本数据集数据源为:欧洲航天局多光谱卫星Sentinel-2卫星。其中包含2017年青藏高原湖泊CDOM和DOC年均值数据。使用方法:基于实测样点的CDOM数据,提取影像反射率信息,通过皮尔森相关性分析选择最佳预测变量,构建多元逐步回归CDOM 预测模型,获得青藏高原水体CDOM结果。由于CDOM与DOC具有很好的相关性,所以DOC预测结果通过CDOM计算。最终青藏高原CDOM模型的调整R²达到0.81。
宋开山
土壤水分是全球观测系统提出的关键气候变量之一,在陆气相互作用中起着重要作用。植被光学厚度是微波辐射传输过程中衡量植被衰减特性的关键参数,在植被水力学、植被物候学和生物量研究领域中有着广泛应用。 本数据集基于AMSR-E和AMSR2交叉定标亮度温度数据,使用多通道协同反演算法(MCCA)获得了全球第一套具有极化差异的多波段(C/X/Ku)植被光学厚度产品及土壤水分产品。该算法(MCCA)能综合考虑多个通道之间的物理关系,能同时反演出土壤水分和具有频率差异,极化差异的植被光学厚度。 本数据集使用了来自国际土壤水分观测网络和美国农业部发布的共25个土壤水分密集观测站网进行验证,结果表明,在目前公开的与AMSR-E/2相关的土壤水分数据集中,MCCA土壤水分的无偏均方根误差(ubRMSE)最小。此外,MCCA反演得到的具有频率和极化差异的植被光学厚度数据可为植被生理过程中的水通量研究提供新的见解。
胡路, 赵天杰, 居为民, 彭志晴, 姚盼盼, 施建成
本数据集来源于论文:(1)He, C., Liu, Z., Tian, J., & Ma, Q., (2014). Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective. Global change biology, 20(9), 2886-2902.(2)Xu, M., He, C., Liu, Z., Dou, Y. (2016). How Did Urban Land Expand in China between 1992 and 2015? A Multi-Scale Landscape Analysis. PLoS ONE 11(5): e0154839。本数据集的制作流程主要包括:(1)对夜间灯光数据、植被指数数据和地表温度数据进行预处理,得到了1992-2020年覆盖全国范围的多源遥感数据;(2)通过经济分区、选取训练样本、支持向量机分类和年际序列订正,获取城市建成区动态信息。利用Landsat TM/ETM+数据进行精度评价,得到Kappa系数为0.60,总体精度为92.62%。该数据集已用于评估城市扩展过程对自然生境和耕地的影响,能够为理解中国城市扩展过程及其影响提供数据支持。
何春阳, 刘志锋, 许敏, 卢文路
作物物候是指农作物达到关键生育期时对应的日期。华北平原的主要种植模式是冬小麦和夏玉米轮作,冬小麦和夏玉米关键物候期的变化反映了其生长发育对气候条件和生产管理措施的响应情况和适应性,是评估该地区作物生长状态、灌溉耗水情况的关键参数。 本研究以华北平原冬小麦-夏玉米稳定种植区为研究范围,使用1982-2015年GIMMS3g NDVI数据,综合曲线最大值、最小值、斜率、百分量值等多个特征参数,提取了冬小麦和夏玉米的关键物候期:开始日(SOS),峰值日(PEAK)和结束日(EOS)。提取物候与农气站点记录物候期进行对比,R²在0.9以上,准确度高。(详细过程请见参考文献) 该物候数据集可应用于该地区计算冬小麦和夏玉米生产力、对气候变化响应、灌溉耗水量估算等相关研究。
雷慧闽
华北平原是我国重要的粮食产区,耕地面积广大,种植结构复杂,准确识别该地区典型农作物分布,及时追踪种植结构的动态变化,是检测作物生长、评估作物灌溉耗水和优化农业水资源配置的重要基础。 本研究使用遥感MOD13Q1 NDVI数据,经傅里叶变换后选取0-5级谐波的振幅和初相位作物分类底图。基于现场调研的实测样本点和最大似然监督分类,识别了2001-2018年华北平原6类典型作物(冬小麦-夏玉米、冬小麦-水稻、其他双峰类作物、春玉米、棉花、其他单峰类作物)的种植区分布。识别结果经过混淆矩阵、与县级统计年鉴的冬小麦播种区比较以及与Landsat提取冬小麦占比比较进行了精度评价,均表现良好,准确度高。(详细过程请看参考文献) 数据可被应用于华北平原作物生产、灌溉耗水估算、地下水保护等相关研究分析。
