作物物候是指农作物达到关键生育期时对应的日期。华北平原的主要种植模式是冬小麦和夏玉米轮作,冬小麦和夏玉米关键物候期的变化反映了其生长发育对气候条件和生产管理措施的响应情况和适应性,是评估该地区作物生长状态、灌溉耗水情况的关键参数。 本研究以华北平原冬小麦-夏玉米稳定种植区为研究范围,使用1982-2015年GIMMS3g NDVI数据,综合曲线最大值、最小值、斜率、百分量值等多个特征参数,提取了冬小麦和夏玉米的关键物候期:开始日(SOS),峰值日(PEAK)和结束日(EOS)。提取物候与农气站点记录物候期进行对比,R²在0.9以上,准确度高。(详细过程请见参考文献) 该物候数据集可应用于该地区计算冬小麦和夏玉米生产力、对气候变化响应、灌溉耗水量估算等相关研究。
雷慧闽
华北平原是我国重要的粮食产区,耕地面积广大,种植结构复杂,准确识别该地区典型农作物分布,及时追踪种植结构的动态变化,是检测作物生长、评估作物灌溉耗水和优化农业水资源配置的重要基础。 本研究使用遥感MOD13Q1 NDVI数据,经傅里叶变换后选取0-5级谐波的振幅和初相位作物分类底图。基于现场调研的实测样本点和最大似然监督分类,识别了2001-2018年华北平原6类典型作物(冬小麦-夏玉米、冬小麦-水稻、其他双峰类作物、春玉米、棉花、其他单峰类作物)的种植区分布。识别结果经过混淆矩阵、与县级统计年鉴的冬小麦播种区比较以及与Landsat提取冬小麦占比比较进行了精度评价,均表现良好,准确度高。(详细过程请看参考文献) 数据可被应用于华北平原作物生产、灌溉耗水估算、地下水保护等相关研究分析。
雷慧闽
本数据集基于2020年对西藏一江两河区、藏东南、川西藏东横断山区农田生产经营管理实地调查的数据。样本选择对西藏一江两河区、藏东南、川西藏东横断山区, 首先,运用典型抽样方法,确定样本县、样本镇、样本村; 然后根据农户的基本情况,在每个县抽取1个样本乡镇,每个乡镇抽取1个样本村,最后,运用随机抽样方法,在每个样本村随机抽取1个农户。该数据集访问记录了调查地块的基本信息,受访农户的基本情况,包括受教育水平、消费水平等信息,农业种植面积等。该数据集为实地调查、访问获得数据,可用于分析青藏高原农业种植基本情况分析,为进一步完善政府扶持政策的对策建议提供理论依据。
唐亚伟
本次调查区域覆盖四川泸定,康定,雅江,理塘,巴塘等地区,涉及作物包括青稞、小麦、玉米、土豆及番茄等露地蔬菜,采用干漏斗法提取,共获得中小型土壤动物样品171份,捕获土壤动物800余只。样品保存于中国科学院成都生物研究所,样品采集后借助体式显微镜鉴定,其中,以四川巴塘地区的0-15cm 土层数量最多,鉴定有208只中小型土壤动物;其次是四川康定的0-15 cm 土层,观察到有130只中小型土壤动物。
孙晓铭
该数据集为青藏高原主要农作物青稞和小麦的产量历史数据,包括要素为播种面积和产量,涵盖年份包括1988年-2018年,涵盖区域包括青藏高原范围内部分州市及区县。数据来源于《西藏统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《甘肃统计年鉴》、《云南统计年鉴》及阿坝藏族羌族自治州和甘孜藏族自治州农牧局,精度同数据摘取的统计年鉴。青稞和小麦是青藏高原主要的农作物,该数据集对于研究青藏高原粮食安全、农业生产等方面具有重要价值。
潘志芬
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
该数据来源于青藏高原农田生态系统科考队于2020年开展野外调查获取的无人机影像资料,调查区域涉及四川、西藏318沿线的农田生态系统集中区县,包括四川的理塘、巴塘,西藏的八宿、林芝、日喀则的江孜、白朗等区域,记录地物对象包括青稞、小麦等传统农作物,以及部分区域的露地蔬菜、设施大棚;飞行高度一般在50-300m,分辨率较高,拍摄设备为大疆御2Pro,图片自带GIS经纬度、海拔等信息,可用于卫星遥感的地面参考或校正数据。
