全球3小时河道洪水再分析数据GRFR,包括1)1980-2019年全球0.05度,3小时/日格点陆面产流数据。2)全球294万条河段(基于90m数字高程模型提取),3小时/日天然径流模拟数据。3)全球3小时河道洪水事件数据。4)基础地形数据MERIT-Basins。 该数据集以分布式水文模型VIC和河道汇流模型RAPID为模型链核心,集合一系列多源数据和模型手段构建的全球高分辨率高精度天然河川径流模拟系统模拟而成。基于美国6000余个站点3小时和全球14000余个站点日径流观测资料的精度评估表明,该数据能够较好地再现3小时和日尺度径流过程,同时能够较好地捕捉洪水事件。详细过程请参阅参考文献。 该数据集为遥感卫星径流反演算法开发、全球洪水特性分析和物理机制分析尤其是无资料地区提供了强有力的新数据支撑。
杨媛, 潘铭, 林佩蓉
全球294万条河段的天然径流量模拟数据产品,单位m3/s。本数据是基于VIC水文过程模式与RAPID矢量河网汇流模型模拟得到。其中陆面水文过程模式空间分辨率为0.25°,矢量汇流模式中的河网数据基于90-m MERIT Hydro水文矫正地形数据产品提取。产流部分经过基于机器学习得到的径流特征值进行参数率定,并基于多分位数径流特征值进行了格点尺度的产流偏差矫正,经全球1.4万个径流观测站点验证,数据产品具有较优的验证精度。
林佩蓉, 潘铭, 杨媛
采用三个不同的数据源,包括1920年代的民国初期地图、1960年代的数字化地形图和1970-2020年的Landsat MSS/TM/ETM+/OLI影像。1920年代民国初期地图进行了扫描、几何校正和地理参考校正。1960年代使用1:250 000的地形图。所有地图都是以Albers等圆锥投影法进行地理参照,均方根(RMS)误差小于1.5个像元。针对早期地图,选择目视解译和手工数字化来对湖泊边界进行矢量化。从1990年开始,对Landsat影像采用半自动的水体分类方法来区分水体和非水体信息,然后提取湖泊边界,并通过与原始Landsat图像的比较进行目视检查和人工编辑。
张国庆, 冉有华
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 柴晨好
本数据是基于气象观测数据、水文站点数据,结合各种同化数据和遥感数据,通过耦合积雪、冰川和冻土物理过程的青藏高原多圈层水文模型系统WEB-DHM(基于水和能量平衡的分布式水文模型)制备生成,时间分辨率为月尺度,空间分辨率为5km,原始数据格式为ASCII文本格式,数据种类包括格网径流与蒸发(若蒸发小于0,则表示凝华;若径流小于0,则表示当月降水小于蒸发)。若asc无法在arcmap中正常打开,请将asc文件前5行顶格。
王磊, 刘虎
水是人类赖以生存与发展的物质基础,也是我们感知和应对气候变化的重要媒介。受独特季风气候与阶梯状地形影响,中国水资源分布极不均匀,缺水问题突出,是全球水资源极度脆弱的地区之一。人类活动与气候变化的复合作用,进一步加剧了中国水循环过程研究的复杂性。因此,迫切需要一套质量可靠、时空连续,且剔除大规模人类活动影响下的天然径流数据,为水循环研究提供本底数据支持。然而,中国现有的天然径流资料缺失率较高,参考站点密度不足,在年际和季节变化尺度上存在较大偏差,难以客观揭示大尺度径流变化的自然规律。本研究建立了一套长时序、全覆盖、高质量、时空连续的天然河川径流资料,命名为CNRD v1.0(The China Natural Runoff Dataset version 1.0)。CNRD v1.0提供1961年1月1日至2018年12月31日中国0.25°×0.25°天然径流估算量日值、月值和年值。200个有资料水文站点率定结果显示,模型参数在大多数站点得到了充分校准,模型纳什效率系数(NSE)在率定期和验证期的平均值分别为0.83和0.80。无资料流域交叉验证结果显示,MPR方法提供了最佳的区域化方案,率定期 NSE中位数为0.76,验证期NSE中位数为0.72。结果总体显示水文模型参数率定和区域化表现良好,可用于长时序径流资料重建。另外,通过与两套全球径流格点数据集ISIMIP和GRUN比较,发现CNRD v1.0数据集的径流空间分布上过渡更加连续,且在表示中国复杂地形和气候理分划下的水资源空间分布方面优于全球径流数据集。