雷慧闽
地表实际蒸散发是陆表水循环的关键环节,同时也是能量平衡的重要支出项,且与地表碳收支密切相关,其准确估算不仅对于研究地球系统和全球气候变化具有重要意义,而且对于水资源有效开发利用、农作物需水生产管理、旱情监测和预测、天气预报等方面具有十分重要的应用价值。ETMonitor全球逐日1公里分辨率地表实际蒸散发数据集是基于多参数化、适用于不同土地覆盖类型的地表蒸散发遥感估算模型ETMonitor计算得到,输入数据主要采用的遥感数据包括GLASS产品(叶面积指数、植被覆盖度和反照率)、MODIS产品(地表覆盖、积雪覆盖)、动态地表水体覆盖、ESA CCI土壤水分、GPM降水等,并结合欧洲中期天气预报中心的ERA5全球大气再分析数据等。利用ETMonitor模型在日尺度上估算1公里分辨率像元尺度的植被蒸腾、土壤蒸发、冠层降水截留蒸发、水面蒸发和冰雪升华,并对各分量求和获得逐像元逐日蒸散发量。利用FLUXNET等地面观测数据进行直接验证,估算结果与地面实测数据一致性较好,逐日蒸散发验证RMSE为0.93mm/d,误差为0.08 mm/d,相关系数为0.75。本数据集将ETMonitor估算获得的逐日蒸散发值(https://doi.org//10.12237/casearth.6253cddc819aec49731a4bc2)进行累积求和运算,获得逐月蒸散发,并转为经纬度投影进行公开发布。本数据集覆盖全球,时间步长为每月,空间分辨率为1公里,单位为mm/月,数据类型为整型,缩放系数为0.1,无效值填充-1。
郑超磊, 贾立, 胡光成
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
及时准确地监测绿洲的时空格局和动态变化对干旱区社会经济的可持续发展至关重要。本研究基于1986年、1990年、1995年、2000年、2005年、2010年、2015年、2018年、2020年共计9期Landsat TM/OLI影像数据,采用OSTU阈值法和人工目视解译相结合的方法获取1986~2020年河西走廊绿洲分布数据,并结合高分辨率Google Earth影像和实地验证数据基于混淆矩阵的方法建立随机样点验证绿洲提取结果的准确性。河西走廊绿洲数据的总体精度超过94%,Kappa系数超过0.88。本数据集可以为河西绿洲生态环境保护提供数据支持。
颉耀文, 张学渊, 刘怡阳, 黄晓君, 李汝嫣, 宗乐丽, 肖敏, 秦梦瑶
青藏高原六大外流河(黄河、金沙江、雅砻江、怒江、澜沧江、雅鲁藏布江)平滩流量条件下河流表面SHP矢量数据,以1km为步长的平滩流量下河宽和面积的SHP矢量和XLS表格数据。 基于现场实测水文和大断面数据(1967-2020年),结合洪水频率分析,确定六大水系沿程的平滩流量、日期和河宽;采用MNDWI指数分别从Sentinel-2(2017-2020年)和Landsat5/7/8(1984-2020年)影像中提取平滩流量下河流表面矢量。 该数据库可作为全球水文数据集的补充,为研究青藏高原河床演变、河流生态、水文模拟、河流水-气界面物质交换等提供基础数据。
李丹, 薛源, 覃超, 吴保生, 陈博伟, 汪舸
归一化植被指数(Normalized Difference Vegetation Index , NDVI)广泛应用于植被监测。本数据集利用2000-2020年青藏高原区域所有可用的Landsat 5/7/8数据(影像10万+),通过MODIS-Landsat数据融合算法(gap filling and Savitzky–Golay filtering;GF-SG),重建了青藏高原植被区域2000-2020年高时空分辨率(30米-8天)NDVI时间序列数据集(QTP-NDVI30)(算法细节请参考论文)。 本数据集具有良好的验证精度。定量评价结果显示重建NDVI影像数据的平均绝对误差MAE为0.02,平均相关系数R为0.96,图像结构相似性SSIM为0.94。选取典型区域与PlanetScope 3米空间分辨率影像比较,空间细节信息得到了较好的保持(产品评价细节请参考论文)。 本数据集地理坐标系为GCS_WGS_84, 空间范围覆盖青藏高原植被区域,植被区域定义为7-9月平均NDVI大于0.15。
