数据来源于课题组在帕米尔高原,天山造山带和塔里木盆地交汇区布设的20个宽频带流动地震台站,选址严格,记录周期是2019年10月至2020年7月。该数据集为P波初至前50 s和之后150 s的波形数据,事件震级大于等于6.0,震中距范围为30-95度。数据可被用于走时成像,剪切波分裂和接收函数等地震学方法,获得研究区的壳幔速度结构、典型间断面的深度和各向异性特征,为阐明印度-欧亚碰撞远程效应下的陆内变形机制提供重要约束。
徐强
该数据集为利用GPS速度场及震源机制解进行约束获得的川滇地区岩石圈三维应力场模型数据。利用川滇地区岩石圈结构断裂信息,构建了区域岩石圈变形3D有限元模型,融合已有文献发表的区域GPS速度和项目组最新观测资料给出模型速度边界约束,同时利用项目组给出的区域中小地震震源机制解和地幔对流作用对模型应力场进行约束,构建了川滇地区现今地壳变形和应力场模拟综合模型。该模型数据集可用于进一步研究川滇地区大震孕震背景、岩石圈构造演化及青藏高原扩展等重要科学问题。
熊熊
此数据集包括云南腾冲保山地块中生代沉积岩主微量元素和锆石U-Pb同位素数据。采样时间为2018年,地区为云南腾冲保山地区的腊勐镇附近,岩石样品包括8件沉积岩样品。该数据为认识腾冲保山之间中特提斯构造演化提供关键信息,将中特提斯洋的闭合时间限制在晚侏罗世,对探讨特提斯构造演化过程具有重要意义。岩石样品的全岩主、微量元素分别使用荧光光谱仪(XRF)和等离子质谱仪(ICP-MS)测试,锆石U-Pb定年使用激光剥蚀等离子质谱仪(LA-ICP-MS),测试单位包括中科院地质与地球物理研究所和青藏高原研究所。该数据集关联文章已发表在刊物《Journal of Asian Earth Sciences》上,数据结果真实可靠。
张九园
该数据集为项目组在西藏当雄县羊易地热田采集的大地电磁法(MT)原始观测数据,数据格式为EDI,共包含36个文件。该数据集共包含3条MT剖面,测线间距大约为1 km,测点间距约 500 米。野外数据采集设备采用中国科学院研制的新型SEP地面电磁探测系统。在每个 MT 测点,使用不极化电极测量电场的两个水平分量Ex(南北向),Ey(东西向),使用磁传感器测量磁场的三个分量Hx(南北向)、Hy(东西向)、Hz(铅锤向)。每个测点观测时间均超过10小时,有效频率范围320 Hz~0.001 Hz。通过对该数据集的预处理及反演,可获羊易地热田深部10千米深度范围的电性结构,为调查区内深部热源以及控热、导热构造的位置及规模提供依据。
陈卫营
该数据集为项目组在西藏当雄县羊八井地热田采集的大地电磁法(MT)原始观测数据,数据格式为EDI,共包含53个文件。该数据集共包含4条MT剖面,测线间距大约为1 km,测点间距约 500 米。野外数据采集设备采用中国科学院研制的新型SEP地面电磁探测系统。在每个 MT 测点,使用不极化电极测量电场的两个水平分量Ex(南北向),Ey(东西向),使用磁传感器测量磁场的三个分量Hx(南北向)、Hy(东西向)、Hz(铅锤向)。每个测点观测时间均超过10小时,有效频率范围320 Hz~0.001 Hz。通过对该数据集的预处理及反演,可获羊八井地热田深部10千米深度范围的电性结构,为调查区内深部热源以及控热、导热构造的位置及规模提供依据。
陈卫营
本数据集是中巴经济走廊及天山山脉活动断裂带(2013),其中获取的地质图是1:250万地质图,覆盖范围为中巴经济走廊以及天山山脉。地质构造图可以为国民经济信息化提供数字化空间平台,为国家和省级各部门进行区域规划、地质灾害监测、地质调查、找矿勘查、宏观决策等提供信息服务。获取的地质图数据源是首先将纸质版地图扫描,然后在ArcGIS 10.5 平台进行地理配准,然后矢量化获得,存储格式为矢量数据,空间粒度是分区域划分的。
朱亚茹