伍小刚
该数据集为青藏高原农业生产经营管理历史数据,从青藏高原地区各市州的历年统计年鉴中收集整理,经过电子化后提取汇总而成;该数据包含了青藏高原范围内部分区县1995-2018年的农田有效灌溉面积数据。农田有效灌溉面积是重要的生产经营管理指标,青藏高原地区是典型的旱作农业为主,绝大部分地区农业灌溉以自然降水为主,人工灌溉所覆盖的区域较少,该数据对于分析青藏高原农田生态系统水资源利用、水足迹等有重要意义,数据以县为单位进行的统计,其结果可到县域尺度。
何秀林
祁连山北麓黑河流域中游张掖盆地玉米产量预测数据(2001-2015)是基于生态水文耦合模型HEIFLOW模拟结果将张掖市的实际玉米产量数据降尺度得到的。HEIFLOW模型是一个三维分布式生态水文模拟,由一个地表水模型(PRMS)、一个地下水模型(MODFLOW)和几个生态模块组成,能较为完整的描述流域水循环和植被生态过程。生成此数据的建模细节请参考Han et al. (2021),关于HEIFLOW模型的技术细节请参考Han et al. (2021),Tian et al. (2018)和Sun et al. (2018).
郑一, 韩峰, 田勇
本数据集包括青藏高原区域内甘肃、青海、四川、西藏、新疆和云南2000-2015年的社会、经济、资源等相关指标数据,数据来源于《甘肃统计年鉴》、《青海统计年鉴》、《四川统计年鉴》、《西藏统计年鉴》、《新疆统计年鉴》、《云南统计年鉴》、《中国县(市)社会经济统计年鉴》以及中经网、国泰安等。统计尺度为县级单元尺度,包括甘肃省的玉门市、阿克塞哈萨克自治区、肃北蒙古族自治县等26个县级单位,青海省的德令哈市、乌兰县、天峻县等41个县级单位,四川省的石渠县、若尔盖县、阿坝县等46个县,西藏的日土县、改则县、班戈县等78个县,新疆省的乌恰县、阿克陶县、莎车县等14个县,云南省的德钦县、中甸县、福贡县等9个县;变量包括县域GDP、第一产业增加值、第二产业增加值、第三产业增加值、规模以上工业企业工业总产值、社会消费品零售总额、居民储蓄存款余额、粮食产量、农作物总播种面积、普通中学在校生数和土地面积。该数据集可用于青藏高原社会、经济、资源状况评价等。
陈义忠
该数据集于2021年5月底至6月在青藏高原野外考察期间使用无人机航拍所得,航片数据量为 3.4 GB,共包含330余张无人机航片。拍摄地点主要位于西藏的拉萨、林芝,云南省的大理、怒江,四川甘孜、阿坝、凉山等州市地区的道路沿线、居民点及其周边地区。所拍航片主要反映拍摄时点当地的土地利用/覆被类型、设施农业用地分布、植被覆盖度等信息,航片具有经纬度和海拔等空间位置信息,不仅可以为土地利用分类提供基础验证信息,而且还能通过计算植被覆盖度,为大尺度区域植被覆盖度的遥感影像反演等工作提供参考。
吕昌河, 张泽民
青藏高原作为世界屋脊,亚洲水塔,世界第三极,是中国乃至亚洲重要的生态安全屏障。随着社会经济的快速发展,人类活动明显增加,对生态环境的影响越来越大。选取耕地、建筑用地、国道、省道、铁路、高速公路、GDP和人口密度8个因素为威胁因子,并基于专家打分法确定威胁因子的属性,对青藏高原生境质量进行评估,从而获得1990、1995、2000、2005、2010和2015年共6期青藏高原农牧区生境质量的数据集。制作生境质量的数据集将有助于探索青藏高原的生境质量,并为政府制定青藏高原的可持续发展政策提供有效支持。
刘世梁, 刘轶轩, 孙永秀, 李明琦
该数据集由2020年8月青藏高原野外考察期间无人机航拍所得,数据大小为10.1 GB,包括1500余张航片。拍摄地点主要包括拉萨、山南、日喀则等地区道路沿线、居民点及周边地区。航片主要反映了当地土地利用/覆被类型、设施农业分布、草地盖度情况等信息,航片均具有经纬度和海拔信息,可为土地利用/覆被遥感解译工作提供了较好的验证信息,还可用于植被覆盖度的估算工作,为研究区域土地利用研究提供了较好的参照信息。