缪驰远, 苟娇娇
水体覆盖是水循环、能量平衡的基本参数之一。本数据集以1982-2020年AVHRR逐日反射率时间序列为基础,生产了青藏高原39年超长期逐日水体制图产品(包含水体结冰信息)。本数据集包含39个文件夹,以年份命名(从1982年到2020年),每个文件夹包含365/366个GeoTiff文件,每个文件包含两个波段:(1)水体制图波段(WaterLayer);(2)质量控制信息波段(QC)。本产品为青藏高原水体遥感监测提供数据支撑。
计璐艳
本数据包括青藏高原中部的25个湖泊的细菌16S核糖体RNA基因序列数据,样品采集时间为2015年7月-8月,使用2.5升采样器对地表水进行了三次重复采样。样品采集后立即带回北京青藏高原研究所生态实验室,所取盐湖的盐度梯度为0.14 ~ 118.07 g/L。本数据为扩增子测序结果。将湖水在0.6 atm过滤压力下浓缩到至0.22μm膜上,然后通过FastDNA SPIN Kit 提试剂盒提取DNA,16S rRNA基因片段扩增引物为515F (5'-GTGCCAGCMGCCGCGGTAA-3') and 909r (5'-GGACTACHVGGGTWTCTAAT-3')。使用Illumina MiSeq PE250测序仪进行对端测序,原始数据通过Mothur软件进行分析,序列与Silva128数据库进行比对并以97%的同源性将序列划分为操作分类单元(OTU)。本数据可用于分析青藏高原湖泊微生物多样性研究。
孔维栋
通过国家气象信息中心、水文年鉴、中国统计年鉴及中国科学院地理科学与资源研究所等单位收集了水文气象及、土地利用及DEM等基础数据。采用具有自主知识产权的分布式时变增益水文模型(DTVGM: distributed time-variant gain model)进行建模,以100平方千米阈值将青藏高原划分成10937个子流域。在黑河、雅鲁藏布江、长江源、黄河源、雅砻江、岷江、澜沧江流域选取了14个流量站观测日流量数据对模型进行了拟定与验证。日尺度纳西效率系数达到0.7以上相关系数达到0.8以上。模型模拟出1998-2017年水循环过程,给出全青藏高原空间0.01度日尺度径流时空分布。
叶爱中
该数据集包含北极两条大河 (北美:Mackenzie,欧亚:Lena)的观测及模拟的入海径流量及各径流成分(总径流、冰川径流、融雪径流、降雨径流)的组成,时间分辨率为月。该数据是利用项目组制作的气象驱动场数据驱动发展的VIC-CAS模型,利用观测的径流及遥感积雪数据进行校正,径流的模拟的Nash效率系数达到0.85以上,模型也能较好地模拟积雪的空间分布和年内、年际变化。 该数据可用于分析长期的流域径流的组成及变化原因,加深对北极大河径流变化的理解。
赵求东, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1971-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为0.1degree,时间分辨率为月。该数据集可用于长期气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
本产品提供了项目组发展的陆面模式VIC-CAS数值模拟的1998-2017年北极两条大河(北美大陆:Mackenzie,欧亚大陆:Lena)的水循环关键变量数据集,包括:降水量、蒸散发、地表径流、地下径流、冰川径流、雪水当量和三层土壤湿度等7个变量。该数据集空间分辨率为50km,时间分辨率为月。该数据集可用于气候变化下北极大河流域水量平衡变化分析,也可用于遥感数据产品及其他模型模拟结果的对比和验证。
赵求东, 王宁练, 吴玉伟