乌郁盆地位于青藏高原南部冈底斯山脉南麓,南邻雅鲁藏布江,是研究青藏高原南部新生代构造活动历史的理想地区。乌郁盆地由下向上依次出露古新世-始新世林子宗群火山岩、渐新世日贡拉组火山岩、中新世芒乡组湖相地层和来庆组火山岩、晚中新世-上新世乌郁组和更新世达孜组。利用LA-ICP-MS共测得5件乌郁盆地芒乡组、乌郁组和达孜组地层砂岩和1件现代乌郁河流砂样品碎屑锆石年龄数据。结果显示芒乡组碎屑锆石年龄集中分布在45-80 Ma范围,乌郁组呈现8-15 Ma的主要年龄区间和45-70 Ma的次要年龄区间,达孜组呈现三个主要年龄区间:45-65 Ma、105-150 Ma和167-238 Ma,现代乌郁河流砂样品呈现8-15 Ma的主要年龄区间和45-65 Ma的次要年龄区间(图1)。所有样品中的晚白垩世-早始新世锆石年龄与冈底斯岩基主要岩浆活动时间一致,乌郁组和现代河流样品中出现的8-15 Ma与来庆组火山岩形成时间一致,达孜组中出现的三叠纪-侏罗纪锆石与盆地北部中拉萨地体岩浆活动时间一致。碎屑锆石年龄谱结果和沉积相分析表明青藏高原南部自印度-欧亚板块碰撞以来发育多期次构造-岩浆活动:(1)古近纪林子宗-日贡拉组火山岩;(2)15 Ma构造-岩浆活动结束盆地芒乡组湖相沉积,并形成来庆组火山岩;(3)8 Ma 构造活动造成来庆组火山岩成为盆地主要物源;(4)2.5 Ma盆地发育辫状河,接受北部中拉萨地体物源。第四纪以来,青藏高原南部地貌格局逐渐形成。
孟庆泉
深反射地震剖面测线沿线构造地质剖面(多格错仁-鲸鱼湖段,全长约200 km)(比例尺1:10万)。该段剖面的主要绘制依据是反射剖面测线沿线的野外地质调查和测线所在区域的1:25万区域地质图,结合野外产状数据以及1:25万区域地质图数据用CorelDraw等软件绘制了该构造地质剖面。以1:10万的比例尺绘制的地质构造剖面可以大致反应出反射剖面沿线的地质结构、构造特征。地质构造剖面获得的几何结构信息可为后期深反射地震剖面的构造解译和平衡剖面制作提供浅层的结构约束。
郭晓玉
基于对青藏高原GPS、应力数据的搜集,对青藏高原移动速率和应力变形系统梳理,通过MAPGIS软件展现各点的方向和大小,然后叠加在松潘-甘孜复理石带、北羌塘-昌都-思茅板块、南羌塘-保山地块和冈底斯-拉萨地块几个主要的构造单元上。力图反映在青藏高原整体的应力下各块体具体的变形方式的异同,进一步限定各局部地区具体的变形样式与变形状态。这对深刻理解青藏高原新生代变形模式具有重大意义,同时对指导各地防灾救灾、工程建设有重大指示意义。
王世锋
基于对藏东地区1:25万地质图,1:100万西藏区域地质志的综合分析,搜集三江地区已有地层、岩石和构造研究最新进展,特别是对金沙江缝合带、碧土缝合带和班公湖-怒江缝合带的系统研究,将本区划分成松潘-甘孜复理石带、北羌塘-昌都-思茅板块、南羌塘-保山地块和冈底斯-拉萨地块几个主要的构造单元;在此基础上,将松潘-甘孜地块进一步分成巴颜喀拉地块,甘孜-理塘湖盆体系和中咱地块三个亚单元;北羌塘-昌都-思茅板块细分为:金沙江古特提斯带,昌都地体,兰坪思茅地体,临沧火山岩带及碧土古特提斯带五个单元;南羌塘-保山构造系则被细分为南羌塘地块、保山地块、班公湖-怒江中特提斯带三个构造单元。新的构造单元划分为地震防灾、工程地质、羌塘油气勘探等工作提供了基础数据。
王世锋
基于对藏东地区1:25万地质图,1:100万西藏区域地质志的综合分析,搜集三江地区已有地层、岩石和构造研究最新进展,特别是对金沙江缝合带、碧土缝合带和班公湖-怒江缝合带的系统研究,将本区划分成松潘-甘孜复理石带、北羌塘-昌都-思茅板块、南羌塘-保山地块和冈底斯-拉萨地块几个主要的构造单元;在此基础上,将松潘-甘孜地块进一步分成巴颜喀拉地块,甘孜-理塘湖盆体系和中咱地块三个亚单元;北羌塘-昌都-思茅板块细分为:金沙江古特提斯带,昌都地体,兰坪思茅地体,临沧火山岩带及碧土古特提斯带五个单元;南羌塘-保山构造系则被细分为南羌塘地块、保山地块、班公湖-怒江中特提斯带三个构造单元。新的构造单元划分为地震防灾、工程地质、羌塘油气勘探等工作提供了基础数据。