吕昌河, 刘亚群
“一带一路”沿线的34个关键节点区域机场数据是从互联网收集并再加工处理而来的。该数据通过谷歌和百度搜索引擎获得各个国家的机场信息,并对机场相关网页信息进行解析,查看机场的统计数据、特征。提取了34个关键节点区域内各个机场的位置、名称、类型、所在城市、所属国家等核心信息。基于统计资料、电子资料最终整合成机场基础设施要素数据产品。该机场数据可为“一带一路”沿线关键节点和区域开展社会经济基础设施、交通运输等研究提供重要的基础数据。
葛咏, 凌峰
第三极1:100万机场及跑道分布数据集包括:机场(Tibet_Airport)及机场跑道(Tibet_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,D_WGS_1984基准面。
ADC WorldMap
南极1:100万机场分布数据集包括南极范围内机场(Antarctic_Airport)及机场跑道(Antarctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,南极地区数据集为南极专用投影参数(South_Pole_Stereographic)。
ADC WorldMap
北极1:100万机场分布数据集包括北极范围内机场(Arctic_Airport)及机场跑道(Arctic_Airport_runways)矢量空间数据及相关属性数据:机场名称(Name)、机场国家名称(CNTRY_NAME)、机场国家缩写(CNTRY_CODE)、纬度(LATITUDE)、经度(LONGITUDE)。 数据来自1:100万ADC_WorldMap全球数据集,数据经过拓扑,入库等数据质量检查,是全面、最新和无缝的地理数字数据。 世界地图坐标系统是经纬度,WGS84基准面,北极地区数据集为北极专用投影参数(North_Pole_Stereographic)。
ADC WorldMap
为了解析蔓菁如何、何时进入青藏高原,探讨蔓菁在青藏高原传播与驯化与早期人类活动的高原定居和古丝绸交流之间的关系,2018年6月,课题组利用三代基因组测序技术,对一个青藏高原的蔓菁自交F1代品种进行全基因组测序和De Novo组装,得到组装基因组大小为409.69 Mb,Contig N50为1.21 Mb。这一结果可为研究植物扩散与人类活动之间的关系提供遗传基础。高原各地的传统蔓菁品种是人类选择和基于区域气候环境自然选择的综合作用结果,因此这项研究有助于揭示人工驯化和人类选择对蔓菁的遗传分化的影响,以及蔓菁适应高原生态环境的适应性机制。
段元文
本数据集包括拉萨农田试验站观测的春青稞试验样地的生物量和光合作用数据以及当雄草地试验站观测的气象数据。时间范围为2006-2009年。 生物量观测方法:每个样方取样面积25cm*25cm;光合作用数据观测:仪器为LiCor-6400。 生物量数据是人工根据记录本录入;光合数据是仪器自动记录;气象数据日值中的平均风速、主风向、气温、大气压和相对湿度用半小时数据进行日平均所得,降水量和总辐射数据是观测系统自动记录数据。 生物量数据的观测过程中,严格按照农学方法,可以应用于农业生产力的估算;光合数据观测过程中,仪器的操作、观测对象的选择等严格按照专业要求进行,可以用在植物叶片光合参数模拟和生产力估算中。 青藏高原农田生态系统观测数据,包含:1)地上生物量;2)CO2响应光合数据;3)光响应光合数据;4)当雄监测点气象数据日值。 数据采集地点中国科学院拉萨农业生态试验站,经度:91°20’,纬度:29°41’,海拔:3688m;当雄高寒草甸碳通量观测站,经度:91°05′,纬度:30°25′,海拔:4333m。
张宪洲
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件