青藏高原被誉为“亚洲水塔”,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。准确估算青藏高原的径流,揭示径流的变化规律,有利于高原及周边地区的水资源管理和灾害风险规避。青藏高原五大河源区冰川径流分割数据集覆盖时间从1971年到2015年,时间分辨率为逐年,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为流域,以多源遥感和实测数据为基础使用耦合了冰川模块的分布式水文模型VIC-CAS模拟获得,使用站点实测数据对模拟结果进行了验证,其所有数据进行了质量控制。
王世金
水库是重要的水利工程设施,在农业灌溉和市政用水的储存和输送中发挥着关键作用,但这一作用会受到水库蒸发的影响。但由于全球长期且连续的水库地理信息的可获取性受限,因而估算全球水库蒸发损失仍有一定困难。目前,两个最新的水库数据集,即全球水库表面数据集(Global Reservoir Surface Area Dataset)和全球水库和大坝数据库(Global Reservoir and Dam Database),为解决这一困难提供了机会。我们使用这两个数据集估算了1985年至2016年全球7242个大型水库的月水库蒸发量。其中,蒸发率采用三套气象产品数据分别进行计算( (1) TerraClimate; (2) ERA5; (3) Princeton Global Forcings),水面面积采用全球水库表面数据集(Global Reservoir Surface Area Dataset)。
田巍, 刘小莽, 王恺文, 白鹏, 刘昌明
青藏高原被誉为“亚洲水塔”,是东南亚众多河流的源区,其提供的径流作为重要的、易获取的水资源,维系着周边数十亿人口的生产生活,支撑着生态系统的多样性。青藏高原五大河源区冰川径流数据集覆盖时间从2005年到2010年,时间分辨率为每5年一期,覆盖范围为青藏高原五条大江大河源区(黄河源,长江源,澜沧江源,怒江源,雅鲁藏布江源),空间分辨率为1km,以多源遥感、模拟、统计和实测数据为基础,使用GIS方法和生态经济学方法结合,量化了江河源区冰冻圈水资源服务的价值,其所有数据进行了质量控制。
王世金
该数据集包含了2021年1月1日至2021年12月31日青海湖流域水文气象观测网青海湖鱼雷发射基地站气象要素梯度观测系统数据。但是由于2021年青海省于研究站点鱼雷发射基地进行翻修,打造鱼雷发射基地的红色旅游区。该站点所有仪器于2021年5月30日全部拆除,准备于2022年7月重新安装。因此该站点2021年实际获得数据为2021年1月1日至2021年5月29日数据。2021年5月30日到12月31日数据缺失。站点位于青海省青海湖二郎剑景区鱼雷发射基地,下垫面是青海湖水面。观测点经纬度为:东经 100° 29' 59.726'' E,北纬 36° 35' 27.337'' N,海拔3209m。风速/风向架设在距湖面14m处,共1层,朝向正北;空气温度、相对湿度传感器分别架设在距湖面12m、12.5m处,共2层,朝向正北;翻斗式雨量计安装在距湖面10m处;四分量辐射仪安装在距湖面10m处,朝向正南;一个红外温度计安装在距湖面10m处,朝向正南,探头朝向是垂直向下;湖水温度探头设在水下0.2, 0.5, 1.0, 2.0, and 3.0 m处;光合有效辐射仪安装在距湖面10m处,探头朝向是垂直向下,朝向正南。 观测项目有:风速(WS_14m)(单位:米/秒)、风向(WD_14m)(单位:度)、空气温湿度(Ta_12m、Ta_12.5m和RH_12m、RH_12.5m)(单位:摄氏度、百分比)、降水量(Rain)(单位:毫米)、湖表辐射温度(IRT_1)(单位:摄氏度)、光合有效辐射(PAR)(单位:微摩尔/平方米秒) 、四分量辐射(DR、UR、DLR_Cor、ULR_Cor、Rn)(单位:瓦/平方米)、湖水温度(Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm)(单位:摄氏度)。 观测数据的处理与质量控制:(1)确保每天144个数据(每10min),若出现数据的缺失,则由-6999标示;由于冬季湖水结冰故将水温探头收回,故2021.1.1-2021.5.31期间无水温数据记录;(2)剔除有重复记录的时刻;(3)删除了明显超出物理意义或超出仪器量程的数据;(4)数据中以红字标示的部分为有疑问的数据;(5)日期和时间的格式统一,并且日期、时间在同一列。如,时间为:2018-1-1 10:30。