王世锋
野外调查发现左贡碧土地区的基性岩、超基性岩及其它混杂岩的岩石组合,表明构造混杂堆积的存在。主微量元素与Sr-Nd同位素均在中国科学院地球化学研究所矿床地球化学重点实验室完成。其中主量元素采用PW4400型X荧光仪全岩分析,测定10种元素氧化物含量;微量元素采用ICP-MS电感耦合等离子体质谱分析仪进行测试,ICP-MS由日本东京安捷伦公司制造,型号为Agilent 7700x,分析方法同张鑫等。根据对标准样品GBPC-1de分析结果,分析误差<5%。实验检测依据为GB/T 17672—1999。
王世锋
锆石的分选采用重液和磁选方法在河北省地质队实验室完成。运用阴极发光图像来观测锆石颗粒的内部结构并选取合适的点位用以分析研究。U、Th、Pb 的测定在中国科学院青藏高原研究所LA⁃ICP⁃MS进行,详细分析方法见Li et al(. 2009)。锆石标样与锆石样品以1∶3 比例交替测定。U⁃Th⁃Pb 同位素比值用标准锆石Plésovice(337 Ma,Sláma et al.,2008)校正获得,以标准样品Qinghu(159.5 Ma,Li et al.,2009)作为未知样监测数据的精确度。同位素比值及年龄误差均为1σ。数据结果处理采用ISOPLOT 软件(Ludwig,2001)。在锆石U⁃Pb定年的基础上,选择谐和度较好的年龄点,在与年龄点环带趋势一致的微区圈定Hf同位素点位。锆石Hf 同位素分析利用Neptune Plusma II 多接收等离子质谱仪和 NWR193UC 193 nm激光取样系统上进行,仪器详细步骤参见 Liu et al(. 2008)。激光剥蚀斑束直径一般为60 μm,每一测点包含有10 s 预剥蚀,45 s 剥蚀和30 s 的清洗时间。样品测试过程中以91500 作为标样,其176Hf/177Hf = 0.282 286±12(2σ,n = 21)。
王世锋
我们对碧土地区北澜沧江构造内大面积分布的花岗岩展开花岗岩岩石构造属性研究,主微量元素与Sr-Nd同位素均在中国科学院地球化学研究所矿床地球化学重点实验室完成。其中主量元素采用PW4400型X荧光仪全岩分析,测定10种元素氧化物含量;微量元素采用ICP-MS电感耦合等离子体质谱分析仪进行测试,ICP-MS由日本东京安捷伦公司制造,型号为Agilent 7700x,分析方法同张鑫等。根据对标准样品GBPC-1de分析结果,分析误差<5%。同位素测试实验采用型号为Neptune Plus的MC-ICP-MS双聚焦磁式质谱仪。实验检测依据为GB/T 17672—1999。
王世锋
在对扎西康矿床精细结构解剖的基础上,通过系统的构造解析、地球物理探测及解译,结合浅表地球化学特征,运用扎西康矿床地质-地球化学-地球物理综合勘查模型和预测指标体系开展矿产预测工作,圈定扎西康54线附近的深部找矿靶区1处。青木竹深部靶区位于错那洞祥林地区北西部。综合地质、地球化学、地球物理等信息,在青木竹地区深部圈定了一处铍-锡-钨多金属找矿靶区。地球化学特征显示,在青木竹一带具有较高的铅、锌、锑、银衬值累加异常,显示该地区具有铅锌等低温元素异常。同时,地质填图工作在青木竹地表发现了数条北东向断裂破碎带,宽度1-5m不等,充填石英、铁锰碳酸盐及金属硫化物,表明青木竹存在着受断裂控制的脉状铅锌锑多金属矿化体,与扎西康铅锌多金属矿具有相似的成矿特征。根据错那洞穹窿伸展带向北西向延伸正好可以到达青木竹深部。
张林奎