曹入尹, 徐子超, 陈洋, 沈妙根, 陈晋
植被的净初级生产力(Net Primary Productivity,NPP)指绿色植物在单位时间、单位面积上由光合作用产生的有机物质总量(即总初级生产力,Gross Primary Productivity,GPP)中扣除自养呼吸后的剩余部分,NPP作为陆地生态系统的水循环、养分循环和生物多样性变化的基础,是估算地球支持能力和评价陆地生态系统可持续发展的重要生态指标。本数据集包括祁连山区域2021年月度合成30m NPP产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算NPP。
吴俊君, 李艺, 仲波
叶面积指数(Leaf Area Index,LAI)定义为地面单位投影面积内叶片总面积的一半,是描述植被的核心参数之一。LAI控制着植被的许多生物、物理过程,如光合、呼吸、蒸腾、碳循环和降水截获等,同时为植被冠层表面最初的能量交换提供定量化的信息,是一个十分重要的研究植被生态系统结构和功能的参数。本数据集包括祁连山区域2021年月度合成30m LAI产品。采用最大值合成 (Max value composition, MVC) 方法,利用Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算LAI。
吴俊君, 李艺, 仲波
归一化植被指数(Normalized Difference Vegetation Index,NDVI)是近红外波段的反射率值与红光波段的反射率值之差比上近红外波段的反射率值与红光波段的反射率值之和。植被指数合成是指在适当合成周期内选出植被指数最佳代表,合成一幅空间分辨率、大气状况、云状况、观测几何、几何精度等影响最小化的植被指数栅格图像。本数据集包括祁连山区域2021年月度合成30m植被指数产品。采用最大值合成(Max value composition, MVC)方法,利用Landsat 8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成。
吴俊君, 李艺, 仲波
植被覆盖度(Fractional Vegetation Coverage,FVC)定义为植被冠层或叶面在地面的垂直投影面积占植被区总面积的比例,是衡量地表植被状况的一个重要指标。本数据集植被覆盖度作为反应植被覆盖状况的评价指标,0%表示地表像元内没有植被即裸地,值越高表明区域内植被覆盖越大。本数据集包括祁连山区域2021年月度合成30m地表植被覆盖度产品。采用最大值合成(Max value composition, MVC)方法,利用 Landsat8和sentinel 2红光和近红外两个通道的反射率数据,实现对地表月度NDVI产品的合成,进而计算FVC。
吴俊君, 李艺, 仲波
充分利用多源植被分类/土地覆盖分类产品各自的优势,通过专门设计与青藏高原植被类型相适应的植被分类体系,选用集成分类方法,在数据可靠性的基础上遵循一致性的原则,制作了青藏高原现状植被图,其在现势性、分类体系的针对性和分类精度上均表现更优。从分类结果的现势性来看,青藏高原现状植被图较早期中国植被图能更好地反映青藏高原植被覆盖现状;从分类体系的针对性来看,青藏高原现状植被图采用了针对青藏高原植被专门设计的分类体系,有利于从多源数据产品中充分提取出具备高可靠性和一致性的植被覆盖信息;从分类精度来看,青藏高原现状植被图的总体精度(78.09%,Kappa系数0.75)较已有相关数据产品提高了18.84% ~ 37.17%,特别是对草地、灌丛等植被类型的分类精度有明显提升。
张慧, 赵涔良, 朱文泉
中国2000-2020年去云积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为8天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。
肖鹏峰, 胡瑞, 张正, 秦棽