李小雁
本数据集包含的气象、土壤水分、土壤温度、腾发和渗漏数据均在西藏自治区拉萨市澎波灌区监测获得。数据集包含了西藏澎波灌区2019~2022年以小时为序列的气象数据,由全自动气象站NHQXZ601监测获取,其中包括降雨、气温和相对湿度数据等。利用东方智感墒情仪监测青稞地、燕麦地和草地土壤水分及土壤温度变化,数据采集间隔以小时记,实测时间为2019~2022年。土壤温度和土壤水分数据较为详实,利用统计学方法可以反映出土壤水分和温度在时、天、月、季、年不同时间尺度的变化规律,也可较好的满足农田水热运移模型的率定和验证需求。数据集还包括了作物腾发数据和渗漏数据,利用LYS80蒸渗仪实测获得,此数据优助于解析西藏高寒地区农作物在整个生育期耗水量及不同生长阶段的耗水量及渗漏量,对明晰不同农田系统的水量平衡发挥重要作用。该数据集提供的西藏澎波灌区气象,土壤水分、土壤温度、蒸腾和渗漏数据,有助于揭示农田尺度、灌区尺度的水转化过程和充分认识西藏高寒区SPAC系统的水热传输过程,作物生长状态。
汤鹏程
本数据为祁连山地区2021年地表水体(包括液态水、冰川及多年积雪)分布产品。采用经典归一化水体指数法(Normalized Difference Water Index , NDWI)和人工修正的方法提取。原始基础数据为2021年祁连山全境的Landsat影像。参考数据为谷歌影像和哨兵2号影像。产品以shp文件格式存储,包含坐标系、水体面积等属性。产品为1期,时间分辨率为1年,空间分辨率为30米,边界精度在30米(一个像元)左右。该产品直观地反映了祁连山水体在2021年的大致分布,可用于流域水资源定量估计研究。
李佳
于2020年9月3日-9月9日在怒江流域上游(即怒江源区那曲流域)采集地下水与地表水,样品采集后立即放入100 ml高密度聚乙烯(HDPE)瓶。18O和D采用液态水同位素分析仪(Picarro L2140-i,USA)进行分析测试,稳定同位素比率用相对于Vienna“标准平均海水”(VSMOW)的千分差来表示。δ18O和δD的分析误差分别为±0.1‰和±1‰。为后续分析那曲流域地下水的水源解析提供基础的数据支撑。
刘亚平, 陈政豪
为进一步查明雅鲁藏布江等流域水系固体物质运输过程及时空演变,第二次青藏科考任务二专题四水系固体物质源—汇过程与演变科考一分队,四川大学沉积动力观测分队,于2021年5月15日前往雅鲁藏布江山南市羊村水位站河段进行坐底仿生水沙观测系统投放仪式。该坐底仿生系统搭载不同类型的水沙运动要素观测设备,能长时间、连续且同步对水沙运动重要要素进行较高时间分辨率观测。本数据集包含:(1)垂线分层水流平均流速数据(ADCP20210515.xlsx),(2)近底单点流速、紊动能数据(VectorADV20210515.xlsx),(3)超级浊度仪悬沙浓度数据(AOBS20210515.xlsx),(4)激光粒度仪水深、悬沙浓度及级配数据(Lisst20210515.xlsx)。该数据集记录了高时间分辨率水沙要素同步连续观测数据,时间分辨率达10分钟/次,观测时间长达近1个月,成功观测到了雅江流量增大下的水沙耦合变化过程。基于坐底仿生观测系统的水沙多要素同步连续观测技术对揭示水系源汇过程与演变、推移质泥沙输移、洪水模拟计算、山洪水沙灾害预警与防治、重大基础工程建设等方面提供技术支撑和科学依据。
许唯临, 黄尔, 闫旭峰, 罗铭, 王路, 王协康, 马旭东, 刘超
联系方式
中国科学院西北生态环境资源研究院 0931-4967287 poles@itpcas.ac.cn关注我们
时空三极环境大数据平台 © 2018-2020 陇ICP备05000491号 | All Rights Reserved | 京公网安备11010502040845号
数据中心技术支持: 数云软件