等日值。 数据来源于NOAA的NCDC。 数据集加工方法为原始数据经过质量控制后形成连续的时间序列。满足对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 本数据集所包含的气象站点信息如下: LATITUDE LONGITUDE ELEVATION  COUNTRY  STATION NAME +09.800  +080.067   +0015.0   SRI LANKA  KANKASANTURAI +09.650  +080.017   +0003.0   SRI LANKA  JAFFNA +09.267  +080.817   +0002.0   SRI LANKA  MULLAITTIVU +08.983  +079.917   +0003.0   SRI LANKA  MANNAR +08.750  +080.500   +0098.0   SRI LANKA  VAVUNIYA +08.539  +081.182   +0001.8   SRI LANKA  CHINA BAY +08.301  +080.428   +0098.8   SRI LANKA  ANURADHAPURA +08.117  +080.467   +0117.0   SRI LANKA  MAHA ILLUPPALLAMA +08.033  +079.833   +0002.0   SRI LANKA  PUTTALAM +07.706  +081.679   +0006.1   SRI LANKA  BATTICALOA +07.467  +080.367   +0116.0   SRI LANKA  KURUNEGALA +07.333  +080.633   +0477.0   SRI LANKA  KANDY +07.181  +079.866   +0008.8   SRI LANKA  BANDARANAIKE INTL COLOMBO +06.900  +079.867   +0007.0   SRI LANKA  COLOMBO +06.822  +079.886   +0006.7   SRI LANKA  COLOMBO RATMALANA +06.967  +080.767   +1880.0   SRI LANKA  NUWARA ELIYA +06.883  +081.833   +0008.0   SRI LANKA  POTTUVIL +06.817  +080.967   +1250.0   SRI LANKA  DIYATALAWA +06.983  +081.050   +0667.0   SRI LANKA  BADULLA +06.683  +080.400   +0088.0   SRI LANKA  RATNAPURA +06.033  +080.217   +0013.0   SRI LANKA  GALLE +06.117  +081.133   +0020.0   SRI LANKA  HAMBANTOTA
邓创武
青藏高原东北部德令哈、天峻和乌兰的树轮宽度和重建的降水量、土壤水分条件数据序列以及德令哈地区过去3500年树轮的定年数据。本数据集由实验室测量获取,由仪器或者实验完成后直接得到数据。在各个环节严格按照相关操作规程进行样品和数据采集。 本数据集共有3个子表: 子表1为德令哈天峻乌兰轮宽,共有4个字段,其中每三个字段代表一个站点的数据,分别为站点编号,公元年份,样本量和宽度指数; 子表2为降水量和土壤水分重建,有5个字段,分别为公元、降水量、土壤相对湿度、植物生长需水量和实际蒸发量;其代表的实际含义分别为: ppt: 德令哈上一年7月至当年6月降水量; rsm_56:德令哈56月土壤相对湿度; accdef:上一年7月至当年6月植物生长需水量; ae16:1月-6月实际蒸发量; 子表3为3500年轮宽指数,共有3个字段,分别为年份、轮宽指数和样本量;其中年份中负号代表公元前; 各子表中轮宽指数无量纲,蒸发量、降水量、植物生长需水量单位均为mm,样本量单位为个。
王君波, 邵雪梅
本数据集包括2007年1月1日至2017年12月31日藏东南站,大气气温、相对湿度、降水、风速、风向、净辐射、气压等的日平均数据。 该数据服务对象为从事气象、大气环境、生态研究的学生和科研人员。 其中各种气象要素的单位如下:气温℃;降水mm;相对湿度%;风速m/s;风向°;净辐射W/m2;气压hPa;可入肺颗粒物μg/m3。 所有数据均是原始观测数据计算得到的日平均值。严格按照仪器操作规范进行观测和数据采集,并已经在相关学术期刊发表;加工过程中剔除了一些明显误差数据,缺失数据用空值。 2015年由于台站观测探头老化问题,风速数据只保留后8个月数据。
罗伦
本数据集包含从2003年5月18日到2016年12月31日,慕士塔格西风带环境综合观测研究站观测的气温、气压、相对湿度、风速、风向、降水、辐射、水汽压等日值。 数据来自于自动气象站(Vaisala公司),每30分钟记录一条数据,数据集加工方法为原始数据经过质量控制后形成连续的时间序列。 满足国家气象局和世界气象组织(WMO)对气象观测原始数据的精度,剔除了曳点数据和传感器出现故障造成的系统误差。 主要应用于冰川学、气候学和环境变化、寒区水文过程以及冻土学等学科领域,服务对象为从事大气物理、大气环境、气候、冰川、冻土等学科科学研究和人才培养的专业人员。
汪远伟, 徐柏青
1)该套数据集为来自美国国家环境预报中心(NCEP)和国家大气研究中心(NCAR)联合研制的全球大气再分析数据,是利用观测资料、预报模式和同化系统对全球从1948年到目前的气象资料进行再分析形成的格点资料。数据变量包括地表、近地表(.995sigma层)和不同气压层的多个气象变量,如降水、温度、相对湿度、海平面气压、位势高度、风场和热通量等。 2)覆盖时间为1948年至2018年,其中1948至1957年数据是非高斯格点数据;覆盖范围为全球。空间分辨率为2.5°经纬网格。垂直分层为17个标准气压层,分别为1000、925、850、700、600、500、400、300、250、200、150、100、70、50、30、20、10 hPa,和28 sigma层。部分变量为8层(omega)和12层(humidities);时间分辨率为逐6小时、逐日、逐月和长期逐月平均(1981年至2010年平均)。逐日数据由每日0Z,6Z,12Z和18Z 4个时次值作平均得到的。 3)缺测值为-9.96921e+36f。数据以nc格式存放,文件名为var.time.stat.nc, 每个文件包括经纬度、时间和大气要素变量。 数据的详细情况见数据说明链接http://www.esrl.noaa.gov/pad/data 。
NOAA, NCAR
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件