错那洞Sn-W-Be矿床位于藏南地区,是喜马拉雅地区发现的首例与中新世淡色花岗岩有关的大型锡多金属矿床。矽卡岩中白云母和锡石-硫化物脉中金云母Ar-Ar年龄分别为15.4Ma和15.0Ma,矽卡岩中的锡石U-Pb年龄为14.3Ma。含锡淡色花岗岩的锆石和独居石U-Pb年龄分别为14.9Ma和15.3Ma。上述成岩和成矿年龄在误差范围内完全一致,表明锡钨成矿在成因上与中新世淡色花岗岩有关。矽卡岩型W-Sn-Be的主要成矿机制是水岩反应,锡石-石英脉和锡石-硫化物脉成矿的机制是氧逸度升高、降温和降压引起的流体沸腾,萤石-石英脉沉淀机制是岩浆热液流体与大气降水的流体混合和稀释作用。错那洞穹隆石榴石片岩独居石U-Pb年龄表明在38-26 Ma时发生折返和退变质,并形成少量的伟晶岩脉(34Ma)。错那洞穹隆主要形成于21-18 Ma,是STDS伸展拆离和第二期淡色花岗岩(21Ma)岩浆底辟的共同作用。18-16 Ma,南北向裂谷导致高喜马拉雅的云母发生脱水部分熔融,形成最晚期的含锡淡色花岗岩(16Ma)和控矿断裂系统。含锡淡色花岗岩的高分异演化、流体出熔和岩浆热液流体的共同作用形成错那洞锡多金属矿床。喜马拉雅地区有大量的与错那洞相似的穹隆构造和中新世高分异含锡淡色花岗岩,这个地区有望成为一条新的锡钨稀有金属成矿带。
张林奎
错那洞穹隆是北喜马拉雅片麻岩穹隆带(NHGD)中发现的新成员,穹隆由核-幔-边3 部分组成。 核部由寒武纪花岗质片麻岩组成,幔部由早古生代云母片岩和夕卡岩化大理岩组成,边部由变质沉积岩组成。在穹隆核部后期侵入有淡色花岗岩和伟晶岩脉。 祥林铍锡多金属矿位于错那洞穹隆北部,矿区内发育多条南北向、北东向张性断裂。 通过系统的地表工程控制,在穹隆幔部和断层破碎带内新发现了铍锡多金属工业矿体。 通过错那洞穹隆北部祥林矿区的构造与蚀变填图,矿化类型可初步划分为夕卡岩型、 锡石 石英脉型、 锡石 硫化物型和花岗伟晶岩型。 夕卡岩型矿体赋存在穹隆幔部的夕卡岩化大理岩内,矿化以铍、锡、钨为主,锡品位变化较大。 锡石-石英脉型矿体受北东向张性断裂控制,矿化以锡、铍、 钨为主, 矿石品位相对较富。 锡石-硫化物型矿体受大理岩内的层间滑脱构造控制,富锡,而铍、 钨相对较贫。结合矿体特征研究和矿床类型总结,有利于指导下一步的找矿标志和方向,即锡石-硫化物型铍锡多金属矿和锡石-石英脉型铍锡多金属矿铍、锡、钨品位相对较富,为今后主攻的矿床类型。
张林奎
喜马拉雅淡色花岗岩广泛分布于北喜马拉雅片麻岩穹隆(NHGD)和大喜马拉雅结晶杂岩体(GHC)顶部,一般受滑脱断层控制。这些前构造、同构造和后构造淡色花岗岩的年龄可用于限制分离结构(如藏南分离系统,STDS)的活动。对喜马拉雅东部STDS活动时间的研究比较稀少。在这项研究中,测量了在中国西藏山南市洛扎、库局、肖战和错那洞四个地区,受STDS和NHGD影响的同构造和后构造淡色花岗岩的锆石和独居石U-Th-Pb年代学。结果表明,受STDS影响的洛扎地区最古老的同构造的二云母花岗岩为24 -25 Ma,因此STDS活动的时间在或略早于25 Ma。最年轻的同构造淡色花岗岩是错那洞含地区石榴石的白云母花岗岩,成岩年龄为 18.4 Ma。最古老的未变形后构造淡色花岗岩(不受 STDS 影响)是肖站白云母花岗岩,其年龄为 17.4 Ma 。因此,STDS活动的结束可以限制在18.4-17.4 Ma。 STDS包括三种形式:NHGD(STDS的北延伸)中的滑脱断层,GHC和特提斯喜马拉雅序列之间的内部STDS,以及同形klippes底部的外部STDS。本文对上述三种滑脱带的活动时限进行了综合总结。基于这项工作,该地区STDS向北延伸(塑性变形)时间被认为是28-17 Ma。 GHC的折返主要受顺序剪切控制。第一,GHC顶部的藏南逆冲断层系统(STDS的前身)在45-28 Ma向南逆冲;然后,GHC 中部的高喜马拉雅断层在 28-17 Ma 形成向南延伸的韧性逆冲断层;最后,GHC底部的主中逆冲断层在17-9 Ma向南逆冲。
张林奎