雅鲁藏布江流域内巨量固体碎屑物质是记录青藏高原隆升剥蚀历史的重要组成部分之一,不同类型松散沉积物是固体碎屑物质差异输运的直接反映,揭示其空间分布规律及沉积总量,对于深入理解青藏高原的隆升与剥露过程具有重要参考价值。该数据集共包括雅鲁藏布江流域松散沉积物类型及其空间分布图集、厚度空间分布图集和沉积总量估算表等三类图表数据集,以遥感解译与地质填图为主要技术方法,全面厘清了雅鲁藏布江全流域范围内(16个复合子流域)松散沉积物的类型及其空间展布特征,并依据全流域松散沉积物厚度实测数据初步估算了沉积总量。巨量松散沉积物也是流域内滑坡、泥石流、洪沙灾害的重要物质来源,查明其空间展布规模与总量不仅对揭示沉积物源汇过程中记录的地表环境变化、区域构造运动、气候变化、生物地球化学循环等关键信息具有理论意义,同时对高原生态环境监测与保护、洪沙灾害预警与防治、重大基础工程建设和水土保持等具有重要应用价值。
林志鹏, 王成善, 韩中鹏, 白雅俪格, 王新航, 张建, 马星铎, 胡太宇, 张晨敬
本数据集包括祁连山地区2021年逐日地表蒸散发产品,产品分辨率为0.01°。采用高斯过程回归(Gaussian Process Regression,GPR)算法,实现对RS-PM (Mu et al., 2011)、SW (Shuttleworth and Wallace., 1985)、PT-JPL (Fisher et al., 2008)、MS-PT (Yao et al., 2013)、SEMI-PM (Wang et al., 2010a)、SIM (Wang et al.2008) 等6种蒸散发产品的集成。参与蒸散发产品生产的驱动数据包括MODIS(NDVI、Albedo、LAI、PAR),MERRA-2气象再分析数据等。
姚云军, 刘绍民, 尚珂
中国2000-2020年逐日积雪反照率产品数据集地理空间范围为72 - 142E,16 - 56N,采用等经纬度投影,空间分辨率0.005°。数据集时间范围覆盖2000年1月1日至2020年12月31日,时间分辨率为1天。数据包含6个要素:黑空反照率(Black_Sky_Albedo)、白空反照率(White_Sky_Albedo)、太阳天顶角(Solar_Zenith_Angle)、云标识(Cloud_Mask)、林区校正标识(Forest_Mask)和反演情况标识(Abnormal_Mask)。黑空反照率要素记录了反演得到的黑空反照率,计算因子为0.0001,数据范围为0-10000。白空反照率要素记录了反演得到的白空反照率,计算因子为0.0001,数据范围为0-10000。太阳天顶角要素记录了太阳天顶角度,计算因子为0.01,数据范围为0-9000。云标识要素记录了像元是否为云,值为0表示非云,值为1表示为云。林区校正标识要素记录了像元是否作为森林类型像元被校正过,值为0表示未校正,值为1表示已校正。反演情况标识要素记录了像元所对应的黑空反照率及白空反照率的反演结果是否为小于0或大于10000的异常值,值为0表示非异常值,值为1表示为异常值。数据集基于MODIS地表反射率产品MOD09GA,积雪产品MOD10A1/MYD10A1和全球数字高程模型SRTM数据,在ART模型基础上发展了积雪反照率反演模型,并利用GEE和本地端交互生产而来。为了评估ChinaSA的反演质量,利用地面台站的观测数据提出了样方观测验证方法,验证了积雪反照率产品的精度,并与常用的四种反照率产品(GLASS、GlobAlbedo、MCD43A3和SAD)进行了精度对比。验证结果表明,ChinaSA在所有验证中精度都优于其他产品,均方根误差小于0.12,在森林区域的均方根误差能达到0.021。
肖鹏峰, 胡瑞, 张正, 秦棽
华北平原(NCP)是中国最重要的农业生产基地之一,其面积约14万平方公里。除了从黄河取地表水进行渠灌,华北平原还开采大量地下水用于灌溉。高时空分辨率且连续完整的逐日蒸散(ET)估算,将极大提高我们对整个NCP农业用水消耗的认识,服务于农业水资源高效利用。基于双源能量平衡模型(TSEB)和数据融合,本研究在华北平原生成1 km空间分辨率和日尺度,且时间跨度为2008年1月至2019年12月的蒸散数据集。该数据集时空连续完整,且具有较高的空间分辨率。相较于其他产品,该数据集具有可靠的精度,甚至好于已发表的结果。此外,该数据集和相关方法对NCP以及其他农作物种植区的多尺度变化和趋势分析具有重要价值。
张才金, 龙笛
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件