锆石和独居石U-Pb同位素定年和微量元素含量利用LA-ICP-MS同时分析完成。GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193 nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7700e。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu et al., 2015)。每个时间分辨分析数据包括大约20-30 s空白信号和50 s样品信号。锆石U-Pb分析的激光束斑直径24 µm和频率为5Hz,激光能量为80 mJ。锆石U-Pb同位素定年采用标准物质91500 (1062±4 Ma, (Wiedenbeck et al., 2004)) 作为外标同位素校正,采用GJ-1 (608.5±0.4 Ma, (Jackson et al., 2004)) 和Plešovice (337.1±0.4 Ma, (Sláma et al., 2008))作为监控样品。独居石U-Pb分析的激光束斑直径16 µm和频率为2 Hz,激光能量为80 mJ。独居石U-Pb同位素定年采用标准物质44069 (424.9±0.4 Ma, (Aleinikoff et al., 2006))作为外标进行同位素校正,采用Trebilcock (272±4 Ma, (Tomascak et al., 1996))作为监控样品。锆石和独居石微量元素含量处理均采用玻璃标准物质NIST610作为外标进行分馏校正。测试值与推荐值在误差范围内一致,表明仪器稳定,数据准确可靠。对分析数据的离线处理(包括对样品和空白信号的选择、仪器灵敏度漂移校正、元素含量及U-Pb同位素比值和年龄计算)采用软件ICPMSDataCal (Liu et al., 2010)完成。锆石样品的U-Pb年龄谐和图绘制和年龄加权平均计算采用Isoplot/Ex_ver3.75(Ludwig, 2012)完成。结果表明,受藏南拆离系(STDS)影响的洛扎地区,最古老的同构造二云母花岗岩形成年龄为24~25 Ma,因此STDS活动的时间处于或略早于25 Ma。最年轻的同构造淡色花岗岩是错那洞地区含石榴石的白云母花岗岩,形成年龄 18.4 Ma。最古老的未变形后构造无色花岗岩(不受 STDS 影响)是 17.4 Ma 的肖站白云母花岗岩。因此,STDS 活动的结束时间可以限制在 18.4-17.4 Ma。 STDS包括三种形式:NHGD(STDS的北延伸)中的滑脱断层,GHC和特提斯喜马拉雅序列之间的内部STDS,以及同形走断裂底部的外部STDS。
张林奎
北祁连黑山-宽滩山地区磷灰石裂变径迹数据22个,采用LA-ICP-MS方法分析获得,年龄误差<20%。所获得的磷灰石裂变径迹年龄范围为22.3±2.6Ma至175±18Ma,裂变径迹长度范围为11.17±2.26μm至13.63±1.93μm。基于该数据的热史模拟结果表明,黑山-宽滩山地区经历了5次快速冷却剥露事件,包括早侏罗世、早白垩世、晚白垩世、始新世和中中新世。其中,新生代之前的快速冷却剥露事件可能与中生代亚洲大陆南缘汇聚事件的远程效应有关,表明北祁连地区是新生代之前就已经存在的构造薄弱带;新生代早期的快速冷却剥露事件对应着印度-欧亚板块碰撞,表明印度-欧亚板块碰撞的远程效应在新生代早期就已经影响到现今青藏高原北缘地区,暗示了先存构造薄弱带在印度-欧亚板块碰撞远程效应下会快速复活;中中新世以来的快速冷却剥露事件表明青藏高原在此时的快速生长。 北祁连红柳峡剖面沉积物碎屑锆石U-Pb数据8组,采用LA-ICP-MS方法分析获得,年龄误差<10%。这些碎屑锆石U-Pb年代学结果,结合潜在源区北山-黑山-宽滩山和北祁连地区的锆石U-Pb年代学结果,表明红柳峡剖面火烧沟组和白杨河组物源来自于北部的北山-黑山-宽滩山地区,疏勒河组物源来自于南部的北祁连地区。该结果表明北祁连地区在中中新世显著抬升,暗示青藏高原在此时的快速生长。
林秀斌
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件